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Joint distribution

The joint distribution for n possible variables is described by 2™ possible
combinations. The probability distribution d; x d2 X --- X d,, corresponds
to a vector of length 2". For a joint distribution of n possible variables, the
exponential growth of combinations being true or false becomes an intractable
problem for large n. For

P(d11d2$d3f ---fdn|hi) 'P(hi)

P(hildl,dQ,dg,---,dn) = P(dl d2 d-; d )

all 2" — 1 possible combinations must be known. There are two possible
solutions to this problem.



The first solution is the decomposition of large probabilistic domains
into weakly connected subsets via conditional independence,

P(dy,dy, ds, ....dn ki) = | | P(d;]|hs).
j=1

This approach is known as the Naive Bayes assumption and is one
of the most important developments in the recent history of Artificial
Intelligence. It assumes that a single cause directly influences a number
of events, all of which are conditionally independent,

Rinap = arg n}i‘XHP(djlhi) - P(h;).

=1

However, this conditional independence is very restrictive. Often, it
is not present in real life events. Dependence between some events is
always present.



Bayesian networks represent the second and more realistic solution.
Bayesian networks can describe a probability distribution of a set of
variables by combining conditional independence assumptions with con-
ditional probabilities. Unlike the Naive Bayes assumption, which states
that all of the variables are conditionally independent given the value
of the target variable, Bayesian networks enable these conditional inde-
pendence assumptions to be applied to subsets of variables, providing
a model with fewer constraints than the Bayes assumption.



Naive Bayes Classifier

* Along with decision trees, neural networks, nearest neighbor, one of
the most practical learning methods

* When to use:
 Moderate or large training set available
 Attributes that describe instances are conditionally independent given

classification
 Successful applications:
* Diagnosis
e Classifying text documents



Naive Bayes Classifier

* Assume target function f: X =2 V, where each instance x described by
attributes a,, a, .. a,

* Most probable value of f(x) is:

vpap = argmax P(vjlay,az...ay)
v.-(-V ’

P(aj,a;...a,|v;)P(v;)
VyAp = arg max ‘ '

vieV P(ay,a;...ay,)

= arg ma‘i(P((ll a2 .. ,a,,lv,-)P(v,-)
= ‘ ‘



VNB

* Naive Bayes assumption:

P(aj,a;...an|v;) = HP(le\Vj)

* which gives

Naive Bayes classifier: vyp = dI‘UdeP nP a,|vj



Naive Bayes Algorithm

* For each target value v,

. }A’(Vj) € estimate P(v)

* For each attribute value a; of each attribute a
°f’(€lf\"j) € estimate P(q;/v))

VNB = dI‘(deXP(Vj) P(ai|v))

v,EV
a;Ex



Training dataset

income |student| credit ratin buys computer

Class:
Cl:buys_computer='yes’
C2:buys_computer='no’

Data sample:

X —_

(age<=30,
Income=medium,
Student=yes
Credit_rating=Fair)



Naive Bayesian Classifier: Example

* Compute P(X|C) for each class
P(buys_computer=,,yes")=9/14
P(age="“<30" | buys_computer=“yes”) =2/9=0.222 P(buys computer=,,no“)=5/14
P(age="“<30" | buys_computer=“no”) = 3/5 =0.6 -
P(income=“medium” | buys_computer="yes”)= 4/9 =0.444
P(income=“medium” | buys_computer=“no”)=2/5=0.4
P(student="yes” | buys_computer=“yes)= 6/9 =0.667
P(student="yes” | buys_computer=“no”)=1/5=0.2
P(credit_rating="fair” | buys_computer="yes”)=6/9=0.667
P(credit_rating="fair” | buys_computer=“no”)=2/5=0.4

*  X=(age<=30,income =medium, student=yes,credit_rating=fair)

P(X|C): P(X|buys_computer=“yes”)= 0.222 x 0.444 x 0.667 x 0.0.667 =0.044
P(X|buys_computer=“no”)=0.6 x 0.4 x 0.2 x 0.4 =0.019

P(X]|C)*P(C,) : P(X|buys_computer=“yes”) * P(buys_computer=“yes”)=0.028
P(X|buys_computer=“no”) * P(buys_computer="“no”)=0.007

= X belongs to class “buys_computer=yes”



Estimating Probabilities

* We have estimated probabilities by the fraction of times the event is
observed to n, occur over the total number of opportunities n

* |t provides poor estimates when n_ is very small

* If none of the training instances with target value v; have attribute

value g,?
*n.isO



* When n_ is very small: f)(a-lv ) = Ne+mp

n-+m

* nis number of training examples for which v=v,

* n. number of examples for which v=v; and a=g,

* p is prior estimate

* m is weight given to prior (i.e. number of “virtual" examples)

VNB =v 2% P l_[P (I,IV



* Naive Bayes assumption of conditional independence too restrictive
e But it's intractable without some such assumptions...

