394 10 INTEGER PROGRAMMING
3.
r 5 1 s ¥y 1
3/4 1/4 —3/2 {=—x 0 2 -6 |=-z
7 1 10 j=—y 1 —12 -9 [=-r
_14 -2 2 |=u /2 =212 —9/2 |=—x
-2 —10 54 |=u
5 6
r s 1 r z s 1
4/3 7/4 -9 |=-x 1/2 =3/4 5/3 | =2/5 |=-x
—18/5 /4 | —10/9 | =-» —2/3 /3 14/3 -1 |=-y
—5/4 -3/5 5/3 |=u —-1/4 —-1/2 -5/3 11/6 |=u
10.4

BRANCH AND BOUND PROCEDURE

A method used in practice very often is the branch and bound method. This
appears to be the most effective method currently known for general integer
programming problems, but even this becomes unwieldy as the number of
variables becomes large (say, more than a few hundred). Thus, the quest for
an efficient method for solving integer programs remains. Although we
only discuss the method for pure integer programs, the method carries over
with simple modification to mixed integer programs. -

Here is the idea: Suppose we have a pure integer program and solve the
LP relaxation of the program, and suppose that the solution of the LP
relaxation is x = 3.6, v = 2. This clearly cannot be the solution of the pure
integer program, since the optimal value of x is not integral. Since we
require that x be integral and there are no integers between 3 and 4, the
optimal value of x must either be less than or equal to 3 or greater than or
equal to 4. So we set up two different linear programs and solve them.
One of them is the LP relaxation together with the constraint x =< 3, which
we call LP1 for the present, and the other will be the LP relaxation of the
original program together with the constraint x = 4, which we call LP2
for the present. The formation of LP1 and LP2 is called branching.
We are assured that our optimal solution must be in one of the constraint
sets determined by these two modified linear programs by the previous
discussion. Furthermore, a/l feasible solutions are in one or the other of
these constraint sets. Thus, nothing is lost by forming these two linear

subprograms and solving them.

10.4 BRANCH AND BOUND PROCEDURE 395

P original
(3.6, 2) optimal

solution

Figure 10.4,

Pictorially, all this is shown in Fi
Y own m Fig. 10.4. T i .
the]f.:ft, while the constraint set of LP2is on tlllli i?;;':ra;gz set of LP1 is on
. . T

We now work on th
. ¢ other progra itting i :
by addin ogram, splitting it up into
has x noii;lzzs 1ia;rallel to the ¥ axis if the optimal squtIi)on of :Eizprl?ograms
Solution has ygnon’i Itlzytr by adding cuts paralle] to the x axis if thepo ﬁfan;
egral. We keep splitting the subprograms into fﬁrtrl?:r

subprograms by addin
. gcuts, and we try t
solutions. When we can no longer d ¥ 1o generate better and better integer

so}:ti}m is our optimal solution.
t first glance, this see
, ms pretty unwield
the sut eldy, because as we kee itti
Howevg gl ;?sér;vghléi::u?lot;e and more linear programs to geilljh\;tilt?lg
. s that make it yn :
subprograms. We need only take a suitable g wple of them g, 2L ot

thoprost . 1 onl . ample of them
e details of this will be gven as we illustrate this metzll::)cil ﬁoil]:efrrlzz

€66T ‘Ueyns 'y

user
A. Sultan, 1993

user
A. Sultan, 1993

396 10 INTEGER PROGRAMMING

second is obtained by adding the constraint v = b + 1. We need no‘t do th“;s
for alf the variables that have fractional values,. just for one each tmlle.. ¢
are guaranteed that every time we do this we V\.’ll.l lose no integral so_utlon?
of the linear subprogram. Furthermore, if we join the integral §o}ut11c)lps or
the subprograms together, we get the integral solutions of the original linea

program. Let us illustrate.

EXAMPLE 1 Suppose we want to
Maximize u = 3x + 4y,
s.t. dx + 3y =13,
Ix+2y <17,
x,y = 0 and integral.

If we solve the LP relaxation,
Maximize u = 3x + 4y,
s.t. 4dx + 3y = 13,

Ix+2y=s7, 27

xy=0
we obtain x = 0and y = 3.5. The objective at this point is 14. In view of the
fact that y must be integral, it follows that either y <3ory=4 We fOI.T;ll
two subprograms: the first subprogram, LP1, consists of (27? together w1t7
the constraint y = 3; the second linear program, LP2, consists of the (27)

together with the constraint y = 4. We indicate this as in Fig. 10.5. '1I1‘h§
circles are called nodes, and lines joining nodes to other nodes are calle

infeasible

Figure 10.5.

