468 PROBABILISTIC MODELS
—

times in the system measured in the two simulation runs are significantly dif-
ferent. If the test shows that the two results are not significantly different, the
two number sequences are interchangeable for the purposes of the simulation.

[t is easy to see that an algorithm can generate a sequence of numbers that
has precisely the same statistics as a sequence of numbers generated by a natural
random process, because in principle an algorithm can be made to produce any
given number sequence of finite length. This sequence could be identical to the
numbers on the tape previously mentioned, so it would obviously be statistically
indistinguishable from that sequence, which was generated by a natural random
process. Of course, it is not necessary to replicate the exact numbers appearing
on the tape, because the statistical properties can be the same even if the se-
guences of numbers are not. and the sequences can therefore be interchangeable
in the sense defined above.

A sequence of numbers that is generated by an algorithm but 15 inter-
changeable with a truly random sequence is called pseudorandom.

A sequence of numbers is psendorandom if every sufficiently short
subsequence is interchangeable with a comparable sequence that is
truly random.

The only unavoidable difference between a truly random sequence and a
pseudorandom sequence is that the sequence generated by an algorithm might
repeat, and this accounts for the phrase “sufficiently short™ in the definition.
Just as rewinding a tape that contains a truly random sequence and starting over
yields a longer sequence that is no longer random, permitting the pseudorandom
sequence generated by an algorithm to repeat might result in a longer sequence
that is no longer interchangeable with a truly random sequence. To ensure this
does not happen, the period of repetition of the algorithm must be longer than
the sequence of numbers required by the simulation.

Random-Number Generators

After carefully distinguishing between the random sequences produced by
natural random processes and the pseudorandom sequences produced by al-
gorithms, it 1s conventional to use terminology that ignores the distinction. This
is because in practice one never uses truly random sequences; it is always pseu-
dorandom sequences that are under discussion, so no confusion can arise. Thus,
an algorithm for generating a pseudorandom sequence of numbers is commonly
called simply a random-number generator. [t is also common to speak of random
numbers with the understanding that a pseudorandom sequence of numbers is
actually being referred 1o, and 1o speak of a single number in a pseudorandom
sequence as a random number even though randomness is a concept that really
applies only to the sequence as a whole.

There are many algorithms for generating random numbers, differing from
one another in the extent to which they exhibit the following desirable properties:

¢ Long period of repetition

As already mentioned, it is desirable to be able to complete a simulation without
having the random numbers begin to repeat. In practice, if the sequence is long

SIMULATION 469

enough, then even if it does repeat that might have a small enough effect so the
simulation results remain valid.

e Apparent statistical independence of successive numbers

This is necessary to ensure that the pseudorandom sequence is interchangeable
with a truly random one. Knowing any subsequence should not help to determine
the number that comes next.

¢ Uniform distribution

Sometimes a simulation requires random interevent times that are drawn from
a uniform probability distribution, that is, a distribution whose values are equally
probable within a given range. Even when that is not true, however, it is con-
venient to have a random-number generator produce uniformly distributed val-
ues. This is because, as we shall see, values from a uniform distribution are easy
to transform into values from any arbitrary probability distribution that might
be desired.

e Speed

Real simulations typically require a great many random numbers, so the speed
with which an algorithm can be executed might have a big influence on the
computer time consumed. Usually, simplicity is the key to high speed.

s Hepeatability

Although it is important for the sequence to be pseudorandom in the sense
already defined, it should be possible to use the same pseudorandom sequence
from one run of a simulation to the next. The main reason for this is so that it
is possible to debug the computer program that performs the simulation. De-
bugging is always necessary in practice and is extremely difficult unless the same
number stream can be used repeatedly.

It is easy to design a random-number generator so that its output is re-
peatable. However, it is always necessary 1o make trade-offs between period of
repetition, independence of successive numbers, uniformity of distribution, and
speed. In order to produce pseudorandom sequences having good statistical
properties, it is inevitably necessary to sacrifice speed. Thus, the selection of a
suitable random-number generator for a given simulation can be a nontrivial
task.

