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Regression of a Line

X
y=wo+w,-r=a+b-x

With wg being the intercept term and w; being the slop of the line. With
wy = 0 (absent) the line goes through the origin.



Linear Regression

Simples linear model is the linear combination

D

y=y(x,w) =wy+ Z w; - T = wy + (W|x)
j=1

Parameters w; are values that control the behaviour of the system.



Bias

The intercept term wy is often called the bias parameter of the affine transfor-
mation. The output of the transformation y is biased toward being wy in the
absence of any input. This term is different from the idea of a statistical bias!

In Neural Networks net =y

net = bias + ij - Tj = wo + ij - T
J=1 J=1

With z, =1

y = ZuJ r; = (wlx) =w' -x
7=0



Mean-squared-error (MSE)

Training set consists on N observations (sample)
Y — \T
X = (x1,X2, ", Xy, ", XN)
together with the values

t = (t1,to, - - by, -, tn)"

Mean-squared-error (MSE) over all N training points is defined as

| =

N
: . | .
T Z (]/(X,,-W) - {11)2 - T ' ”y - tllz

n=1

E(w) =

-~



Sum-of-squares error
Sum-of-squares error function over all N training points is defined as

N , 1 , 1 .
E(W) = a° Z (y(x,,. W) - ’”)2 - § ' “y - t“2 - é ' “t' - yllz

n=1

bO | -

[t is scaled by 1/2 Euclidean distance between the predictions and the target
values.

[ t1 ) ( Y1 \
fr) o Yn

\ f\ ) \ '!/i\v' )

2




Design Matrix

Data matrix with x;, = 1, also called design matrix is represented as
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Linear Mapping
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Error Functions
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Least-Squares Estimation

We set the gradient of F(w) to zero with the gradient operator

T
o [0 o o
Oow, Ows Jwp
VEw) — | 2E OF oF 1"
W)= 821}1’(911)27 7821)1)

VE(W)zv(%.(t—x-w)T-(t—X.w)) 0



The gradient rules

V- f(w)+b-gw))=a-Vf(w)+b-Vg(w), a,beR

and for A = X7 .- X symmetric



VE(W):V(%-(t—X-w)T-(t—X-w)> =0

Vit -t—2-t" - X -w+w' - X" X -w)=0
Vith-t)—2-V(t'- X - w)+V(w - X" X -w)=0
2. X' t+2. X7 X -w=0
X' t—X". X.-w=0
X' t=X" X w
(X7 X)) XT. t=w

The matrix
Xt=(x7.x)". X"

XT is Moore-Penrose or the pseudo-inverse of X.



* When some features are linear combinations of the others, or when
N < D, the matrix X" X is not invertible, it is said to be singular or
degenerate

* Dis the number of features
* N number of examples

* However, the pseudo-inverse is always defined: it is based on the SVD
decomposition of the matrix X



Moore-Penrose Pseudoinverse

* Xis a N x D matrix, then SVD decomposition of the matrix X is

X=U-D-V"T
e Uisan N x N orthogonal matrix

* Dis a diagonal N xD matrix with non-negative real numbers on the diagonal

* the diagonal entries are the singular values, the square roots of eigenvalues Visan D x D
orthogonal matrix

and
X' =v-D"-UT

» We get the pseudo-inverse of D" by taking the reciprocal of each non-zero element on the
diagonal, leaving the zeros in place, and then transposing the matrix.



Non-linear regression - Linear Basis Function Models

* Central idea of non-linear regression: same as linear regression, just
with non-linear features

* Non-linear regression is the linear combination of fixed nonlinear
functions

M-—1

y(x, W) = wp + Z w;j - ¢i(x)
=1

with ¢g(x) =1



Linear Basis Function Models

* Polynomial basis functions:

¢j(x) = 27.

*These are global; a small change
in x affect all basis functions.




Non-linear regression - Linear Basis Function Models

* Non-linear regression is the linear combination of fixed nonlinear
functions

M-—1
y(x, W) =wo+ Y wj - $;(x)
j=1

with ¢g(z) =1



D

0 1

x

One should note that D and M — 1 do not need to agree. For example with

basis function power of x for D =1

and M —1=9

9

9
y(z, w) =wo + ) wj- 2! =3 _ ¢
J

j=1 =0

and we have to determine M = 10 parameters.

x)




Linear Basis Function Models

e Gaussian basis functions:

¢j(x) = eXp{_%}

0.75
0.5 |
*These are local; a small change in
x only affect nearby basis 0.25 |
functions.x; and s control location

and scale (width). 1




Linear Basis Function Models

 Sigmoidal basis functions:

oyta) = (1)

* where
B 1
1+ exp(—a)’

o(a)

*Also these are local; a small
change in x only affect nearby
basis functions. ~; and s control
location and scale (slope).
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With
D, = 0j(xy)

* Dimensions change since the dimension are not determined by the
dimension of the vector x which is D

* The number of the is M-1

[ wo
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with @' is Moore-Penrose or the pseudo-inverse of ® as before with

of = (@T . q>)_1 . T



Non-linear regression - Linear Basis Function Models

* With many features, our prediction function becomes very expressive

* Can lead to overfitting
* Low error on input data points, but high error nearby



9th Order Polynomial




Data Set Size: N =100

9th Order Polynomial




Bayesian Regression

. P(D|w) - P(w)
p(wiD) p(D)

* P(D[w) is evaluated on the observed data set D and is called likelihood

function.
It indicates how probable the observed data set is for different settings of

w.
* Given likelihood we can state posterior o likelihood x prior

* posterior is related in a linear manner to likelihood x prior

» All parameters are viewed as a function of w



Bayesian Regression

| P(D|w) - P(w)
D)= — ,
p(w|D) (D)
e p(D) is a normalisation constant which ensures that p(w/D) is a valid
probability density
* In frequentist paradigms w is considered as a fixed parameter
determined by some estimator and errors are observed by
considering the dataset D