10.4 BRANCH AND BOUND PROCEDURE 397

branches. If we solve LP1, we find that the optimal solution is x = 1/3 and
¥ = 3. Here, the objective function is 13. If we solve LP2, we find that the
program is infeasible. Since we can get no further information from the
node corresponding to LP2, we drop it from further consideration. Any
node dropped in this way, or any node no longer in use, is called a fathomed
node. Any other node is called a dangling node. The node corresponding to
LP1 is dangling at this point.

Since the optimal solution of LP1 requires that x = 1/3 and we know that
x must be integral, we branch on LP1 to form two programs, LP3 and LP4.
LP3 consists of LP2 together with the constraint x < 0, and LP4 consists of
LP?2 together with the constraint x > 1. We note that since all variables are
=0, the constraint x = 0 in LP3 forces x to be equal to zero. Our picture
now is shown in Fig. 10.6.

Solving LP3, we find that x = 0, ¥y = 3, and u = 12. We have found an
integral solution that makes the objective function equal to 12. Thus, at this
point our best integral solution is for LP3, and we know that the optimal
value of the original linear program must at least 12. What about LPA? Is
it possible that there is an integral solution to LP4 that is greater than 127
Theoretically, there is nothing to stop this from happening, and so we must
solve LP4 also. There we find the solution x = ! and ¥ = 2. The objective
value at this point is 11. The question facing us now is whether we branch

LP1 _—

infeasible

LP3

Figure 10.6.

398 10 INTEGER PROGRAMMING

again on these nodes to perhaps get better solutions. The answer is no, for
the following reason: Whenever we add a constraint to a maximum
program, the value of the objective function can only stay the same or
decrease. Thus, to branch on node 4 makes no sense since our new program
can only have an objective =11, and we already have a better value of the
objective at LP3. Thus, node 4 is fathomed, as we can get no further useful
information from it. Since adding a constraint can only decrease the
objective in LP3, we have also fathomed that node. Thus, it no longer pays
to branch further on any nodes, and the current best integral solution,
x = 0, y = 3, is the optimal solution.

Let us give another example.

EXAMPLE 2 We wish to
Maximize u = 4x + 5y + 6z,
sit. Ix+2yv+ z=9,
2x+ y+4z=<7,
X, ¥, %7 = 0 and integral.

The solution process is summarized in Fig. 10.7. Let us go through the
process. When we solve the LP relaxation, we obtain # = 25, x =0,
y =~ 4,14, z = 0.71. Since y is not integral, we may branch on y. The two
branches are obtained by adding the constraint y < 4 to the LP relaxation
to get node 1, and adding the constraint y = 5 to the LP relaxation to get
node 2. Solving the program at node 1, we get u = 24.6, x = 0.1, y = 4,
z = 0.7. The program corresponding to node 2 is infeasible. Now, node 1 is
dangling, and we may branch on x to get nodes 3 and 4. Solving the
program corresponding to node 3, we get u = 24.5,x = 0,y = 4,z = 0.75.
Solving the program corresponding to node 4, we obtain w = 21, x = 1,
y = 2.7, z = 0.57. So far we have no integral solutions. Nodes 3 and 4 are
still dangling. We branch on node 3 to get nodes 5 and 6. The solution of
the program at node 5 is integral. There ¥ = 20, x = z = 0, and y = 4. The
solution at node 6 is also integral: & = 21, x = 0, y = 3, z = 1. At this
point, our best integral solution occurs at node 6. Nodes 5 and 6 are
fathomed. Branching further on either of them will only serve to decrease
the objective. Node 4 is still dangling; but there is no sense in branching on
that node, since branching can only lead to an objective =21, and we have
already obtained an integral solution where u# = 21. Thus, we may consider
node 4 fathomed. Since all nodes are fathomed, we have reached our
optimal solution. It occurs at node 6, and it is w = 21 whenx =0, y = 3,
andz = 1.

10.4 BRANCH AND BOUND PROCEDURE 399

|
oroOn

N R =

infeasible

o
oL O

ar ot ooR

2

o n
[=

N =R
~]
wh

N ko
o
o RO

Figure 10.7.

One advantage of the branch and bound procedure is that as we proceed
with it we often generate integral solutions along the way that are pretty
good. If the solutions are acceptable to us, even though they are not
optimal, we may stop at that point. This is especially useful when the
branch and bound tree becomes very large. Also, sometimes we can obtain
an integral solution of the program by inspection. This helps because then
many nodes that we might have had to fathom otherwise will not need to be
fathomed, because we know that they will not benefit us. For example, if in
some problem we obtained ¥ = 45 whenx = y = z = 3, and we did this by
nspection, then any node where u is less than or equal to 45 need not be
studied. It is considered fathomed.

