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Naive Bayes Classifier

• Along with decision trees, neural networks, nearest neighbor, one of 
the most practical learning methods

• When to use:
• Moderate or large training set available
• Attributes that describe instances are conditionally independent given 

classification 

• Successful applications:
• Diagnosis
• Classifying text documents



Naive Bayes Classifier

• Assume target function f: X è V, where each instance x described by 
attributes a1, a2 .. an

• Most probable value of f(x) is:



vNB

• Naive Bayes assumption:

• which gives 



Naive Bayes Algorithm     

• For each target value vj
• ç estimate P(vj)
• For each attribute value ai of each attribute a
• ç estimate P(ai|vj)



Training dataset

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
30…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

Class:
C1:buys_computer=‘yes’
C2:buys_computer=‘no’

Data sample:

X =
(age<=30,
Income=medium,
Student=yes
Credit_rating=Fair)



Naïve Bayesian Classifier:  Example

• Compute P(X|Ci) for each class

P(age=“<30” | buys_computer=“yes”)  = 2/9=0.222
P(age=“<30” | buys_computer=“no”) = 3/5 =0.6
P(income=“medium” | buys_computer=“yes”)= 4/9 =0.444
P(income=“medium” | buys_computer=“no”) = 2/5 = 0.4
P(student=“yes” | buys_computer=“yes)= 6/9 =0.667
P(student=“yes” | buys_computer=“no”)= 1/5=0.2
P(credit_rating=“fair” | buys_computer=“yes”)=6/9=0.667
P(credit_rating=“fair” | buys_computer=“no”)=2/5=0.4

• X=(age<=30 ,income =medium, student=yes,credit_rating=fair)

P(X|Ci) : P(X|buys_computer=“yes”)= 0.222 x 0.444 x 0.667 x 0.0.667 =0.044
P(X|buys_computer=“no”)= 0.6 x 0.4 x 0.2 x 0.4 =0.019

P(X|Ci)*P(Ci ) : P(X|buys_computer=“yes”) * P(buys_computer=“yes”)=0.028
P(X|buys_computer=“no”) * P(buys_computer=“no”)=0.007

§ X belongs to  class “buys_computer=yes”

P(buys_computer=„yes“)=9/14

P(buys_computer=„no“)=5/14



Estimating Probabilities

• We have estimated probabilities by the fraction of times the event is 
observed to nc occur over the total number of opportunities n
• It provides poor estimates when nc is very small

• If none of the training instances with target value vj have attribute 
value ai? 
• nc is 0



• When nc is very small:

• n is number of training examples for which v=vj
• nc number of examples for which v=vj and a=ai

• p is prior estimate 
• m is weight given to prior (i.e. number of ``virtual'' examples) 



• Naive Bayes assumption of conditional independence too restrictive
• But it's intractable without some such assumptions...

• Bayesian Belief networks describe conditional independence among 
subsets of variables
• allows combining prior knowledge about (in)dependencies among

variables with observed training data



Law of Total Probability 



Law of Total Probability 









Causality

• This relationship between occurrence of events called causality is 
represented by conditional dependency inducing time.
• In our example x2 and x3 cause x1 and only then x1 causes x4. 
• This kind of decomposition via conditional independence is modelled 

by Bayesian networks. 
• Bayesian networks provide a natural representation for (causally 

induced) conditional independence. 
• They represent a set of conditional independence assumptions, by 

the topology of an acyclic directed graph and sets of conditional 
probabilities. 



Example

• In the example, there are four 
variables, namely, Burglary(= x2), 
Earthquake(= x3), Alarm(= x1) 
and JohnCalls(= x4). 
• The corresponding network 

topology reflects the following 
“causal” knowledge: 

• A burglar can set the alarm off.
• An earthquake can set the alarm off. 
• The alarm can cause John to call. 



• Given the x query variable which value has to be determined and e
evidence variable which is known and the remaining unobservable 
variables we preform a summation over all possible y. 

• In the following for simplification the variables are binary and 
describe binary events. All possible values (true/false) of the 
unobservable variables y are determined according to the law of total 
probability 





Causality











Bayesian Belief Network: An Example
Family
History

LungCancer

PositiveXRay

Smoker

Emphysema

Dyspnea

LC

~LC

(FH, S) (FH, ~S) (~FH, S) (~FH, ~S)

0.8

0.2

0.5

0.5

0.7

0.3

0.1

0.9

Bayesian Belief Networks

The conditional probability table
for the variable LungCancer:
Shows the conditional probability 
for each possible combination of its 
parents



