by Andreas (Andrzej) Wichert |
1. Introduction
3. Probability theory & Information
4. Linear Algebra & Optimization
5. Linear Regression & Bayesian Linear Regression
6. Perceptron & Logistic Regression
8. Learning theory, Bias-Variance
12. Model Selection
13. Deep Learning
14. Convolutional Neural Networks
16. PCA, ICA
17. Autoencoders
19. k Nearest Neighbour & Locally Weighted Regression
20. Ensemble Methods