400 10 INTEGER PROGRAMMING

10.4 ERANCH AMD BOUMD PROCEDURE 401

But, as we said earlier, however good the method is, it can lead to very hig
trees even for simple problems. Lew us illustrale this by solving an example
from earlier in the chapter. That example,

Maximize w = 3By + 200y,
5.l 11y + 40p = 87,
k¥ =0 and integral,

when solved by the branch and bound procedure has the solution free given
in Fig. 10.8. Notice that our optimal integral solution does not occur until
the 11th node. And this problem has only one constraint! The Gomory
method, which is usually more time consuming, solves this problem very
quickly., This should illustrate why it is useful to have many methods (o
draw when solving integer programs.

There are quite a few other methods that one can talk about, but singe
this chapter was meant only to give an overview of the types of methods
used, we will not go into any others. We should, however, make a low
comments, When we solve the LP relaxation of a pure integer program, wi
may, if we wish round the solusion. This might be desirable for severil
reasons: (1) The problem may be large, and solving the problem by the
branch and bound method mayv use up large amounts of computer tme,
which might not be financially justifiable or even available; (2) Rounding
may give a feasible solution that is close enough to optimality to be usably
and (3) Rounding is fast. So, if a solution is needed right way, this might he
the way to go. The question that naturally comes up is, just how good |3 the
rounded solution, asswming it is feasible? To answer this, let us call the
optimal objective value of the LP relaxation w*, the optimal objective vilye
of the pure integer program uf, and the objective value at the roundul
solution wg . Clearly,

| inteasible II

ug = HF = Ut (28)

Suppose we compule the quantity {(#* —)y . Call this value . Thus,
dir, = u* uy. If we subtract ug from each term in (23), then we have
0= uf —up = u* - ug,
which may be rewritten as
0=uf g = duy.

Adding wq to the incguality yields

Adding wy to | UANLY ¥ b u.t't"“l,e.lhlr:|
ty =up = (1 + dng,

This stalerment, which tells us that the optimal solution of the origl
integral program is between the value ol the objective function ol
rounded solution and (1 +) times this valoe, gives us a measure ol

Figure 108,

402 10 INTEGER PROGRAMMING

close the rounded solution is to the true optimal solution. Thus, if 4 = 0.01,
our true solution is within 1% of the rounded solution, and so we are close
to the optimal solution. For that reason, it probably pays to round when d
is sufficiently small, In a similar manner, if #; represents the current best
integral value of # when using the branch and bound procedure, then when

u* — uy
Hy

is small, say 8, we can be assured that the optimal integral solution is within
1005% of u;. Thatis, u; = uf = (1 + Bu;.

EXERCISES 10.4

1. Use the branch and bound method to solve each of the following. Draw the branch
and bound tree for each problem.

(a) Minimize u = 5x + y, s.1.
Ix+2y=4,
x=2,
y=0,
Xxand y are integral.
() Maximize w = 2x — y, 5.1.
X+ 2y=5,
x— y=1,
X,y = 0 and integral.
{¢) Maximize ¥ = 2x + 3y, s.t.
x =y,
x+ 2y <6,
2x+ y =<8,
x, ¥ = 0 and integral.

(g) Maximize # = 3x + 4y + 5z, s.t.

2Zx+3y+ z=<6,
X+3y+4z =5,
X, ¥,z = 0 and integral.

{b) Minimize ¥ = 5x + ¥, s.1.
15=x=<34,
21 =ypy=<27,
xand y are integral.

(d) Maximizeu = 3x + 4y, s.t.
2x +3y= 7,
x, ¥ = 0 and integral.

(f) Maximize # = 5x — y — Z, 5.t
x4+ y+ z=4,
x+3y+4z=1,

X, ¥,z = 0 and integral.

{h) Maximize ¥ = 3x — 2y + g, s.t.
4+ y+ z=6,
Ix+ 2y + 3z =4,

X, ¥, 2 = 0 and integral.

CHAPTER 11
NETWORK ANALYSIS

11.1

INTRODUCTION AND DEFINITIONS

An area of mathematics that has grown tremendously in the last IOO years
is the subject of graph theory. The number of varied apphcatlons of this
subject is enormous and continues to grow. In this chapter, we will study a
special subdivision of graph theory that is closely connected to linear
programming—network analysis. We will be brief, since our goal is only to
show how linear programining may be used in other areas. More detailed
discussions of the topics in this chapter may be found in operations research
texts, management science texts, and, of course, graph theory and network
analysis texts.

Loosely speaking, a graph is a collection of objects, called nodes or
vertices (represented by dots or circles), together with a set of edges.
What characterizes an edge is that it joins two vertices. (But not every two
vertices need be joined by an edge.) Several examples are given in Fig. 11,1,
In Fig. 11.1a, the graph has four vertices, labelled 1, 2, 3, and 4, and two
edges, In Fig. 11.1b, the graph has four vertices and three edges; while in
Fig. 11.1c, the graph has three vertices and one edge.

(Blank page)

	Untitled