The Multiplicative Congruential Algorithm

The simplest random-number generator is the multiplicative congruential
algorithm.

MULTIPLICATIVE CONGRUENTIAL ALGORITHM

U, Fix parameters p and m

1. w, = starting number, nonzero and odd
k<10

2. .y = (mu)mod p

L k—=k+1
Coto 2

470 PROBABILISTIC MODELS

All the numbers used in the algorithm are nonnegative integers. The parameter
m is called the multiplier, the parameter p is called the modulus, and the starting
number u; is called the seed. The heart of the algorithm is the recursion formula

Ugey = (muy,) mod p

telling how each number in the sequence is generated from the previous one,
The notation “mod p™ in this formula refers to the result of an integer division.

x mod p = remainder left over after dividing x by p

If no u, is zero, the integers that can be generated range from 1 through
p — 1,50 (4; — 1) ranges from 0 through p — 2 and corresponding real numbers
r. in the range [0, 1] can be obtained as

i, — 1

Fi =
k =

To see how the multiplicative congruential algorithm works, consider the
following example:

p =17
m=13
H[|=T

u; = (5-7)mod 17 = remainder of integer division ¥ = 1

2

17[35

34
1 = 35 mod 17
u, = (5-1)mod 17 = §
iy = (5-3)mod 17 = 8

Continuing the process yields the sequence

7,1,5,8,6,13; 14, 2, 10, 16, 12,9, 11, 4,3, 15, 7, 1,5, 8,. ..

| period of repetition |

The repetition is obvious in this example, with a period of 16 numbers. The
period is always less than the parameter p, so p should be chosen as the largest
value that can conveniently be used. Usually, because of efficiency considera-
tions, this choice is influenced by the length of the words in the computer on
which the algorithm is to be run. In particular, if the computer word length is
w bits and we chose p = 2*, the multiplication in the recursion formula yields
a two-word result, the low-order word of which is the product modulo 2*. The
choice of p = 2*~! permits the desired value to be found almost as easily, and
it is therefore also frequently used. In either case the fact that no division is
required to perform the modulus operation provides a considerable speed ad-
vantage over algorithms using other values of p.

It is possible for the period of repetition to be much less than p if the
multiplier m is inauspiciously chosen, and to get the longest possible period,
p — 1, m should be chosen in such a way that m — 1 is a multiple of every
prime number that divides p without a remainder.

SIMULATION 471

It is also essential that no integer multiple of m be equal to p, as shown by
the following example:

p =10
m=35
gy = 5

; = (3'3)mod 10 = 5
i, = (55 mod 10 = 5
i; = (55)mod 10 = 5

In such cases the period of repetition is only one number long.

Finally, for the sequence generated to have good statistical properties, m
should be close to the square root of p, and the sequence used 1n a ssmulation
should be no longer than the square root of the period of repetition.

Even if these rules are followed in selecting p and m, it is quite possible
for the sequence generated by the multiplicative congruential algorithm to have
significant serial correlations (that is, poor apparent independence of the suec-
cessive numbers) or to depart significantly from a uniform distribution. In prac-
tice, therefore, the choice of values for p and m must be guided by statistical
analysis of the sequences actually produced. The most commonly used mult-
plicative congruential generator, which is available on many computer systems
by the subroutine name RANDU, has p = 2" = 2147483648 and m =
2 + 3 = 65539. These choices yield an algorithm that has a period of 2%
numbers and runs very fast on computers having a word length of 32 bits.
However, the sequence it produces has the property that each number is related
to the two previous ones by a simple formula, and this strong serial correlation
makes the sequence generated by RANDU unsuitable for many simulations.

Some other multiplicative congruential generators in common use are re-
ported to have statistical properties much better than those of RANDU. Two
that are available in widely used commercial scientific subroutine packages have
the following parameters:

p = 2147483648 = 27V p = 1147483647 = 2
and
m = 302875106592253 = 13© m= 16807 = 7

The generator on the right runs slower than RANDU because the modulus
operation is much easier to perform using p = 2* than with p = 2% — 1.

