o & .

S 4 =i

g | ign—

] . E %

W E < 3r

28 & & Y 4

g = Sy & : 4

= W~ ﬂE ,ﬁg E ‘fét

= Sl - : i

© S|lT “r =53 £ izf

o oo - a 1.

= 5 ﬁgﬁg = S

S E|S Bl =i 1240

Q02 model rather than on | ,h g.‘g 'EEE EE&E T:-;E §
21/ Simaltion venieat, expeasive, . B & & &5d il £33

viewed as virtually indis
should be based upon sOUnU sEUSUCAL LIEOTY,

This chapter focuses on discrete event simulations (as opposed (0 continuous
simularions), i.e., simulations where changes in the siafe of the system occur at random
points in time (as opposed to continuously) as a result of the cccurrence of discrele
events. The basic building blocks of a model for a discrete event simulation are the
possible states and events, a simulation clock for recording the passage of (simulaled)
time, # mechanism for randomly generating the different kinds of evenis, and a mecha-
nism for then generating state transitions.

These building blocks are described in Sec. 21.1 in the context of illustrative
examples. The second section elaborates on the formulation and implementation of
simulation medels. The next two sections then focus on the design and analysis of the
program of statistical experimentation inherent in a simulation study.

21.1 Illustrative Examples

In this section we use some relatively simple stochastic systems to introduce and
illustrate some basic concepts of simulation. The first system is so simple, in fact, tha
the simulation does not even need to be performed on a computer. The second sysiem
incorporates more of the normal features of a simulation, although it, oo, is simple
enough to be solved analytically. Following these two examples, we survey some more
typical applications of simulation.

Example 1: A Coin-Flipping Game

Suppose you are offered a chance to play a game in which you repeatedly flip an
unbiased coin until the difference between the number of heads tossed and the number
of tails tossed is three. You are required to pay $1 for each flip of the coin, but you
receive 58 at the end of each play of the game. You are not allowed to guit dunng &
play of the game, Thus you win money if the number of flips reguired is fewer than
cight, but you lose money if more than eight flips are required. How would vou decide
whether to play this game?

Many people would base this decision on simulation, although they probably
would not call it by that name. (There is also an analytical solution for this game, but it
is not a particularly elementary one.) In this case, simulation amounts to nothing more
than playing the game alone many times until it becomes clear whether it 15 worthwhile
to play for money. Half an hour spent in repeatedly flipping a coin and recording the
earnings or losses that would have resulied might be sufficient. This is a true simulation
because you are imitating the actual play of the game withour actually winning or
losing any money,

How would this simulated experiment be executed on a computer? Although the
computer cannot flip coins, it can generate numbers. Therefore, it would generate (o
be given) a sequence of random digits, each cormresponding to a flip of a coin. (The
generation of random numbers is discussed in Sec. 21.2.) The probability distibution
for the outcome of a flip is that the probability of a head is § and the probability of a

12il is 4, whereas there are 10 possible values of a random digit, each having a probabil-
ity of 7. Therefore, five of these values (say, 0, 1, 2, 3, 4) would be assigned an
association with a head and the other five (say, 5, 6, 7, 8, 9) with a tail. Thus the
computer would simulate the playing of the game by examining each new random digit
generated and labeling it a head or a tail, according to its value. It would continue doing
this, recording the outcome of each simulated play of the game, as long as desired.

To illustrate the computer approach to this simulated experiment, we suppose
that the computer generated the following sequence of random digits:

81,3727 1,655 7.9 0,0,3,4,3, 5,6, 8,5,
8,94,8,0,48,6,5359257971229389
83589 257.6%7:6073982,71,073,
2,6,271,370441832139535905,
0,387895,4028,3,80,1.

Thus, if we denote a head by H and a tail by T, the first simulated play of the game is
THHTHTHTTTT, requiring 11 simulated flips of a coin. The subsequent simulated
plays of the game require 5, 5,9, 7, 7, 5, 3, 17, 5, 5, 3, 9, and 7 simulated flips,
respectively. This experiment has a sample size of 14 (14 simulated plays of the game),
where the individual observations are the number of flips required for a play of the
game. One useful statistic is

1L+ 54-+7
Sample average = 14 =17,

because the sample average provides an estimate of the true mean of the underlying
probability distribution.

This sample average of 7 would seem to indicate that, on the average, you should
win about $1 each time you play the game. Therefore, if you do not have a relatively
high aversion to risk, it appears that you should choose to play this game, preferably a
large number of times.

However, beware! One common error in the use of simulation is that conclusions
are based on overly small samples, because statistical ana]ysis was inadequate or totally
lacking. In this case, the sample siandard deviation is 3.67, so that the estimated
standard deviation of the sample average is 3.67/ V14 = 0.98. Therefore, even if it is
assumed that the probability distribution of the number of flips required for a play of
the game is a normal distribution (which is a gross assumption because the true distri-
bution is skewed), any reasonable confidence interval for the true mean of this distribu-
tion would extend far above 8. Hence a much larger sample size is required before we
can draw a valid conclusion at a reasonable level of statistical significance. Unfortu-
nately, because the standard deviation of a sample average is inversely proportional to
the square root of the sample size, a large increase in the sample size is required to
yield a relatively small increase in the precision of the estimate of the true mean. In this
case, it appears that an additional 100 simulated plays of the game might be adequate.