* Bayesian Belief networks describe conditional independence among
subsets of variables

* allows combining prior knowledge about (in)dependencies among
variables with observed training data



Law of Total Probability

For uncertain events we can list all the logical possibilities. These are called
the elementary events or states. For binary events there are two states true
and false, for any event a there is an event —a, the event that a does not
occur. Binary events are described by binary variables.

For binary events

p(z) +p(-z) =1, p(y) +p(-y) =1
the law of total probability is represented by
p(y) = p(y, ) + p(y, ~z) = p(y|z) - p(z) + p(y|-z) - p(—z)
and

p(—y) = p(—y, x) + p(—y, ~x) = p(—y|z) - p(x) + p(—-y|-x) - p(—x).



Law of Total Probability

@ p(x)=0.5

x | plylx)
T10.13
F |0.26

Figure 1.1: The causal relation between events r and y represented by a
direct graph of to nodes.



If two events x and y are independent, then the probability that events
x and y both occur is

p(z,y) = p(x Ay) = p(x) - p(y).

In this case the conditional probability is

p(zly) = p(x).

If all N possible variables are independent, then

p(IlfIQ? P ?IN) = p(Il) 'p(I2) """ p(IN) = HP(Ii)

In the case not all variables are independent we can decompose the proba-
bilistic domain into subsets via conditional independence, for M subsets

M
p(xls$2$ s sI.N) = Hp($k3$k+l'. T )i

1=1



For a subset of dependent variables

p(x1,22) = p(x1|22) - p(2) = p(22|21) - P(21).
This follows from the Bayes’s rule
plxr, x2) _ p(x2|1) - p(x1)
p(z2) p(x2)

Two variables xy and x5 are conditionally independent given a3

p(1|z2) =

p(xy|xg, 23) = p(a1|x3).

Assuming r, and x5 are independent, but x, is conditionally dependent given
r9 and x3 then

p(x1, 2, x3) = p(x1|T2, 23) - P(22) - P(23).

Assuming x, is conditionally dependent given x, but independent of x, and
3 then

p(x1, w2, x3,4) = p(x1|T2, T3) - p(T2) - P(23) - P(T4]|71).



p(x2)=0.001 p(x3)=0.002

x2 x3| p(x1/x2 x3)
T|0.95

F|0.94
T|029
F | 0.001

T T -]

x1| p(x4ix1)

T‘0.90

F |0.05

p(x1, T2, 73, 24) = p(21|72, 73) - p(72) - p(23) - P(T4|71).



Causality

* This relationship between occurrence of events called causality is
represented by conditional dependency inducing time.

* In our example x, and x5 cause x; and only then x; causes x,.

* This kind of decomposition via conditional independence is modelled
by Bayesian networks.

e Bayesian networks provide a natural representation for (causally
induced) conditional independence.

* They represent a set of conditional independence assumptions, by
the topology of an acyclic directed graph and sets of conditional
probabilities.



Example

* In the example, there are four

variables, namely, Burglary(= x,),

Earthquake(= x3), Alarm(= x;)
and JohnCalls(= x,).

* The corresponding network
topology reflects the following

“causal” knowledge:
* A burglar can set the alarm off.

* An earthquake can set the alarm off.

* The alarm can cause John to call.

p(x2)=0.001

p(x3)=0.002

X |

x2 x3 P(xl\x2,x3)

T| T|0.95
T| F|0.94
F| T|029
F|F| 0.001

x1| p(x4/x1)

T 1090
F |0.05



* Given the x query variable which value has to be determined and e
evidence variable which is known and the remaining unobservable
variables we preform a summation over all possible y.

