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The Karhunen-Loeve Transform

* The Karhunen-Loeve transform is a linear transform that maps
possibly correlated variables into a set of values of linearly
uncorrelated variables

* This transformation is defined in such a way that the first principal
component has the largest possible variance



The covariance

* The sample size denoted by n, is the number of data items in a
sample of a population.

* The goal is to make inferences about a population from a sample.

» Sample covariance indicates the relationship between two variables
of a sample Co(xe =) (yp — 7
P cov(X,Y) = k=1 (T )1 (Yr —Y)
T —

e The sample covariance has n - 1 in the denominator rather than n due to
Bessel’s correction.

* For the whole population, the covariance is

(J()"U(X,_ Y) _ k.:1(-'l’-:1\‘- — ;;1,:) ) (Ll/k, _ ;l/) |

n




* The sample covariance relies on the difference between each
observation and the sample mean.

* In computer science, the sample covariance is usually used and
* [n statistics (Bishop) population covariance

* In a linear relationship, either the high values of one variable are
paired with the high values of another variable or the high values of
one variable are paired with the low values of another variable



* For example, for a list of two variables, (X, Y ),

> ={(2.1,2),(2.3,2),(2.9,3), (4.1,4), (5,4.8), (2, 2.5), (2.2, 1.5),
(4,5),(4,2),(2.8,4),(3,3.4),(3.5,3.8), (4.5,4.7), (3.5, 3) }
* represents the data set 2. The sample covariance of the data set is

0.82456. Ordering the list by X, we notice that the ascending X values
are matched by ascending Y values



* The covariance matrix measures the tendency of two features, x; and
X;, to vary in the same direction. The covariance between features x;
and x; is estimated for n vectors as

3 (2 =m,)(x, = m)
e—1 (JI'A'.I' — -‘1'-1',) ' (‘!/A-._,‘ - ‘!/.;‘) ’ AN !
- n— 1 ’ n-1

* with x; and y; being the arithmetic mean of the two variables of the
sample. Covariances are symmetric; ¢; = ¢;



Correlation

e Covariance is related to correlation




* The resulting covariance matrix C is symmetric and positive-definite,

C11 €C12 " Cim
Co1 C22 * -+ Com

Cml Cm?2 *°° Cmm



> ={(2.1,2),(2.3,2), (2.9,3), (4.1,4), (5,4.8), (2, 2.5), (2.2, 1.5),

(4,5),(4,2),(2.8,4),(3,3.4),(3.5,3.8), (4.5,4.7), (3.5, 3) }

k=1 (Th.i = Ti) - (Yr.j =~ U)
n—1

Cz’j =

o _ (0-912582 0.82456
— \ 0.82456 1.34247
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* (a) The data points of the set 2 (b) The two dimensional distribution of 5
can be described by three ellipse that divide the data points in four equal
groups.



The Karhunen-Loeve Transform

A real matrix M is positive definite if z" - M -z is positive for any non-zero
column vector z of real numbers. A symmetric and positive-definite matrix
can be diagonalized. It follows that

U™ C-U=A=diag(\, 2, Am)
U is an orthonormal matrix of the dimension m x m,
U'-U=1
UT O U = A = (1’1:(1,_(]()\1,)\2, te -/\'m.)
and

U-A=C-U.



U-A=C-U.
There are m eigenvalues and eigenvectors with
(/\i°I—C)°llz' = ()
and
C - u; = /\z' g ! P
An eigenvector can have two directions, it is either u; or —u,;.

C-(—u) = A - (—w)



The eigenvectors are always orthogonal, and their length is arbitrary. The
normalized eigenvectors define the orthonormal matrix U of dimension m x
m. Each normalized eigenvector is a column of U with
U'-U =1
The matrix U defines the Karhunen-Loeve transform. The Karhunen-
Loeve transform rotates the coordinate system in such a way that the new
covariance matrix will be diagonal

y=U"" x



* The squares of the eigenvalues represent the variances along the
eigenvectors. The eigenvalues corresponding to the covariance matrix
of the data set 2 are

A = 1.97964, Xy = 0.275412

and the corresponding normalized eigenvectors are

o (0.611454 o (079128
LN o09128 /0 % T L 0611454 )

The define the matrix U with

[ — 0.611454 —0.79128
-\ 0.79128 0.611454 ) °
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The define the matrix U with
[ — (().(511454 —().79128)

0.79128 0.611454
The Karhunen-Loeve transform for the data set ¥ is given by

T 0.611454 0.79128
y — (] X = ) ' x’
—0.79128 0.611454

it rotates the coordinate system in such a way that the new covariance
matrix will be diagonal
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U — (().611454 —().79128)

0.79128 0.611454
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It rotates the system (th

e points) in such a way hat the new covariance matrix will be diagonal.