* By Bayesian viewpoint there is only a dataset D and the uncertainty is
represented by the distribution w



Maximising ML and MAP

* Maximising the likelihood (ML) is

Wiy, = argmax p(Dlw)

* Since log is monotically increasing function

Wy = arg max log(p(Dfw))

e Maximising a posteriori (MAP) is

Waap = arg maxlog(p(w|D))



Bayesian Learning

* We know that likelihood function is p(t,/w, x, )
* win relation with x, generates the data t,

* What we liked is to have the posterior distribution p(w/t,, x, )

* what about X,?
p(w, fu) = 1)(W‘{'71) '1’““!1) = 1)({"'IIW> - p(w)

and
p(w, t,|x,) = p(w|t,,x,) - p(t,) = p(t,|w,x,) - p(w)

and we arrive at
p(t,|W,X,,) - p(w
1)(W‘{‘7/wxu) - 1( ]‘ ]) 1( ) N - N N
p(t,) p(w|t, X) o< p(t|w, X) - p(w)




Gaussian Environment

* The N examples x,, are drown independent from the same
distribution. They are independent and identically distributed (iid).

* The environment environment for generating the training examples is
Gaussian distributed. The error in the linear regression model is de-
scribed by a Gaussian density function of zero mean and a common

variance o?.

* The environment is stationary, the parameter vector w is fixed but
unknown.



Likelihood

The Likelihood is

p(t,|x,, w,0?%) =

p(tix,w.o?) =[] p(t,|x,. w.o?)
n=1

results in total empirical knowledge about w.



Precision
p(ty|x,, w,0?) = N (t,|w'x,, 0%).

* Precision is often used in Bayesian software by convention.

* Some (Bishop) say that precision is more intuitive than variance
because it says how concentrated are the values around the mean
rather than how much spread they are.

* Precision is just an inverted variance
1 1
2
p(t,|x,. w,3) = ,f\""(f,,\wrlwx,,_ 3~1).

N
pltix.w,3) = H ,-‘\*"(f,,\WTX;,- ¥ ],)

n=1



Curve Fitting

Zo x

Indicates how probable the observed data set is for different settings of w



Likelihood

The Likelihood (without the precision notation) is

1 N 1

,. H (exp (—

p(tx. w.o”) =

, 1 1
p(tlx, w.o”) = N exp | — .
0) '

(\/2-71'-

(\/2.7.0)4\ wei 2.0»2.



Prior

* M elements of the vector w are independent and identically
distributed and described by a Gaussian density function of zero
mean and a common variance

M-1 M-1

p(wloy) = 1] p(wjlel) = T N(w|0,07)
=0 =0
, l M-1 ll'g
p(wlo?) = i H ((*xp(—‘ J,))
(\/2 T - (7“.) =0 2.0,

| 1 | M1
p(w|oy,) = M KPP T o T D w;
)

( 2 * T - w J:“



Prior




Posterior Density

p(w|x, t. o) x p(t|x, w.o?) - p(w|o?)

Simplifying (no normalisation) we get

2. g2 2.-02

n=1 u

. | . 1 .
p(w|x.t,0?%) o exp (— Y (t, - whx,)? . ||W||2)



Posterior Density

With

we get

. 1 N ‘ A
Warap(N) = max (—E Sty - W ox,)P - 2

because
WarAp = argmax log(p(wlx,t, A))



Quadratic Function

* Now we can define the quadratic function, minimising it is equivalent to maximising wy,p(N)

N
‘ o
E(w) = 5+ 3ty = w"x,)" + Z]wlP

n=1

* We set the gradient of E(w) to zero with the gradient operator

VE(W)ZV<%'(t—X-W)T-(t—X-W)—}—%WTW)ZO

2. XT t42. X . X - wH+2-A-w=0
—XT t4+XT. X - wH+A-w=0
X' t=(X""X+X1I)w
(XT-X+A-1) - X" t=w



9th Order Polynomial




Regularization: Inx=-18




Relation between Regularised Least-Squares and
MAP

Ordinary least-squares estimator
Ey(w

=533 (= w7 ox,)’

To overcome the problems one adds a new term in [/, norm (We usually
simplify [|w|l; = ||wl)

tvli—'-

A

N
2
3 Hln v

lvl'—‘

—_

which is identical to the MAP estimate.



Tikhonov regularisation

The quadratic regulariser is called ridge regression or Tikhonov regulari-
sation, named for Andrey Tikhonov

1 A T 2 2
E(w)=5-> (ty—w" -x,)* + [T - wl|3
= n=1

where i1s the I' Tikhonov matrix with

A
F:I-ﬂ




lasso

For the [; norm we have the lasso (least absolute shrinkage and selection
operator)
N
1 A

A
E(W) = 5 ’ Z(tn - wT ’ x71)2 + §”W”1
n=1

For large A some coefficient w; are driven to zero leading to a sparse model.
For the Bayesian interpretation it results from the MAP estimate where the
prior distribution is Laplacian.

The prior is

o) = (55) 11 (o0 (2))

pwlt) = (555) - o (~gplwlh)

b > 0 is referred to as the diversity, is a scale parameter.



Regularized Least Squares

Lasso tends to generate sparser solutions than a

quadratic
regularizer.




Linear Regression for classification

Linear Regression implies
-
u()+ZuJ 1 Zul r; = (wWXx)=w -X
7=0

Linear Classification implies

D

f(net) = f Z wj - T;
j=0

Linearity in weights w;.
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