* In the following for simplification the variables are binary and
describe binary events. All possible values (true/false) of the
unobservable variables y are determined according to the law of total
probability



p(zle) = a ) plx,e,y) = a- (p(z,e,y) + p(z. e, y)).

or
p(zle) =a ) p(x,e,y) = a- (p(x,ely) - p(y) + p(x,e[-y) - p(-y)).
y
with
1 1
o == —
ple) >, p(z,e,y)+ 3, p(-z,e,y)
and

l=a- (ZP(.’E,G, y) ;a ZP(_'.'E, €, y)) .

y Y



Causality

In a Bayesian network the time line corresponds to the causal relationship
between events represented by conditional probabilities. For the preceding
example

p(xs4|xy, 20, 23) = @ - p(xy|T2, 3) - p(22) - p(23) - P(24|T1).



P(l‘l,ilfz-. X3,x4) = p(x1, 22, T3,74) + P(ﬂflexm I3, T4)

p(x1, 9, X3,24) = p(x3) - p(4|xy) - (ZP T1|Tq, T3) - P(J?s))

p(xy|Ty, 22) = a - p(x2) - p(x4|xy) - (ZP($1|~52 T3) - P($5)>

p(xa|z1, 22) = c-p(x2)-p(xalr)- (p(x1|22, 3) - p(3) + P(21 |22, —23) - P(-73))

with
1 1

p(I1,$2) a p(11,$2,X3,.’E4) + p(l‘lv $2$X33 ﬁ154)

and
p(z1,72) = p(x1, T2, X3, 1) + p(71, T2, X3, 74).



p(xalzy, x2) = a-p(x2)-p(xalz1)- (p(21|22, 23) - p(23) + P(21|22, 223) - P(—23))

with
1 1
o= —
p(IhIZ) p(Il,Ig,X3,:L’4)+P(SE1,.’L'2,X3, —11:4)

and
p(x1,x2) = p(x1, T2, X3, 1) + p(21, T2, X3, 04).

After calculating we arrive at

P($4|$1)
x4|T1) + p(—x4|71)

p(.’II4|.’IIl,IL'2) -
p(



For unknown variables x3, x; indicated by X; and X3 we apply the law of
total probability.

p(X1, 29, X3,24) = p(x1, 2, T3, T4) + p(—T1, T2, T3, T4)+

+p(x1, 2, 0T3,24) + p(—T1, T2, 0T3, T4)

p(X1, 3, X5, 74) = p(a2) - Y (p(:ulrl)- (Zp(rllrz,:vs) -p(:vs))) :

T4 I3
p(xs|ze) = a-p(x2)-(p(x4|z1)-p(T1|T2, T3)-p(T3)+P(T4|71) (21|72, 223)-p(—23)+
+p(z4|-x1) - p(—T1 |72, 73) - P(23) + P(T4| 1) - P(—T1|T2, ~23) - P(—23))

with
1 1
= = ;
p(x2) p(Xy, 72, X3, 4) + p(X1, 72, X3, n1y)




For no present evidence
p(zy) = p(X1, X2, X5, 74) = p(T01, T2, T3, T4) + p(—T1, T2, T3, T4)+

+p(Z1, T2, T3, T4) + p(—Z1, T2, 73, T4)+
+p(xl’ 2, 3, :1:4) - g p(-ﬂxlv I, I3, $4)+

+p($1a "Ip, T3, -’134) . p(—atl, =Ty, O3, :1:4),



Bayesian Belief Network: An Example

Smoker

(FH,S) (FH,~S) (~FH,S) (~FH,~S)

Y

@@

The conditional probability table
Y v for the variable LungCancer:

@ @ Shows the conditional probability
for each possible combination of its

parents

Bayesian Belief Networks



Beliet Networks




Full Joint Distribution

P(x,,...,x,) = HP(XZ' | parents(X)))

P(jamaan—-bna-e)
=P(jla)P(m|a)P(a|-b A —e)P(=b)P(-e)
=0.9%x0.7x0.001x0.999x0.998 = 0.00062



Compactness

» A CPT for Boolean X; with k Boolean parents has 2¥ rows for the combinations of parent values

®_®

* Each row requires one number p for X; = true
(the number for X; = false is just 1-p) ﬁ

* If each variable has no more than k parents, the complete network requires O(n - 2X) numbers
* |.e., grows linearly with n, vs. O(2") for the full joint distribution

* Forburglarynet,1+1+4+2+2=10numbers (vs. 2°>-1 = 31)



Inference in Bayesian Networks

 How can one infer the (probabilities of) values of one or more
network variables, given observed values of others?