Principal component analysis

* Principal component analysis (PCA) is a technique that is useful for
the compression of data.
* The purpose is to reduce the dimensionality of a data set by finding a

new set of variables, smaller than the original set of variables, that
nonetheless retains most of the sample’s information.

* The first principal component corresponds to the normalized
eigenvector with the highest variance.

* In principal component analysis (PCA), the significant eigenvectors
define the principal components.



* Accordingly to the Kaiser criterion, the eigenvectors whose
eigenvalues are below 1 are discarded

* Each of the s non-discarded eigenvectors is a column of the matrix W
of dimension s x m with the linear mapping from

z=W". x

* The Principal component analysis for the data set J is given by

z=W" . x=(0.611454 0.79128 ) - x



A1 = 1.97964, Ao = 0.275412
and the corresponding normalized eigenvectors are
0 = (().611454) 0y — (—0.79128) |
0.79128 ]’ 0.611454
The define the matrix U with
[ — (().611454 —().79128) |
0.79128 0.611454
y=UT . x = <().611454 0.79128 > -
—0.79128 0.611454 ’

z=W"' x=(0.611454 0.79128 ) - x
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* Suppose we have a covariance matrix

, 31
(_(121)

* What is the corresponding matrix of the K-L transformation?
* First, we have to compute the eigenvalues.

* The system has to become linear depend-able (singular).

* The determinant has to become zero.

AT —C|=0.



AN-IT—-C|=0.
Solving the Equation
A —24-1+62=0
we get the two eigenvalues

A1 = 2.94461, Ao = 21.05538.



A1 = 2.94461, Ao = 21.05538.

To compute the eigenvectors we have to solve two singular, dependent sys-
tems

|/\1°I—C|=O
and

oI —C|=0.



For Ay = 2.94461 we get

2.94461 0 (31 (mY) _
0  2.94461 121 usy |

and we have to find a nontrivial solution for
—0.05538 —1 uy '\
—1 —18.055 uo N

Because the system is linear dependable, the left column is a multiple value
of the right column, and there are infinitely many solution. We only have
to determine the direction of the eigenvectors; if we simply suppose that
wy =1,



uy = 1,

~0.05538  —1 ) (1Y) _,
—~1  —18.055 wy |
~0.05538\ [ 1 |
1 ~\18.055 ) 2

and

with



For Ay = 21.05538 we get

18.055 —1 Uy — 0
—1 0.05538 uy )

w, — w1 o 1

27 Ny ) \18.055 )

The two normalized vectors uy, us define the columns of the matrix U

[ — 0.998469 0.0553016
-~ —0.0553052 0.99847 )

Because A\ = 2.94461 < Ay = 21.05538 the second eigenvector is more

with

significant, however we can not apply the Kaiser criterion.



V= {(1’ l)a (2’ 2)7 (33 3)a (4v 4)1 (5a 5)1 (6a6)}

C=(; )

AM =T, =0

the covariance matrix is
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The two two eignvalues are

and the two normalized eigenvectors are
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The matrix that describes the K-L transformation is given by
1

/3 % 1 1 1 L L

U = 12_12 =7°(1_1)=\/§°(i_2l). (3.124)
V2 Ve 2 2 72

The K-L transformation maps the two dimensional data set ¥ in one di-

mension because A2 is zero (see Figure 3.35). For example, the data point
(1,1) is mapped on the z — axis

(?):(£12j> =\/5°@_% )(1) (3.125)

1
2

with the value v/2 ~ 1.4142 corresponding to the length of the vector (1, 1).
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Problems

* Principal components are linear transformation of the original features
* |tis difficult to attach any semantic meaning to principal components

* For new data which is added to the dataset, the PCA has to be recomputed
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Singular Value Decomposition

* We can use SVD to perform PCA

* SVD is more numerically stable if the columns are close to collinear

* Factorize a Covariance Matrix A:=C
» Difference: compute the eigenvectors out of C C'= C" C=C C, use U as before....