Other Uniform Random-Number Generators

Improved statistical properties can be obtained by adding a constant term
to the multiplicative congruential recursion formula, as follows:

Upo, = (@ + ruy) mod p

The number a is called the increment, and an algorithm that uses this recursion
formula is called a mixed or linear congruential generator. As in the case of the

472 PROBABILISTIC MODELS

multiplicative congruential generator, p should be the largest value that can
conveniently be used. The increment a4 should obviously be nonzero, but the
other considerations involved in picking good values for a and m are rather
complicated. One published algorithm uses the following parameter values:

p = 2147483648 = 2%
m = 843314861 = p(w/8) + 5
a = 453816693 =~ p(3 — V3)/6

This generator has excellent statistical properties, and although it runs slower
than RANDU because of the extra addition in the recursion formula, it is faster
on most machines with 32-bit words than multiplicative congruential generators
having p > 2% or p not a power of 2.

Another commonly used random-number generator having good statistical
properties is the GPSS algorithm. The idea of this algorithm can best be illus-
trated by an example using decimal integers, although it is actually carried out
using binary numbers on a computer, Suppose for the sake of the example that
it is desired to generate random numbers 7, from .0000 through .9999. We begin
with a multiplier m, which is fixed. and a seed w,.

m = 5167
u; = 3729
These are multiplied together to produce a product having eight digits.
mu, = 19267743

The middle four digits of this product are used to form the first random number
ry, and the rightmost four digits are used as u,. Thus,

ro= 2677
w = 7743

Next the product mu, is formed, its middle four digits are used as the digits of
ry, its rightmost four digits become u,, and so forth. The GPSS pgenerator gets
its name from General Purpose System Simulator, a next-event simulation pro-
gramming language discussed further in Section 13.5. The GPSS language is
widely used, so many simulations generate random numbers this way.

The final category of random-number generators in wide use is the gen-
eralized shift register algorithms. These algorithms were developed by compu-
tational physicists for use in Monte Carlo simulations of the kind discussed in
Section 13.4, In many such applications successive numbers are used as random
coordinates in spaces of high dimension, and the sequences produced by
otherwise acceptable multiplicative congruential generators were found to ex-
hibit undesirable patterns when used in that way. Also, the periods of repetition
of multiplicative congruential generators were found to be far too short for many
Monte Carlo simulations. The generalized shift register approach avoids both
shortcomings by using recursions in which u, is determined from several previous
values, extending back to u,_,, rather than from only u,_,. Results from number
theory are used to select recursions having the maximum possible period of
repetition, which is 2¢ — 1. One popular variant, called the R250 algorithm,

SIMULATION 473

has ¢ = 250 and uses the recursion
Uy = U 1a7 D U290 k=251...20+ K

to generate K random numbers.

The symbol @ in the recursion formula denotes the exclusive-or logical
operation, applied to the bits of u;_,;; and 6 _»s; when they are written as binary
numbers. The exclusive-or operation is defined by the following table in which
the marginal entries are the possible operand bits and the entries inside the table
are the result bits obtained for the various input combinations:

0 1
0 0 1
x exclusive-or operation
1 1 0
x@y

The exclusive-or returns 1 if the input bits are different and 0 if they are the
same. To see how the exclusive-or is used in a typical iteration of the R250
algorithm, suppose that at step k of the algorithm we have u,_,;; = 369 and
U;_-sp = 811. To find u, according to the recursion formula, we (or rather the
computer) would proceed as follows:

e 147= 369'“1 = 'H.H}].'.” l]{IIJl:
®
u;‘-_:y_;-: l(',';]:].lu = ‘.m]]ml”l[}] 1:

001001011010, = 602, = w,
Usually, of course. computers have words longer than the 12 bits used in this
simplified example.

The 250 most recently generated values must be retained at each step of
the R250 algorithm, so that subsequent steps will always have the values they
require. This vector of the 250 previous u,'s can be thought of as a shift register
whose contents are shifted left one element per iteration of the algorithm, and
this accounts for the name. The first 250 values in the shift register may be
thought of as seeds, and must be generated as part of initializing R250 by using
another method such as a multiplicative congruential algorithm. The R250 al-
gorithm achieves its maximum possible period of repetition of 2** — 1 (=2-10"),
and has been found empirically to have good statistical properties. The shifting
of the shift register takes some computer time not required by the other algo-
rithms we have discussed, and this algorithm also uses more storage, but the
recursion itself runs very fast and the extremely long period makes R250 the
algorithm of choice for some applications.