* Bayes net contains all information needed for this inference
* If only one variable with unknown value, easy to infer it

* In general case, problem is NP hard



Example

* In the burglary network, we migth observe the event in which
JohnCalls=true and MarryCalls=true

* We could ask for the probability that the burglary has occurred

* P(Burglary|JohnCalls=ture,MarryCalls=true)



Normalization

1=P(y|x)+P(-y|x)
P(Y|X)=axP(X|Y)P(Y)
a{P(y|x),P(=y|x))

(0.12,0.08) = (0.6,0.4)



Normalization

P(Cavity | toothache) = aP(Cavity,toothache)
= a[ P(Cavity,toothache,catch) + P(Cavity,toothache,~catch)]
=o[<0.108,0016 >+ <0.012,0.064 >]= <0.12,0.08 >=<0.6,04 >

X is the query variable
E evidence variable
Y remaining unobservable variable

P(X le)=aP(X,e) = (xz P(X.e,y)

Summation over all possible y (all possible values of the
unobservable variables Y)



* P(Burglary[JohnCalls=ture,MarryCalls=true)

* The hidden variables of the query are Earthquake and Alarm
P(B|j,m)=aP(B,j,m) = aEEP(B,e,a, j,m)

* For Burglary=true in the Bayesain network

P(b|j,m)= aEEP(b)P(e)P(a 1b,e)P(jla)P(ma)



* To compute we had to add four terms, each computed by multiplying
five numbers

* |n the worst case, where we have to sum out almost all variables, the
complexity of the network with n Boolean variables is O(n2")



Variable Elimination

* P(b) is constant and can be moved out, P(e) term can be moved
outside summation a

P(b| jm)=aP(b)y P(e) Y P(alb.e)P(jla)P(m|a)

» JohnCalls=true and MarryCalls=true, the probability that the burglary has
occurred is about 28%

P(B|j,m)=a<0.00059224,0.0014919 >=<0.284,0.716 >



Computation for Burglary=true

P(=albe) P(alb,—e)
.05 .94

P(jla) P(jlma) P(jla) P(jlma)
.90 .05 .90 05

O O O O
P((i)n la) P(ml—a) P(mla) P(ml—a)
JIC

O 01 O 70 O 0 O




Variable elimination algorithm

* Eliminate repeated calculation
* Dynamic programming

Evaluation tree

P(malbme)
06

Plalb,—e)
94

P(malb,e)
05

Plalb,e)
95

P(jla) P(jl ma) P(jla) P(jlma)
90 05 90 05
P(mla) P(ml=a) P(mla) P(ml=a)
.70 01 70 01

Enumeration is inefficient: repeated computation
e.g., computes P(j|a)P(m|a) for each value of «



Irrelevant variables

* (X query variable, E evidence variables)

Consider the query P(JohnC'alls|Burglary = true)

P(J|b) = aP(b) X P(e) X P(al|b,e)P(J|a) X P(m|a) }&

Sum over m is identically 1; M is irrelevant to the query @ @

Thm 1: Y is irrelevant unless Y € Ancestors({X} UE)

Here, X = JohnCalls, E = {Burglary}, and
Ancestors({ X } UE) = { Alarm, Earthquake}
so MaryCalls is irrelevant



Irrelevant variables

* (X query variable, E evidence variables)

Defn: moral graph of Bayes net: marry all parents and drop arrows

Defn: A is m-separated from B by C iff separated by C in the moral graph

Thm 2: Y is irrelevant if m-separated from X by E

For P(JohnCalls|Alarm =true), both (A)
Burglary and Earthquake are irrelevant o )



Complexity of §C

- jo
exact inference OARC

* The burglary network belongs to a family of networks
in which there is at most one undirected path
between tow nodes in the network

* These are called singly connected networks or polytrees

* The time and space complexity of exact inference in
polytrees is linear in the size of network
 Size is defined by the number of CPT entries

* |f the number of parents of each node is bounded by a
constant, then the complexity will be also linear in the
number of nodes



* For multiply connected networks variable elimination can have
exponential time and space complexity

P(S) C P(R)
10 @ @ ¢ | .80
50 120

¥

~

~ o~




Conditional Independence relations in
Bayesian networks

* A Bayesian network 1s a correct representation of the domain only 1f
each node 1s conditionally independent of its predecessors in the
ordering, given its parents

P(MarryCallslJohnCalls,Alarm,Eathquake,Bulgary)=P(MaryCalls|Alarm)

* The topological semantics is given either of the specifications of
DESCENDANTS or MARKOV BLANKET



