* Why OR ?
Search: "Operational Research" (Br.) at .ac.uk, at .edu; "Operations Research" (Am.) at .ac.uk, at .edu
01' • (G) What is OR ? ⇒
Euro,
Assoc. of European OR Soc.s (→ Op. Res. → What is OR ?);
Wikipedia;
APDIO → ..."O que é IO";
InfORMS
02' OR benefits from:
(i) several top 10 (a2000) algorithms of the 20.th century, namely Linear Programming and
the Monte Carlo method; and
(ii) the simultaneous computer-age revolution.
OR is typically interested in an optimum
solution
(least cost or wait, greatest profit).
03' • Prominent
scientists in OR (in OR/MS 2002): George Dantzig (Linear Programming); Stanislaw Ulam (Monte Carlo); A. H. Land, A. G. Doig (branch-and-bound,
Integer Progr.); Richard Bellman (Dynamic Progr.); J. C. Little (Queueing);
T. M. Whitin (Inventory Management).
• Scientific societies, periodicals.pdf
(.pdf if normal, .Pdf if scanned image) |
* Linear Programming
Example [Resnick, exa. 10-1, p 279] fertilizer problem.Pdf (1 Mb),
.xlsx or
.xlsb, with graph,
(Lindo)
.ltx,
%
LP ("revised"),
[p 280]%.pdf,
% "standard, canonical"
(§% via libr.)
• Software for LP
(CPLEX, Gurobi, etc.)
• IBM CPLEX DropSolve
04' • [Sultan].Pdf (1 Mb,
pp 2–18, Soln505–507, 26–29, 225–243,
394–403, Soln552–553, 476–481) diet, cars, transportation:
Solver Sultan.xlsx,
.xlsb;
"Mathematica" soln.
diet, cars, 1, 2.nb,
transport., 3.nb
05' SAS
• SAS/OR
diet.xlsx,
.ltx
.lp
• WinQSB.zip
(search)
06' • What is a simplex: [WolfrMW], [Dantzig].Pdf
• Explaining the simplex: Zionts.pdf; H&L.pdf "Wyndor" prb., .nb,
Wyndor & Zionts.xls:
feasible region and path of optimization
07' • Prepared data.pdf for (revised simplex %)
several of the given LP problems.
08' • Artificial
(H&L, Taha) variables.pdf;
manually, ZiontsPlus.xlsx
(.pdf)
• Negative, free variables
• Redundant.pdf ?
Impossible.pdf ?
09' • Excel (and proper form):
LP_ResnickManual.xlsx,
LP_Bronson04_01to06.xlsx,
LP_Bronson04_11to19.xlsx
10' • LP (Ziont's) typical "four types".Pdf :
resource allocation.Pdf
(28Mb, dog food),
blending.pdf
(candy shop, not linear?), cutting stock, flow.
11' • LP parallel resolution.pdf :
algebraic, tabular, and matrix forms;
or, more clearly, see (tableaux) Bronson prb4.3 (below).
12' • • • Applied exa.s:
>>> |[ Bronson]|
(refinery, juice, etc.)
13' • Revised simplex: % Zionts prb,
inverse matrix updating (matrix Zionts.xls prb).
• Excel limits: TP_big.xlsx
14' • • • Applied exa.s:
>>> | HPWilliams|
(refinery, regression, etc.)
15' • [Craw] Q&A.pdf,
machine shop.pdf,
blending.pdf (p 4);
A. Alves.xls;
[Ecker&Kup.] "scientific" Q&A.pdf,
.xlsx
(regression & Excel tricks),
1 .ltx,
2 .ltx
16' • Multiplicity:
JLawr.ppsx
• multi1.pdf
• prb1.6.xls
→ with 3D graph.xlsx,
.ltx
(convex linear combination)
17' • Degeneracy and variants
(unbounded, impossible):
special.zip
18' • Cycling: Strayer.Pdf
(2.6 Mb) (anti-cycling), Beale.xls,
GassV.ltx
(Gass&V.),
Strayer.ltx
• Efficiency.pdf (MCuturi: Klee-Minty)
19' • Duality [BronNaad].Pdf .
