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The Karhunen-Loève Transform 

• The Karhunen-Loève transform is a linear transform that maps 
possibly correlated variables into a set of values of linearly 
uncorrelated variables
• This transformation is defined in such a way that the first principal 

component has the largest possible variance



The covariance

• The sample size denoted by n, is the number of data items in a 
sample of a population. 
• The goal is to make inferences about a population from a sample.
• Sample covariance indicates the relationship between two variables 

of a sample

• The sample covariance has n − 1 in the denominator rather than n due to 
Bessel’s correction. 

• For the whole population, the covariance is 



• The sample covariance relies on the difference between each 
observation and the sample mean.
• In computer science, the sample covariance is usually used and 
• In statistics (Bishop) population covariance

• In a linear relationship, either the high values of one variable are 
paired with the high values of another variable or the high values of 
one variable are paired with the low values of another variable 



• For example, for a list of two variables, (X, Y ), 

• represents the data set Σ. The sample covariance of the data set is 
0.82456. Ordering the list by X, we notice that the ascending X values 
are matched by ascending Y values 



• The covariance matrix measures the tendency of two features, xi and 
xj , to vary in the same direction. The covariance between features xi
and xj is estimated for n vectors as 

• with xi and yj being the arithmetic mean of the two variables of the 
sample. Covariances are symmetric; cij = cji
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Correlation

• Covariance is related to correlation
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• The resulting covariance matrix C is symmetric and positive-definite, 





• (a) The data points of the set Σ (b) The two dimensional distribution of Σ
can be described by three ellipse that divide the data points in four equal 
groups. 



The Karhunen-Loève Transform 







• The squares of the eigenvalues represent the variances along the 
eigenvectors. The eigenvalues corresponding to the covariance matrix 
of the data set Σ are 





it rotates the coordinate system in such a way that the new covariance 
matrix will be diagonal 



It rotates the system (the points) in such a way hat the new covariance matrix will be diagonal. 



Principal component analysis 

• Principal component analysis (PCA) is a technique that is useful for 
the compression of data. 
• The purpose is to reduce the dimensionality of a data set by finding a 

new set of variables, smaller than the original set of variables, that 
nonetheless retains most of the sample’s information. 
• The first principal component corresponds to the normalized 

eigenvector with the highest variance.
• In principal component analysis (PCA), the significant eigenvectors 

define the principal components. 



• Accordingly to the Kaiser criterion, the eigenvectors whose 
eigenvalues are below 1 are discarded 
• Each of the s non-discarded eigenvectors is a column of the matrix W 

of dimension s × m with the linear mapping from 

• The Principal component analysis for the data set Σ is given by 







• Suppose we have a covariance matrix 

• What is the corresponding matrix of the K-L transformation? 
• First, we have to compute the eigenvalues. 
• The system has to become linear depend-able (singular). 
• The determinant has to become zero. 

















Problems

• Principal components are linear transformation of the original features

• It is difficult to attach any semantic meaning to principal components

• For new data which is added to the dataset, the PCA has to be recomputed



PCA: Only the images of three

• Eigenvalues

• Projection of the Eigenvectors, blue 
positive values, yellow negative values



• A comparison of PCA to Fisher’s linear discriminant



Singular Value Decomposition 

• We can use SVD to perform PCA
• SVD is more numerically stable if the columns are close to collinear
• Factorize a Covariance Matrix A:=C

• Difference: compute the eigenvectors out of C CT= CT C=C C, use U as before….



SVD







Independent-Components Analysis ICA 





The Blind Source Separation Problem 





• There is a number of “source signals”: 

• Due to some external circumstances,
only linear mixtures of the source signals are observed: 

• Estimate (separate) original signals! 



• Use information on statistical independence to recover: 



Motivation

Two Independent Sources Mixture at two Mics

aIJ ... Depend on the distances of the microphones from the speakers
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The Cocktail Party Problem 



PCA vs ICA 



Assumptions 



Assumptions



Example



Example
slope is +1

slope is -2





Algorithms 

• ICA Algorithms rooted in minimization of mutual information 





Cumulative Distribution Function 



Natural Gradient Learning for ICA 







Relative Entropy 











Learning Rule



Learning Rule





Kernel PCA



Other Methods for Dimension Reduction

• Unsupervised Learning
• Data: no labels!
• Goal: Learn the structure of the 

data

• Traditionally, autoencoders were 
used for dimensionality 
reduction or feature learning. 





Kohonen Maps
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