Definition of *simplex*

1.2 SIMPLEX DEFINED 13

Figure 1-8: A Three-Dimensional Simplex

1.2 SIMPLEX DEFINED

There is a close connection between the Simplex Method and the simplest higher-dimensional polyhedral set, the simplex.

Definition (m-Dimensional Simplex): In higher dimensions, say m, the convex hull of m+1 points in general position (see definition below) is called an m-dimensional simplex.

Thus

- a zero-dimensional simplex is a point;
- a one-dimensional simplex is a line segment;
- a two-dimensional simplex is a triangle and its interior;
- a three-dimensional simplex is a tetrahedron and its interior. (See Figure 1-8).

Page 14

Definition (General Position): Let $A_j = (a_{1j}, a_{2j}, \ldots, a_{mj})$ be the coordinates of a point A_j in m-dimensional space. Algebraically a set of m+1 points $[A_1, A_2, \ldots, A_{m+1}]$ of points in m dimensions is said to be in general position if the determinant of their coordinates and a row of ones, as in (1.34), is nonvanishing,

$$\begin{vmatrix}
1 & 1 & \dots & 1 \\
a_{11} & a_{12} & \dots & a_{1,m+1} \\
\vdots & \vdots & & \vdots \\
a_{m1} & a_{m2} & \dots & a_{m,m+1}
\end{vmatrix} \neq 0.$$
(1.34)

Definition (Algebraic Definition of an m-Dimensional Simplex): The set of all points,

$$x = \lambda_1 A_1 + \lambda_2 A_2 + \cdots + \lambda_{m+1} A_{m+1},$$
 (1.35)

generated by all choices of λ such that $\sum_{j=1}^{m+1} \lambda_j = 1$, $\lambda_j \ge 0$ is defined to be an m-dimensional simplex if the determinant (1.34) is nonvanishing.

Definition (Vertices of a Simplex): The points $x = A_j$ in (1.35) are called vertices or extreme points of the simplex.

Top of cover