Nonuniform Distributions

Often it is necessary to provide interevent times that are randomly drawn
from some probability distribution other than the uniform distribution. Various

474 PROBABILISTIC MODELS

ad hoc techniques can be used to obtain random numbers from nenuniform
distributions, but only one method is both universally applicable and widely
used. That is the method of inverse transformation. The idea is to generate a
random number from a uniform distribution and then calculate, from a formula
(or a graph or table), a corresponding value that appears to be drawn from the
desired distribution. The process is shown graphically in Figure 13.5.

To use the method of inverse transformation, we generate values u of a
random variable U that is uniformly distributed on the interval [0, 1]. For each
value u, we read across on the graph of Figure 13.5 until we meet the curve,
and then read down to obtain a corresponding value x for the random variable
X, which has the distribution we want. In other words, if the curve is a graph
of the function U = F(X), we calculate x as x = F~'(u).

For a hypothetical distribution function F, if x = F~(u), then

PIX =x] = P[F(I)=2x] = P[U = Fx)]

The last equality above holds because the two probabilities are both represented
by the shaded area in Figure 13.5. Next we observe that, by the definition of a

uniformly distributed random variable,
P[U = Hx)] = F(x)

Thus P[X = x] = F(x), and we see that the distribution function of X is in fact
equal to F(x). That is,

if U is a random variable uniformly distributed on [0, 1],
then X = F '(U) is a random variable having the distribution
function F(x).

As an example of the method of inverse transformation, consider the prob-
lem of transforming uniformly distributed random numbers into random num-
bers drawn from an exponential distribution with parameter ¢, This comes up
all the time in the simulation of queueing systems because exponentially dis-
tributed interevent times are often observed (or at least assumed). If X is an
exponentially distributed random variable, its distribution function is

Ax) =1 - e

Fix)=P[X < x]

I

|
ohatsi] —
X

FIGURE 13,5 The method of inverse fransformation.

SIMULATION 475

Given a value u drawn at random from a distribution that is uniformly distributed
on [0, 1], we can find the corresponding value of x by solving the equation
u = F(x) for x. If u is drawn from a distribution that is uniform on [0, 1],
however, then we could just as well use 1 — u instead because it is also drawn
from a distribution that is uniform on [0, 1]. Then it is easy to solve for x as
follows:

l—u=1-— e«

e =u
—cx = In(u)
-1
x= 2108 pig -)
c
This result says that if U is distributed uniformly on [0, 1], then X = —In(U)/¢

is distributed exponentially with parameter ¢. It also means that we
can generate uniformly distributed random numbers and simply use the formula
to get random numbers that are exponentially distributed with parameter c.

The method of inverse transformation can be used to transform uniformly
distributed random numbers into random numbers from any distribution, so
long as the inverse, F~', of the desired distribution can be found analytically or
approximated numerically.

13.4 MONTE CARLO SIMULATIONS

In addition to next-event simulation, described in Section 13.2, there is
another important technique, called Monte Carlo simulation or static simulation,
in which random numbers and the laws of probability are used to approximate
the solutions of problems that have nothing to do with queueing-type systems.
Although this technique is referred to as simulation, it does not necessarily have
any interpretation as the mechanical imitation of a real process. The name Monte
Carlo derives from the fact that a city of that name is famous for its gambling
casinos, and reflects the importance of random numbers in the method. Monte
Carlo simulation, like dynamic programming, is a general approach rather than
a specific algorithm. To give the flavor of this approach we shall discuss two of
its standard applications, integration and optimization.