Any matrix A can be factorized as
A=U-S-VI
U is a orthogonal matrix with orthonormal eigenvectors from A - A7

V' a orthogonal matrix with orthonormal eigenvectors from A7 - A

S is a diagonal matrix with r elements equal to the root of the positive
eigenvalues of A- AT or AT . A



SVD

Computing the Pseudoinverse
At =v.sty”

where ST is formed from S by taking the reciprocal of all the non-zero ele-
ments, leaving all the zeros alone and making the matrix the right shape: if
S is an m x n matrix, then ST must be an n x m matrix.
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Independent-Components Analysis [CA

The system starts operating with a random source vector s defined by
S1

S92

S m

Sample values of the m random variables constituting s are respectively de-
noted by s1.89.--- . 8.

The random source vector s is applied to a mixer, whose input output char-
acterization is defined by a nonsingular matrix A called the mixing matrix.

The linear system comprised of the source vector s and the mixer A is com-
pletely unknown to the observer.

x=A-s



The linear system comprised of the source vector s and the mixer A is com-
pletely unknown to the observer.

x=A-s
()
M)

o)

The model is called a generative model, in the sense that it is responsible for
generating the random variables x,,xs.--- ,x,,. only they are known.

with

The random variables s;. s5.-- - . s, representing the source are called latent
variables.



The Blind Source Separation Problem

A demixer, described by an m x m demixing matrix W.

In response to the observation vector x, the demixer produces an output
defined by the random vector

y=W-x
Observation
vector
. X . Output
Mixer: Demixer: vector
A LC

A w ;

Source ¥

vector
, ve

Unknown environment



Given a set of independent realizations of the observation vector x resulting
from an unknown linear mixing of the latent (source) variables sy, o, - ., 8,
estimate the demixing matrix W such that the components of the resulting
output vector y are as statistically independent as possible; here, the term
independence should be understood in its strong statistical sense.

The demixing matrix W is carried out in an unsupervised manner.

Moreover, the only information used to recover the original source vector
s is contained in the observation vector x

This problem is called Independent-Components Analysis ICA



* There is a number of “source signals”:
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Motivation

Two Independent Sources Mixture at two Mics
x, () = a;;8, +a,,5,

X,(t) = a8, +ay,s,

ajy ... Depend on the distances of the microphones from the speakers



x1(t)
xo(t)

a1151(t) + a1so(t)
an151(t) + azpsa(t)

Model
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Model z1(t) a1151(t) + a12s2(t)

xo(t) = anys1(t) + anpso(t)
We observe

(w1(1)) (1?1(2)) (wl(t))

r2(1)) " \xz2(2) )77 \wa(t)
We want

(31(1)) (31(2)) (-Sl(t))

s2(1) ) " \s2(2) ) 7777 \s2(t)

But we don’t know {a;;}, nor {s;(t)}

Goal:  Estimate {s;(¢)}, (and also {a;;})



The Cocktail Party Problem

Sources Mixing Observation ICA Estimation
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PCA vs ICA

PCA ICA




Assumptions

e Statistical independence: The latent variables constituting the source
vector s are assumed to be statistically independent,
However: the observation vector x is made up of a linear combination
of the latent variables, the individual components of the observation
vector x are statistically dependent on each other.

e The mixing matrix is a square matrix, the number of observations is
the same as the number of sources.

e The generative model is assumed to be noise free, which means that
the only source of stochasicity in the model is the source vector s



Assumptions

e [t is assumed that the source vector s has zero mean, which, in turn,
implies that the observation vector x has zero mean too. If not, then
the mean vector E(x) is subtracted from x to make it assume a zero-

mean value.

e Whitening: It is also assumed that the observation vector x has been
“whitened”, which means that its individual components are uncorre-
lated, but not necessarily independent. Whitening is achieved by lin-
early transforming the observation vector so that the correlation matrix

E(x - xT) is equal to the identity matrix.
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Non-Gaussianity of Sources: A Necessary Requirement for ICA (Except Pos-
sibly for One Source)

How should the information content in the observation vector X manifest
itself for the separability of source signals to be feasible?

e The source signals s;. 59, . s, must be non-Gaussian.

e At the very most, only a single source s is permitted to have a Gaussian
distribution.



