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of problems, it would be necessary to specify in advance exactly what rules to
use at each point in the algorithm where a choice is necessary. We shall see in
Section 8.4 that special variations in the implementation of the branch-and-
bound method can be used to increase its efficiency when the integer program
has a special structure, and then also it will be important to use a more precise
algorithm statement.

A Branch-and-Bound Example in Detail

To illustrate the branch-and-bound algorithm stated above, we will use it
to solve the following example problem:

IP: min z(x) = 3x; — 7x; — 12x,
subject to
=3x, + 6x; + 8x, =12
b6x;, — 3x, + Tx, <8
=6x, +3x; + 3x,=<5

X1, X3, X3 nonnegative integers
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FIGURE 8.4¢ Complete branching diagram for the example problem.



