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Regression of a Line 



Linear Regression 



Bias



Mean-squared-error (MSE) 



Sum-of-squares error 



Design Matrix 



Linear Mapping



Error Functions



Least-Squares Estimation



The gradient rules 





• When some features are linear combinations of the others, or when 
N < D, the matrix XT X is not invertible, it is said to be singular or 
degenerate
• D is the number of features
• N number of examples

• However,  the pseudo-inverse is always defined: it is based on the SVD 
decomposition of the matrix X



Moore-Penrose Pseudoinverse

• X is a N × D matrix, then SVD decomposition of the matrix X is
X=U·D·VT

• U is an N × N orthogonal matrix
• D is a diagonal N ×D matrix with non-negative real numbers on the diagonal

• the diagonal entries are the singular values, the square roots of eigenvalues V is an D × D 
orthogonal matrix 

and
X† = V · D† · UT

• We get the pseudo-inverse of D† by taking the reciprocal of each non-zero element on the 
diagonal, leaving the zeros in place, and then transposing the matrix. 



Non-linear regression - Linear Basis Function Models 

• Central idea of non-linear regression: same as linear regression, just 
with non-linear features 
• Non-linear regression is the linear combination of fixed nonlinear 

functions 



Linear Basis Function Models

• Polynomial basis functions:

•These are global; a small change 
in x affect all basis functions.



Non-linear regression - Linear Basis Function Models 

• Non-linear regression is the linear combination of fixed nonlinear 
functions 



D=1



Linear Basis Function Models 

• Gaussian basis functions:

•These are local; a small change in 
x only affect nearby basis 
functions. ¹j and s control location 
and scale (width).



Linear Basis Function Models 

• Sigmoidal basis functions:

• where

•Also these are local; a small 
change in x only affect nearby 
basis functions. and s control 
location and scale (slope).



• Dimensions change since the dimension are not determined by the 
dimension of the vector x which is D 
• The number of the is M-1



Non-linear regression - Linear Basis Function Models 

• With many features, our prediction function becomes very expressive

• Can lead to overfitting
• Low error on input data points, but high error nearby 



9th Order Polynomial



Data Set Size: 
9th Order Polynomial



Bayesian Regression 

• P(D|w) is evaluated on the observed data set D and is called likelihood 
function.
It indicates how probable the observed data set is for different settings of 
w. 
• Given likelihood we can state:

• posterior is related in a linear manner to likelihood x prior

• All parameters are viewed as a function of w



Bayesian Regression 

• p(D) is a normalisation constant which ensures that p(w|D) is a valid 
probability density
• In frequentist paradigms w is considered as a fixed parameter 

determined by some estimator and errors are observed by 
considering the dataset D
• By Bayesian viewpoint there is only a dataset D and the uncertainty is 

represented by the distribution w



Maximising ML and MAP 

• Maximising the likelihood (ML) is 

• Since log is monotically increasing function 

• Maximising a posteriori (MAP) is



Bayesian Learning 

• We know that likelihood function is p(tη|w, xη )
• w in relation with xη generates the data tη

• What we liked is to have the posterior distribution p(w|tη , xη ) 
• what about xη? 



Gaussian Environment 

• The N examples xη are drown independent from the same 
distribution. They are independent and identically distributed (iid). 
• The environment environment for generating the training examples is 

Gaussian distributed. The error in the linear regression model is de-
scribed by a Gaussian density function of zero mean and a common 
variance σ2. 
• The environment is stationary, the parameter vector w is fixed but 

unknown. 



Likelihood 



Precision 

• Precision is often used in Bayesian software by convention.
• Some (Bishop) say that precision is more intuitive than variance 

because it says how concentrated are the values around the mean 
rather than how much spread they are. 
• Precision is just an inverted variance 



Curve Fitting

Indicates how probable the observed data set is for different settings of w



Likelihood 



Prior 

• M elements of the vector w are independent and identically 
distributed and described by a Gaussian density function of zero 
mean and a common variance 



Prior



Posterior Density 



Posterior Density 



Quadratic Function 
• Now we can define the quadratic function, minimising it is equivalent to maximising wMAP(N)

• We set the gradient of E(w) to zero with the gradient operator 



9th Order Polynomial



Regularization: 



Relation between Regularised Least-Squares and 
MAP 



Tikhonov regularisation



lasso



Regularized Least Squares
•Lasso tends to generate sparser solutions than a 
quadratic 
regularizer. 



Linear Regression for classification 
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