Algorithms

* ICA Algorithms rooted in minimization of mutual information

Mutual information measures the information that X and Y share

How much knowing one of these variables reduces uncertainty about the

other.
p(x) - P(:l/))
I(X,Y)=— E E plx,y log<
%) 9) p(z,y)

yeY zeX
p(z, )
I(X,)Y) = p(x,y)log ( \ )
y; ; p(z) - p(y))

For example, if X and Y are independent, then I(X,Y) =0



The Mutual information 7(X,Y’) between X and Y is equal to the Kullback-
Leibler divergence between the joint probability density function p(z, vy) and
the product of the probability functions p(x) and p(y)

K L(payl[pe,py) = ZZp (2, y log( (i)(-’f})?/(z/)))

K L(payllpespy) = Y D ol y) logp(z,y) = > > pla,y)log(p(x) - p

yeY zeX yeY zeX

KL(payllpespy) = —H(X,Y) = > > plx,y)log(p(z) - p(y))

yeY ze X




Cumulative Distribution Function

Cumulative distribution function that maps a variable y into a probability
density function p,(y) € [0, 1] like for example sigmoid function o(y), we can
define a factorial distribution

py(y) = pr. (vi)

Cumulative distribution function that maps a m dimensional vector y into
a probability density function p,(y) € [0, 1] like for example Gaussian over
m dimensional space. Usually the Gaussian distribution is parameterised
(described) by g and ¥. However we can parameterise (describe) some prob-
ability density function as well by a matrix W and write

py(y. W)



Natural Gradient Learning for ICA

The algorithm developed by Amari et al. (1996). It is based on the Kullback-
Leibler divergence

Consider
y=W-.x

With statistical independence among the individual components of the out-
put y as the desired property for blind source separation, what is a practical
measure that we can use to achieve that property?



With
py(y, W)

denote the probability density function of the output y, parameterised by
the demixing matrix W

The factorial distribution is defined by

py(y) = pri(yz')

and is not parameterised.



(GGiven a random vector y representing a linear combination of m independent
source signals:

The transformation of the observation vector x into a new random vector
y should be carried out in such a way that

The Kullback-Leibler sdivergence between the parameterized probability den-
sity function py(y, W) and the corresponding factorial distribution py(y) is
minimized with respect to the unknown parameter matrix W.



Relative Entropy

) py(Ya ”/)>
W II - lo
Zpy . ° ( Py (y)

py(y W) )




R(W) = —H (x) — log |det(W)| + > H(y;)

1=1

R(W) = —H(x) = log|det(W)| = >  E(log py, (y:))

We redefine a contrast function for stochastic gradient decent with W:
e We ignore with stochastic gradient the operator [£ and

e We ignore independent component H(x) since it is independent on W

p(W) = —log |det(W)| = ) _log py, (i)
i=1






Since

and

We define

with

we get

(‘)wz - (’3wz ayz_ 'log(pyi(yi)
dyp 0 . Oy ply) o pw)
p(yi) — —dbi(u:) - x
p(yi) x =~y

[ 1(n) \
B(y) - ¢1(‘y2)

\ P (.ym) )

V(W)= (W)™ +o(y) -x"



And we get
AW = —nVp(W)

AW = (W)™ = ¢(y) - x")

and
yT T w7

AW =n(I — ¢(y) -x" - WHw")!
AW =n(I —¢(y) -y ) (WH™



Learning Rule

So the learning rule is then
y(n) =W(n)-x(n)

W(n+1) =W(n)+n(n)-(I-éy(n)-y' (n) - (W")(n)™
with
I—¢(y(n)-y'(n)

being the correction term.

According to the ICA robustness theorem for each component of the vec-
tor
¢(y) = tanh(y)



Learning Rule

We can redefine the usual gradient as
Vip(W) = (Vp(W)) - WH. W
y(n) =W(n)-x(n)
W(n+1) = W) +nn) - (I é(y(n)) - y"(n)) - W(n)
o(y) = tanh(y)



Input vector

x(n)

W(n)

n(n) —>

+
I

()

W(n +1)

Identity matrix

> Output vector

y(n)



Kernel PCA




Other Methods for Dimension Reduction

* Unsupervised Learning
e Data: no labels!

e Goal: Learn the structure of the
data

(%)
* Traditionally, autoencoders were
used for dimensionality

reduction or feature learning.

A
Xg —>

LayerL, Layer L



Linear vs nonlinear dimensionality reduction

Autoencoder

PCA
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