©
Sum of two Gaussians
Draws Monte Carlo simulated curves for 2 Gaussians and their sum.
2024.Nov.25 04:47:11
μ1, σ1 Parameters of the 1.st variable.
μ2, σ2 Parameters of the 2.nd variable.
ntr, .repeat, klass 10^; N. of trials, repeatability, n. of histogram classes. •
Show values ? Shows the values of the graph coordinates.
  Draws 3 "Monte Carlo" simulated curves: for the 2 Gaussian variables (summands), X1 and X2; and for the sum, X = X1 + X2. It can be verified (as stated theoretically) that  (a) the sum also is Gaussian,  (b) with parameters: μ = μ1 + μ2 and σ = √(σ1² + σ2²)  (from σ² = σ1² + σ2²).
 Other suggested data sets (μ, σ): 34, 0.33 / 66, 0.56;  10, 1 / 11, 1;  10, 0.5 / 10, 1.2;  10, 3 / 20, 4 .
 [Pythagorean triples: (3, 4, 5), (5, 12, 13), (7, 24, 25), (8, 15, 17)...]
References: Plate: Sum2Gaussians

• Weisstein, "Normal sum distribution". From MathWorld—a Wolfram web resource.

• B. Franco or here • Search Monte Carlo method...

• Normal distribution (Wikipedia) • "Gaussian or Normal distribution ?" (Dept. of Computer Sci., Princeton U.).

• Gorard, Stephen, 2004, Revisiting a 90-year-old debate: the advantages of the mean deviation, British Educational Research Association Annual Conference, 16–18 Sep. (Univ. of York).

• Weisstein, "Pythagorean triple". From MathWorld—a Wolfram web resource.

• 1873-09-13: Carathéodory, Constantin (1950-02-02).

 
 
Valid HTML 4.01! IST http://web.ist.utl.pt/~mcasquilho/compute/qc/Fx-sum-2Gauss.php
Created: 2009-09-13 — Last modified: 2019-04-28