Local semantics

Local semantics: each node is conditionally independent
of its nondescendants given its parents




Example

P(B) P(E)
Burglary )I™ Earthquake ) o

B E |PAIB,E)
T T 95

T F 94

F T 29

F F

001

P(JIA) A [P(MIA)

T| 90 T| .70
F| 05 F| 01

e JohnCalls is independent of Burglary and Earthquake given the value
of Alarm




Each node is conditionally independent of all others given its
Markov blanket: parents + children + children's parents




Example

Burglary

P(AIB.E)

95
94
29
001

P(B) P(E)
001 Earthquake )[ ),

ipo e L R -
e Bl Bes B B ol

P(JIA) A [P(MIA)

“EIIIHIEID T| 90 1‘IIIIHIEID T 70
F| 05 F| 01

* Burglary is independent of JohnCalls and MaryCalls given Alarm and
Earthquake



Learning of Bayes Nets

* Four categories of learning problems
* Graph structure may be known/unknown
 Variable values may be fully observed / partly unobserved

* Easy case: learn parameters for graph structure is known, and data is
fully observed

* Interesting case: graph known, data partly known
e Gruesome case: graph structure unknown, data partly unobserved



p(x2)=0.001 p(x3)=0.002

p(x1/x2 x3)
0.95
0.94
0.29
0.001

xl|p(x4|xl)

T |0.90
F | 0.05

e R [
T =™




Learning CPTs from Fully Observed Data

Example: Consider learning the parameter p(x;|zs. x3)

- plxy, 10, x3)  card(xy ANxy A T3) i1 0(z1 =120 =1,z23

p(xq|xe, 3) = - B -
plar|za, T3) p(xq, x3) card(zy A\ x3) A

one writes as well




Maximum likelihood estimate (MLE)

p(datalf) = Hp (LE)T(2,k)s T(3,k) T(4,k))

p(datald) = HI) L(4,k) |T(1A P(r(lk)|F (2,k)> T(3.k)) ° I’(-F(zk) -plx L(3.k))

K

log p(data|f) = Zl()gp(.ru.,‘.)|.r(1.k))+l()gp(.r(1.,\.)|.1_'(2'k r3.k))+1log p(z (k) +log p(x(s.k)
k=1

dlog p(datalf) Z dlog p(x(1 )|z (2,8), P(T(3x)))

0011[12.13 k=1 00.rl|.r2..r3
l\' (s . l . ‘- . -
9 - B L Dt =1 g =0,13 = )
nlij =P(T1 =1l =t,23 =j) = =

k=1 ()(.Fz —_ 'i..'l';; _— J)



Expectation Maximization

“X: |
If X = {x9, 23,24} observe [ X: )
If Z = {x:} is unobserved
X



Initialization

Choosing an initial value

In our case random probability values for
p(z1|z2, x3), p(T1|T2, —23)

p(xy1|~x2, x3), p(x1| 22, ~23)




E-Step

K
logp(X, Z|0) = E log p(Z(4,k)|T(1,k)) HlOg P(Z(1.0) [T (2,8), T(3,k)) +lOg P(Z(2,) ) +lOg P(Z(3,1))
k=1

In E step we calculate for each training example k, p(X, Z|#). In the first
step we use the random probability values

p(z (1,k)s L(2,k)s T(3,k)» $(4,k))
P(T(1,k), T(2,k)) T(3,k), T(a,k)) + P(OT(1,k), T(2,k)s T(3,k), T(4,k))

P(T(1,k) | (2k), T(3,5)> T(a k) =

Elzax)] = p(zax = lZek), ZEk), Tar) =

_ P(zk) = 1, T2k), T(3,k)s T(ak))
p(zar) = 1, Tk, T@k), Tak) +P(Zak = 0,ZT@2k), TG3.k), T(4k))




M-Step

Update all relevant parameters

) Y 8(es = 6,25 =3)  Eleqa)

z1ij =p(z1 = 1|z = 4,23 = j) =
L O(zi=1,25=1)

;1;1 0(zy, x3) - E[x(l,k)]
Zle 5(:132, 5173)

P(Z( k) |Z(2k), T3k, 0) =
remember, before it was:

Zk 1 (.’Dl — 1,1132 =z',:z:3 =])
Ek:l 5(372 =1,T3 = .7)

Oytij =P(21 = 1|22 = 4,23 = J) =

repeat until the value converges.
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