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inties not only 1o guard against possible systematic exclusion of certain types of
strugtures but also to indicate insensitivity of the optimal structure to the partic-
ular heuristics used.

Rudd (1968) and Masso and Rudd (1969) illustrated their procedures by
application to the synthesis of heat-exchanger networks, one of the categories (o
which programmed synthesis techniques are usually applied. The generation of
progess flowsheets, however, is more complex than the computer-aided synthesis
of a subsystem such as a heat-exchanger network. The latter type of subsystem
involves only the interconnection between specified kinds of processing equip-
ment. The creation of a flowsheet involves, in addition, a determination of the
tusks to be accomplished and the specification of the type of technology to
execute these tasks in order to convert some particular raw materials into
desired products. We shall return to this point in a later discussion of a
computer-sided process synthesizer.

104 OPTIMIZATION METHODS FOR PROCESS SYNTHESIS

Various optimization and mathematical programming techniques are used to
search for the optimal set among the alternative structural configurations and
operating conditions, The number of combinations of equipment, temperature,
pressure, concentrations, etc., is so large for even a small process plant that
exhaustive enumeration of all cases and the calculation of the objective function
for each case followed by direct selection of the optimum represents an impos-
sible computational task. It is the purpose of the various optimization
technigues not only to reach the optimal solution but also to reach it efficiently.
In optimization we seek to maximize or minimize a function of a number of
varinbles with the variables subject to certain constraints. Until approximately
30 years ago the only mathematical methods available for handling optimization
prablems were classical differential and vanational calculus. Since World
War 11 there has been a rise in interest in optimization methods for dealing with
problems not solvable by classical methods, Two classes of methods have been
developed, optimum-seeking procedures and mathematical programming.
Although we now briefly discuss a number of optimization methods, a
presentation of optimume-seeking procedures and mathematical programming in
uny depth is well beyond the scope of this book. A number of textbook treat-
ments can be cited for study by the reader. Wilde (1964) presents single-variable
und multivariable optimum-seeking procedures and also discusses the effects of
experimental errors, In the work by Wilde and Beightler (1967) a unified theory
ol optimization is presented in a compact, readable form. Peters and Timmer-
haus (1968) give a briefl introduction to linear and dynamic programming to
serve as a basis for further study and applications. Beightler and Phillips (1976)
wliscuss the relatively new technique of geometric programming and present a
number of applications. Avriel et al, (1973) 18 a more advanced treatise in which
optimization methods and their applications to design are discussed.
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10-8 OPTIMUMSEEKING PROCEDURES |

Optimum-seeking procedures are strategies to guide the search for the optimum
of any function about which full knowledge is not available. Such functions
obviously will arise when direct observations must be made on a physical
system. In process synthesis optimum-seeking strategies can be used to guide us
in the choice of values for the variables to permit an economic search of the
response surface instead of performing an exhaustive evaluation over the entire
response surface.

10-6 MATHEMATICAL PROGRAMMING

Mathematical programming developed as a branch of optimization theory to
deal with maximization and minimization problems that arise in the decision
sciences such as management science. operations research, and engineering
design. It should not be confused with computer programming, although the
solution of many algorithms arising in mathematical programming would not
have been possible without the computer. We briefly describe several methods
that are used in process synthesis, namely, linear programming, dynamic
programming, geometric programming, and branch-and-bound methods,

Linear Programming

Linear programming is applicable to a large class of problems which involve
linear objective functions subject to linear inequality and equality constraints.
Linear-programming algorithms search the extreme points, which are the ex-
tremes of the region of feasible solutions. We shall see from a graphical solution

to a simple linear optimization problem that the optimum solution occurs at an
extreme point.

Example 10-1 A fertilizer-blending plant has a market for twe grades of
fertilizers, 10-8-5 and 7.5-10-15. (Fertilizers are specified by percentages of
three major nutrient elements, N, P, K, where N is nitrogen, P is equivalent
P,O;, and K is equivalent K,0.) The expected profit on the first grade is
$20 per ton and 530 per ton on the second grade. The plant has available
1500 tons of equivalent nitrogen, 1200 tons of equivalent P,O:, and 1500
tons of equivalent K,0. How much of each grade of fertilizer should be
made to realize maximum profit?

SoLuTion The problem statement can be cast into a linear optimization
form, where x; and x; are the tons of first-grade and second-grade fertilizers,
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Figure 10-11 Graphical representation of fertilizer-optimization problem.

respectively,
max P = 20x; + 30x,

Subject to 0.1x; +0.075x; < 1500 nitrogen constraint
0.08x, + 0.10x, < 1200 phosphorus constraint
0.05x, + 0.15x, < 1500 potassium constraint

X g2l

This 18 shown in graphical form in Fig. 10-11, which presents the linear
constraints and equiprofit lines. It is obvious that the maximum profit will
be reached at the extreme point where the equiprofit lines leave the feasible
region at the intersection of the phosphorus and potassium constraints. The
optimum production is 4286 tons of first-grade and 8571 tons of second-
grade, vielding a maximum profit of $342,850. All the phosphorus and potas-
sium would be used, but 429 tons of nitrogen would remain unused.

In general, the solution of a linear-programming problem requires a search
only over the extreme points. Extremely efficient algorithms have been
developed which take advantage of this property, and problems involving thou-
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sands of variables can be solved routinely and by rote. A generalization of linear
programming is convex programming, in which the objective function and
feasible-solution set are permitted to be convex.

Dynamic Programming

Dynamic programming can be used to transform an N-decision one-state initial-
value optimization problem into a set of one-decision one-state problems, It
transforms a large serial structure into a sequence of smaller problems and thus
is reminiscent of process decomposition. The required computational effort is
greatly reduced, but the technique requires that there be no recycle of informu-
tion. A brief discussion of dynamic programming was presented in Chap, 9.

Geometric Programming

Geometric programming was developed for solving algebraic nonlinear pro-
gramming problems subject to linear or nonlinear constraints. It can appear (o
be almost magical in its efficiency when, as can happen in certain cases, it gan
locate optima only by inspection of the exponents in the objective function, The
optimal values of the independent variables are not sought directly by geometrie
programming. Instead, the optimal way to distribute the costs among the ele-
ments of the objective function is first sought. The optimal cost is then easily
caleulated. Only then does one determine the policy needed to reach the optimal
cost.

As an example of geometric programming we shall use a hypothetical chemi-
cal plant postulated by Wilde and Beightler (1967). In this plant raw materials
are mixed with a recycle stream from a recirculating compressor, The mixed
stream is compressed and fed to a reactor followed by a separator. The product
is one stream from the separator; the other stream is recycled to the mixer via
the recirculating compressor. The annual cost figures are [000x, for the
compressor; 10* for the mixer; 4 x 10%x, x; for the reactor; 10°x, for the
separator; and 1.5 x 10°x, for the recirculating compressor. x, is the operating
pressure, and x, is the recycle ratio. The problem is then to choose x; and ¥, so
as to minimize the annual cost y

4 x 10°

XiXs

min y = 1000x, + +2.5 x 10°x,

The classical method to determine the optimum conditions would be to
differentiate the cost equation with respect to x, and x, and set the derivatives
equal to zero. The asterisk in the following equations refers to the optimum.

) 4 x 107 =0
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