It so happens that the true mean of the number of flips required for a play of this
game is 9. Thus, in the long run, you actually would lose about $1 each time you played
the game.

Although formally constructing a full-fledged simulation model is not really
necessary for this simple simulation, we do so now for illustrative purposes. The
stochastic system being simulated is the successive flipping of the coin for a play of the

903

21.1 / Mustrative
Examples

904

21 / Simuladon

game. The simulation clock records the number of (simulated) flips r that have cccurred -
so far. The information about the system that defines its current status, i.e., the srate of

the system, is
M(f) = number of heads minus number of tails after ¢ flips.

The events that change the stats of the system are the flipping of a head or the flipping
of a tail. The evenr generation mechanism is the generation of a random digir where

0to 4 = a head,
5t0 9 = a tail,

The state transition mechanism is to set
NiF—1) 1 if flip r is a head,
NG = e .
Ne—-1-1 if flip r is a tail.
The simulated game then ends at the first value of 1 where N(r) = £3, where the
resulting sampling observation for the simulated experiment is & — 1, the amount won
(positive or negative) for that play of the game.

The next example will illustrate these building blocks of a simulation model fora
prominent stochastic system from queueing theory.

Example 2: An M/M/1 Queueing System

Consider the M/M/]1 queueing theory model (Poisson input, exponential service times,
and single server) that was discussed at the beginning of Sec. 15.6. Although this model
already has been solved analytically, it will be instructive to consider how to study it
by using simulation. To be specific, suppose that the values of the arrival rate A and
service rate ju are

A = 3 per hour, 4 = 35 per hour.

To summarize the physical operation of the system, arriving customers enter
the queue, eventually are served, and then leave. Thus it is necessary for the simu-
lation model to describe and synchronize the arrival of customers and the serving of
customers.

Starting at time 0, the simulation clock records the amount of (simulated) time ¢
that has transpired so far during the simulation run. The information about the queveing
systern that defines its current status, ie., the state of the system, is

N(1) = number of customers in system at time !.

The events that change the state of the system are the arrival of a customer or a
service completion for the customer currently in service (if any). We shall describe the
event generation mechanism a little later. The state transition mechanism is to

N+ 1 if arrival occurs at time ¢,
Eeset N =) . .]

NH-1 if service completion occurs at time /.

There are two basic methods used for advancing the simulation clock and record-

ing the operation of the system. We did not distinguish between these methods for
Example 1 because they actually coincide for that simple situation. However, we now
describe and illustrate these two time advance mechanisms (fixed-time incrementing
and next-event incrementing) in turn.

With the fixed-time incrementing time advance mechanism, the following two-
step procedure is used repeatedly.

Summary of Fixed-Time Incrementing

1. Advance time by a small fixed amount.

2. Update the system by determining what events occurred during the elapsed
time interval and what the resulting state of the system is. Also record desired
information about the performance of the system.

For the queueing theory model under consideration, only two types of events can
oecur during each of these elapsed time intervals, namely, one or more arrivals and one
or more service completions. Furthermore, the probability of two or more arrivals or of
two or more service completions during an interval is negligible for this model if the
interval is relatively short. Thus the only two possible events during such an interval
that need to be investigated are the arrival of one customer and the service completion
for one customer. Each of these events has a known probability.

To illustrate, let us use 0.1 hour (6 minutes) as the small fixed amount by which
the clock is advanced each time. (Normally, a considerably smaller time interval would
be used to render negligible the probability of multiple arrivals or multiple service
completions, but this choice will create more action for illustrative purposes.) Because
both interarrival times and service times have an exponential distribution, the probabil-
ity P, that a time interval of 0.1 hour will include an arrival is

P,=1—¢"%%=0259,

and the probability Pp, that it will include a departure (service completion), given that a
customer was being served at the beginning of the interval, is

Pp=1— 310 =10303.

To randomly generate either kind of event according to these probabilities, the
approach is similar to that in Example 1. The computer again is used to generate a
random number, but this time with multiple digits rather than one. Placing a decimal
point in front of the number then makes it a uniform random number on (0, 1), that 1s,
2 random observation from the uniform distribution between 0 and 1. If we denote this
uniform random number by r4,

ry < 0,259 = amival occurred,
r. = 0.259 = arrival did not occur.
Similarly, with another uniform random number rp,
rp < 0.393 = departure occurred,
rp = 0.393 == departure did not occur,

given that a customer was being served at the beginning of the time interval, With no
customer in service then (i.e., no customers in the system), it is assumed that no
departure can occur during the interval even if an arrival does occur.

Table 21.1 shows the result of using this approach for 10 iterations of the fixed-
time incrementing procedure, starting with no customers in the system and using time
units of minutes.