Belief Networks

Burglary P(B)
0.001

Earthquake P(E)
0.002

Alarm

Burg. Earth. P(A)
t t .95
t f .94
f t .29
f f         .001

JohnCalls MaryCalls
A    P(J)
t     .90
f     .05

A    P(M)
t       .7
f     .01



Full Joint Distribution
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Compactness

• A CPT for Boolean Xi with k Boolean parents has 2k rows for the combinations of parent values

• Each row requires one number p for Xi = true
(the number for  Xi = false is just 1-p)

• If each variable has no more than k parents, the complete network requires O(n · 2k) numbers

• I.e., grows linearly with n, vs. O(2n) for the full joint distribution

• For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)



Inference in Bayesian Networks

• How can one infer the (probabilities of) values of one or more 
network variables, given observed values of others?
• Bayes net contains all information needed for this inference
• If only one variable with unknown value, easy to infer it
• In general case, problem is NP hard



Example

• In the burglary network, we migth observe the event in which 
JohnCalls=true and MarryCalls=true
• We could ask for the probability that the burglary has occurred

• P(Burglary|JohnCalls=ture,MarryCalls=true)



Normalization
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Normalization

• X is the query variable
• E evidence variable
• Y remaining unobservable variable

• Summation over all possible y (all possible values of the 
unobservable variables Y)

€ 

P(Cavity | toothache) =αP(Cavity, toothache)
=α[P(Cavity, toothache,catch) + P(Cavity, toothache,¬catch)]
=α[< 0.108,0.016 > + < 0.012,0.064 >] =α < 0.12,0.08 >=< 0.6,0.4 >

€ 

P(X | e) =αP(X,e) =α P(X,e,y)
y
∑



• P(Burglary|JohnCalls=ture,MarryCalls=true)
• The hidden variables of the query are Earthquake and Alarm

• For Burglary=true in the Bayesain network

€ 

P(B | j,m) =αP(B, j,m) =α P(B,e,a, j,m)
a
∑

e
∑

€ 

P(b | j,m) =α P(b)P(e)P(a |b,e)P( j | a)P(m | a)
a
∑

e
∑



• To compute we had to add four terms, each computed by multiplying 
five numbers
• In the worst case, where we have to sum out almost all variables, the 

complexity of the network with n Boolean variables is O(n2n)



Variable Elimination

• P(b) is constant and can be moved out, P(e) term can be moved 
outside summation a

• JohnCalls=true and MarryCalls=true, the probability that the burglary has 
occurred is about 28%€ 

P(b | j,m) =αP(b) P(e) P(a |b,e)P( j | a)P(m | a)
a
∑

e
∑

P(B | j,m) =α < 0.00059224,0.0014919 >≈< 0.284,0.716 >



Computation for Burglary=true



Variable elimination algorithm
• Eliminate repeated calculation

• Dynamic programming



Irrelevant variables

• (X query variable, E evidence variables)



Irrelevant variables

• (X query variable, E evidence variables)



Complexity of
exact inference

• The burglary network belongs to a family of networks 
in which there is at most one undirected path
between tow nodes in the network
• These are called singly connected networks or polytrees

• The time and space complexity of exact inference in 
polytrees is linear in the size of network
• Size is defined by the number of CPT entries
• If the number of parents of each node is bounded by a 

constant, then the complexity will be also linear in the 
number of nodes



• For multiply connected networks variable elimination can have 
exponential time and space complexity



Conditional Independence relations in 
Bayesian networks
• A Bayesian network is a correct representation of the domain only if 

each node is conditionally independent of its predecessors in the 
ordering, given its parents 
P(MarryCalls|JohnCalls,Alarm,Eathquake,Bulgary)=P(MaryCalls|Alarm)

• The topological semantics is given either of the specifications of 
DESCENDANTS or MARKOV BLANKET



Local semantics



Example

• JohnCalls is independent of Burglary and Earthquake given the value 
of Alarm





Example

• Burglary is independent of JohnCalls and MaryCalls given Alarm and
Earthquake



Learning of Bayes Nets 

• Four categories of learning problems
• Graph structure may be known/unknown
• Variable values may be fully observed / partly unobserved 

• Easy case: learn parameters for graph structure is known, and data is 
fully observed 
• Interesting case: graph known, data partly known 
• Gruesome case: graph structure unknown, data partly unobserved 





Learning CPTs from Fully Observed Data 



Maximum likelihood estimate (MLE) 



Expectation Maximization 









Next: Stochastic Methods



Literature

• Christopher M. Bishop, Pattern Recognition and Machine 
Learning (Information Science and Statistics), Springer 
2006
• Chapter 8

• Tom M. Mitchell, Machine Learning, McGraw-Hill; 1st 
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• Section 6.11, 6.12
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