Evaluation of an Integral

Consider the problem of calculating the numerical value of the following
definite integral:

la, b) = Ff(xjutx = réﬂ%m

This integral cannot be evaluated in closed form; that is, it cannot be expressed
in terms of a finite number of elementary functions. One way of calculating
I{a, b) for given values of @ and b would be to use a deterministic numerical
procedure such as Simpson’s rule. Fora = 1 and b = 2, this yields I(1, 2) =
0.294441. Figure 13.6 shows a graph of the integrand function f(x), with the
area corresponding to (1, 2) shaded.

476 PROBABILISTIC MODELS

Another way of approximating the integral is to estimate what fraction of
the rectangular box in Figure 13.6 is occupied by the shaded area, and then
multiply that fraction by the known area of the box. The box can be chosen
arbitrarily, so long as it contains the entire area corresponding to the value of
the integral. For convenience the box in Figure 13.6 has for its base the interval
on the x axis between the lower and upper limits of integration, and a height
of 1, which makes the area of the box equal to 1.

To estimate the fraction of the box that is occupied by the shaded area, we
can generate points (x, ¥) randomly located within the box, check each point
to see whether it is above or below the graph of the function, and estimate the
fraction of the box that is occupied by the shaded area from

number of random points (x, y) having y < f(x)
total number of random points tried

area fraction =

Each random point requires two random numbers, x and y. The x value needs
to be uniformly distributed between 1 and 2, and the y value needs to be
uniformly distributed between 0 and 1. We can generate a single stream of
random numbers u that are uniformly distributed on [0. 1] and find the coor-
dinates of the kth random point (x, y) from the following formulas;

Xy = 1 + Uy
M = Uy

Figure 13.6 shows the first 100 points obtained by using a multiplicative con-
gruential algorithm to generate random numbers and the preceding formulas to
find the point corresponding to each pair of random numbers. There are 32

fix)
[
1'D'_ (o]
50 Béf-,. 500%
o9 o o
o
0.8 [6 9% o5®.
| ¢ ® @
oo O g
0.6} % g °
: 8 o uath
L]
q’cgu [ols
o © i
0.4 00
cl!:l
o oo
o '5% Cr
02} by =
Cof oll.2) n
e
0
0.0 l e &
0.0 0.5 10 1.5 20

FIGURE 13.6 Monte Carlo integration.

SIMULATION 477

points below the curve, so a crude estimate of the area fraction occupied by the
shaded area is

area fraction = % = .32
Then the value of the integral is approximately
I(1, 2) = (area fraction)-(area of box) = (.32)-(1) = .32

Using more random points yields the progressively better estimates given in the
following table:

Total Number of Resulting
Random Peints (x, y) Estimate of I(1, 2

100 .320000
1000 278000
10000 .299400
100000 .296040
1000000 .204538
True value == 204441

The estimate approaches (very slowly) the true value of the integral as the
number of trial points increases.

One would never actually use Monte Carlo simulation to solve a simple
problem like this example because a deterministic numerical method such as
Simpson’s rule gives a much more accurate result with much less computational
work. For integrals in high dimensional spaces, however, the situation is often
reversed. The integral value is then the volume of a region whose boundaries
might be described by complicated formulas, so that it is difficult to determine
what limits to use in a direct numerical integration. The need to integrate over
many dimensions also greatly increases the computational work, so that a Monte
Carlo estimate is often easier. Monte Carlo simulation for the evaluation of
definite integrals (and for some closely related problems) is thus very important
in fields such as nuclear physics and accounts for a large proportion of the
supercomputer cycles devoted to scientific and engineering calculations today.

The Metropolis Algorithm

In 1953, N. Metropolis introduced a simple algorithm for simulating a col-
lection of atoms in thermal equilibrium at a given temperature. Starting from
some nonequilibrium initial arrangement of the atoms, the algorithm considers
one atom at a time and computes the change in the energy of the system that
would result from a small random displacement of that one atom. If the energy
would decrease or stay the same, the displacement 1s accepted and the config-
uration with the displaced atom is used as the starting point for the next step.
If the energy would increase, the displacement might still be accepted, with a
probability that depends on the energy change proposed. The probability of
accepting a higher-energy configuration decreases with decreasing temperature.
For physical reasons Metropolis used the following probability formula:

P(accept an energy increase of AE) = e 4F/0T