)

'

L

905

21.1 / Mustrative
Examples

906

]
i

| Simulation

Table 21.1 Fixed-Time Incrementing Applied to Example 2

[, time Arrival in Departure
{min} NN v, Literval? rn i lalerval?
U u
t | U090 Yea —
12 1 0.569 No 0.665 Mo
18 1 0.764 No 0.842 No
24 {1 {.492 No 0.224 Yes
30 0 0.950 No —_
36 0 .6l No —_—
42 1 0.145 Yes —
48 | 0484 Mo 0.552 No
54 1 0.350 No 0.5%0 Mo
60 0 0.430 No 0.041 Yes

Step 2 of the procedure (updating the system) includes recording the desired
measures of performance about the aggregate behavior of the system during this time
interval. For example, it could record the number of customers in the queueing system
and the waiting time of any customer who just completed his or her wait. If it is
sufficient to estimate only the mean rather than the probability distribution of each of
these random variables, the computer will merely add the value (if any) at the end of
the current time interval to a cumulative sum. The sample averages will be obtained
after the simulation run is completed by dividing these sums by the sample sizes
involved, namely, the total number of time intervals and the total number of customers,
respectively.

Next-event incrementing differs from fixed-time incrementing in that the simu-
lation clock is incremented by a variable amount rather than by a fixed amount each
time. This variable amount is the time from the event that has just occurred until the
next event of any kind occurs; i.e., the clock jumps from event to event. A summary
follows.

Summary of Next-Event Incrementing

1. Advance time 10 the tme of the nexr evenr ol any kind.

2. Update the system by determining its new state that results from this evenl
and by randomly generating the time until the next occurrence of any event
type that can occur from this state (if not previously generated). Also record
desired information about the performance of the sysiem.

For this example the computer needs to keep track of two future events, namely,
the next arrival and the next service completion (if a customer currently is being
served). These times are obtained by taking a random observation from the probability
distribution of interarrival and service times, respectively, As before, the computer
tukes such a random obscrvation by generating and using a random number. (This
technique will be discussed in Sec. 21.2.) Thus, each time an arrival or service comple-
tion occurs, the computer determines how long it will be until the next time this event
will occur, adds this time to the current clock time, and then stores this sum in &
computer file. (If the service completion leaves no customers in the system, then the
generation of the time until the next service completion is postponed until the next
arrival occurs.) To determine which event will occur next, the computer finds the
munimum of the ¢lock times stored inthe e, 'To expedite the bookheeping lnvolved,

mulation programuming languages provide a “‘timing routine’’ that determines the
rrence time and type of the next event, advances time, and transfers control to the
propriate subprogram for the event type.

Table 21.2 shows the result of applying this approach through five iterations of
next-event incrementing procedure, starting with no customers in the system and
ing time units of minutes. For later reference, we include the uniform random num-
rs v, and rp used to generate the interarrival times and service times, respectively, by
method to be described in Sec. 21.2. These r, and rp; are the same as those used in
able 21.1 in order to provide a truer comparison between the two time advance
hanisms.

The next-event incrementing procedure is considerably better suited for this ex-
le and similar stochastic systems than the fixed-time incrementing procedure.
t-event incrementing requires fewer iterations to cover the same amount of simu-
ed time, and it generates a precise schedule for the evolution of the system rather
a rough approximation.

The next-event incrementing procedure will be illustrated again in Sec. 21.4 (see
ible 21.12) in the context of a full statistical experiment for estimating certain mea-
ures of performance for another queueing systerm.

Several pertinent questions about how to conduct a simulation study of this type
Lsilramain to be answered. These answers are presented in a broader context in subse-
fuent sections.

More Examples in Your OR Courseware

Simulation examples are easier to understand when they can be observed in action,
rther than just talked about on a printed page. Therefore, the simulation area of your
OR Courseware includes two demonstration examples under the Demo menu that
thould be viewed at this time.

Both examples involve a bank that plans to open up a new branch office. The
questions address how many teller windows to provide and then how many tellers o
have on duty at the outset. Therefore, the system being studied is a queueing system.
However, in contrast to the M/M/] gueueing system considered in Example 2 above,
this gueueing system is too complicated to be solved analytically. This system has
multiple servers (tellers), and the probability distributions of interarmval times and
ervice times do not fit the standard models of queueing theory. Furthermore, in the
second demonstration, it has been decided that one class of customers (merchants)
reeds to be given nonpreemptive priority over other customers, but the probability

Table 21.2 Next-Event Incrementing Applied to Example 2

MNext MNext

I, lime Interarrival Service Mext Wext Next
(min] Min Ta Time o Time Arrival Departure Event

] 0 0.096 2.019 —_ —_ 2.019 —_ Arrival
M9 1 0.569 16.833 0.665 13.123 18.852 15.142 Departure
15142 0 — —_ —_ —_ 18.852 —_ Arrival
18852 1 0.764 2B.87% (.B42 121.142 47.730 40.994 Departure
40554 0 — — — — 47.730 — Arrival
41730 1

907

21.1/ Mustrative

Examples