Symmetric: Duality'16.zip (Excel+Lindo)
20' • [Bron.] prb5.2 LP_Bronson.05.02.pdf,
LP_Bronson.05.02-QSB.pdf
and soln. (tableaux) LP_Bronson.05.02.xlsx;
unsymmetric [Tavares].pdf (QSB)
21' • Exa.s [Desbazeille]:
exa. 1.2.ltx, dual.ltx (exa. 1.8.xls, .ltx)
• Jam prb.
.xls,
.xlsx with 0's,
.ltx
[Ramalhete, 2.16, prb. 14]
22' • • • Applied exa.s:
>>> [ Beasley]
23' • Ramalhete sensit..xls
• Arsham (search "315.101"): Game theory
(→ =;
ex1.ltx)
• NEOS:
Case Studies |
* Transportation Problem
(Hitchcock) "OR notes": 1:intro, 2.TP.pdf
(exa. 1, pp 9–10, 13–14) Degeneracy: Note 3, p 15.
24' • Stepping-stone solution TP_steppst.xlsx and Solver (StEdw.pps, 4 Mb).
25' • 3:TP-like.pdf:
[H&L] production scheduling.Pdf (p 23; below, "N. Airplane");
transshipment (p 18); assignment (AP) (p 24)
26' • Prod. sched. [H&L]
'Northern Airplane' prb
.xlsx,
.ltx,
.txt
• Transsh. [Bron.] prb9.3.Pdf,
'transsh.→TP' routine.pdf
(Peniche or exa. 2, p 21), soln..xls ([Tavares].Pdf 4 Mb)
27' • Facility location...
(plant location, |at (J. Buescu) Ingenium.pdf|)
• Shortest path (Java) |
* Integer Programming MILP
(branch & bound)
[IP_Wolsey95].Pdf, basic exa.
(11 pp, 3 Mb), Solver IP_Wolsey95.xlsx,
IP_Wolsey95.lp,
Wols95.ltx,
Wols95ltx.zip &
tree,
Wols95.lpp
• Gurobi MIP basics
• MILP: nomenclatura portuguesa.pdf
28' [EiseltSandblom] B&B.Pdf p 211
(4 pp, 3 Mb), strategies: depth-first, breadth-first,
best-bound-first+most fractional (6.2.2, p 217).
Soln p 211 .xlsx, .ltx,
tree.Pdf
(p 211, not 122).
29' [Bron.] prb6.2.Pdf (1 Mb) and prb6.4 (←prb1.6),
Bron62.ltx,
Bron62ltx.zip (relax.).
30' Wiesemann
IP_Wiesemann.pdf (380 kb),
IP_Wiese.lp,
IP_Wiese_ltx.zip
(tree).
31' [Sultan] p395ff.Pdf,
p400.xls (count iterations !),
p400soln.zip
• [EckerKup]prb..Pdf
(node 7 wrong ? .xlsx),
EckerKup.ltx,
tree.Pdf
32' • • • Applied exa.s:
>>>|[ Eiselt & Sandblom]|
(logical, Boolean, binary variables)
33' • Binary variables
Knapsack problem: [Bron.] KnapsackPr4e5.pdf: KnapsPr4.ltx; KnapsPr5.ltx, 5.lpp, 5.pdf
34' • Chen et al.'s "Transformation using 0-1 var.s".pdf.
35' • Beasley 7 prbs.: (IP_Beasley_pdf.zip,
solved or illustrative) prb1, blending IP_Beasley.pdf, limiting var.s and constr.s
(with areas for IP or BIP use)
36' • Wikipedia: Travelling salesman problem (TSP)
• 1992EJOR_Laporte.pdf, an overview
• (CD) TSP_prototype.pdf
37' • %, as AP:
[Bron.] prb9.6.Pdf (1 Mb)
(prb9.6&18.xls,
tree18.pdf ?)
38' • TSP as AP relaxation:
(Parviainen, LUT.fi) #tsp5_2.pdf (=), LUTtspltx.zip, LUTtspap.xlsx (AP relaxation: 2 or more subproblems !)
• TSP_Raffensperger.ppsx (sl. 1–7)
• Covering (visiting) TSP_data.xlsx
tray points (Carpaneto....) |
* Simulation
(Monte Carlo) Exa.s: %;
truck with sacks %;
bag of oranges %;
fishes on Venus %
39' • π
[Boston]. Aeronautics... (Is Java safe ? No. See the [don't] "Download Applet".)
40' • Stanislaw Ulam:
|MC in practice|
(slides 19–22)
• When not to use mc: two Gaussian bars.xlsx;
if you insist...
%
41' • Random number generation:
mid-square.xls;
NY Times,
'randu'.Pdf;
|"linear congruential".xls|
(μ, σ of uniform.pdf)
• |Kruskal.pdf|: UMass-L(5), SFU(1)
• Coin flipping H&L5: 21.1.sim.Pdf (3 Mb), .xls
42' • Simulation methods: inversion routine.pdf ;
math tools.pdf
• ◊|Excel frequency.xls|
43' • Exponential, Gauss, triangular
variables.xlsx
(2 exp.s.xlsx)
(the lens…)
• Box-Muller,
.xlsx
%
44' • Simulate some
variables;
Gaussian inversion.pdf
• ||Truncated Gaussian.xlsx||
45' • RNG: [EckerKup468].Pdf (4 Mb);
(RNG.pdf).
Prb.s Sim 1–4.pdf.
• Acceptance-rejection.pdf.
Parabolic variable %.
46' • Histograms: two styles.xls (search "two")
• (Review: trucks, oranges)
• Table legs.xls %
• Can level.xlsx
• Light bulbs.xls,
Quality %
• DiscreteVariables.xlsx
• Random m..n.xls
• Monte Carlo integration
47' • Cases:
hopper (G,
P)
/ cone bottom cylinder /
tank wagons (W)
/ can filling
• Tank wagons.xls
('discrete & continuous' variables).
48' • General: Ellipse,
for Excel with macros: '.xlsm'. See also Computing/Misc./MS Office for macros (UDF)
and sliders. |
* Revisions
• Transportation problem.xlsx,
with tolls,
models.pdf
• Simulation
of distance.xlsx in a circle (COUNTIF)
• "Julia".pdf.
53' • Beasley IP (Tutorials): "4 variants
of product" manufacture,
question,
solution,
answer.xlsx,
=.ltx;
ExamSimul2000.docx,
better answer.xlsx
Project selection question,
solution,
answer.xlsx,
=.ltx
• Vandenberghe ilp.pdf (facility location,
B&B),
=.xlsx
=.ltx
(& see log)
54' • How to snatch into Excel
• How to pilfer a 'ppsx' ? (save 'ppsx', start PP, open 'ppsx', etc.).
See DePaul (above) and M/M/1,
M/M/s (Kendall, Erlang). Mark Hillier.xlsx.
55' • LP w/ bin. var., fix cost.mp4
• IntegerProg.pptx
(pptx or ppsx; 103 sl.: exa.s 45 bin 49 57 59 62 71 fixCh 87)
56' • Exam problems:
cinetica.jpg,
.xlsx;
Plymax.jpg;
exam1.pdf |
• Boston Univ.
• #Craw
• IMSL lib.s
• mc, Monte Carlo
• MILP search (Mixed Integer Linear Programming)
• NAG, Fortran
library
• NEOS (Network-Enabled
Optimization Sys.) — ANL (Argonne Nat'l Lab.),
MCS
(Maths. & Computer Sci.), #OTC (Opt. Technology Center)
• #QSB
• TSP,
travelling salesman problem
• WolfrMW,
Wolfram MathWorld (Mathematica)
• Dictionaries, etc....:
optimum (n./adj.), greatest degree / best,
most advantageous ←
L., neut. s. of optimus (used as superl. of bonus, "good") ←
ops, "power" (related to opt ← Fr. opter)
• solution (soln.), an action or process of solving
a problem; answer to a problem; specifically,
a set of values of the variables that satisfies an equation
• {un|a}symmetric(al) (sci.: -symmetric ?), symmetrical
• to prune,
to cut off parts (eg., tree branches) for better shape, more fruits
(podar .pt .es, élaguer .fr, potare .it,
stutzen .de)
• to fathom,
to measure by a sounding line (to evaluate) |