Lecture 3: Probability and Information

Andreas Wichert
Department of Computer Science and Engineering
Técnico Lisboa

- A key concept in the field in machine learning is that of uncertainty
- Through noise on measurements
- Through the finite size of data sets
- Probability theory provides a consistent framework for the quantification and manipulation of uncertainty
- Forms one of the central foundations for pattern recognition.

Kolmogorov's Axioms of Probability (1933)

- To each sentence a, a numerical degree of belief between 0 and 1 is assigned

$$
\begin{aligned}
& 0 \leq p(a) \leq 1 \\
& p(\text { true })=1, p(\text { false })=0
\end{aligned}
$$

- The probability of disjunction is given by

$$
p(a \vee b)=p(a)+p(b)-p(a \wedge b)
$$

Where do these numerical degrees of belief come from?

- Humans can believe in a subjective viewpoint from experience. This approach is called Bayesian
- For a finite sample we can estimate the true fraction. We count the frequency of an event in a sample. We do not know the true value because we cannot access the whole population of events. This approach is called frequentist
- From the true nature of the universe, for example, for a fair coin, the probability of heads is 0.5 . This approach is related to the Platonic world of ideas. However, we can never verify whether a fair coin exists
- From the frequentist approach, one can determine the probability of an event a by counting
- If Ω is the set of all possible events, $p(\Omega)=1$, then $a \in \Omega$.
- $\operatorname{card}(\Omega)$ is the number of elements of the set $\Omega, \operatorname{card}(a)$ is the number of elements of the set a and

$$
\begin{aligned}
& p(a)=\frac{\operatorname{card}(a)}{\operatorname{card}(\Omega)} \\
& p(a \wedge b)=\frac{\operatorname{card}(a \wedge b)}{\operatorname{card}(\Omega)}
\end{aligned}
$$

- Now we can define the posterior probability, the probability of a after the evidence b is obtained

$$
p(a \mid b)=\frac{\operatorname{card}(a \wedge b)}{\operatorname{card}(b)}
$$

- using

$$
p(a \wedge b)=\frac{\operatorname{card}(a \wedge b)}{\operatorname{card}(\Omega)}
$$

- we get

$$
p(a \mid b)=\frac{p(a \wedge b)}{p(b)} \quad p(b \mid a)=\frac{p(a \wedge b)}{p(a)}
$$

Bayes' Rule

$$
p(a \mid b)=\frac{p(a \wedge b)}{p(b)} \quad p(b \mid a)=\frac{p(a \wedge b)}{p(a)}
$$

- The Bayes' rule follows from both equations

$$
p(b \mid a)=\frac{p(a \mid b) \cdot p(b)}{p(a)}
$$

Law of Total Probability

- For mutually exclusive events b_{1}, \ldots, b_{n} with

$$
\sum_{i=1}^{n} p\left(b_{i}\right)=1
$$

- the law of total probability is represented by

$$
\begin{gathered}
p(a)=\sum_{i=1}^{n} p(a) \wedge p\left(b_{i}\right)=\sum_{i=1}^{n} p\left(a, b_{i}\right) \\
p(a)=\sum_{i=1}^{n} p\left(a \mid b_{i}\right) \cdot p\left(b_{i}\right)
\end{gathered}
$$

The Rules of Probability

Sum Rule	$p(X)=\sum_{Y} p(X, Y)$
Product Rule	$p(X, Y)=p(Y \mid X) p(X)$

Bayes' rule

- Bayes rule can be used to determine the prior total probability $p\left(h_{\eta}\right)$ of hypothesis h_{η} to given data D.
- For example, what is the probability that some illness is present?

$$
p\left(h_{\eta} \mid D\right)=\frac{p\left(D \mid h_{\eta}\right) \cdot p\left(h_{\eta}\right)}{p(D)}
$$

- $p\left(D / h_{\eta}\right)$ is the probability that a hypothesis h_{η} generates the data D
- can be easily estimated
- For example, what is the probability that some illness generates some symptoms?
- The probability that an illness is present given certain symptoms, can be then determined by the Bayes rule

Maximum a Posteriori (MAP) Hypothesis

- The most probable hypothesis h_{η} out of a set of possible hypothesis h_{1}, h_{2}, \cdots given some present data is according to the Bayes rule
- To determine the maximum a posteriori hypothesis $h_{\text {MAP }}$ we maximize

$$
h_{M A P}=\arg \max _{h_{\eta}} \frac{p\left(D \mid h_{\eta}\right) \cdot p\left(h_{\eta}\right)}{p(D)}
$$

- The maximisation is independent of $p(D)$, it follows

$$
h_{M A P}=\arg \max _{h_{\eta}} p\left(D \mid h_{\eta}\right) \cdot p\left(h_{\eta}\right)
$$

posterior α likelihood \times prior

Maximum Likelihood (ML) Hypothesis

- If assume $p\left(h_{\eta}\right)=p\left(h_{\gamma}\right)$ for all h_{η} and h_{ν}, then can further simplify, and choose the maximum likelihood (ML) hypothesis

$$
h_{M L}=\arg \max _{h_{\eta}} p\left(D \mid h_{\eta}\right)
$$

Bayesian Learning

$$
p(\mathbf{w} \mid D)=\frac{p(D \mid \mathbf{w}) \cdot p(\mathbf{w})}{p(D)}
$$

- $p(D / \boldsymbol{w})$ is evaluated on the observed data set D and is called likelihood function.
It indicates how probable the observed data set is for different settings of \boldsymbol{w}.
- Given likelihood we can state: posterior α likelihood \times prior
- According to linear relation

Example

- Does patient have cancer or not?

A patient takes a lab test and the result comes back positive. The test returns a correct positive result (+) in only 98% of the cases in which the disease is actually present, and a correct negative result (-) in only 97% of the cases in which the disease is not present
Furthermore, 0.008 of the entire population have this cancer

Suppose a positive result (+) is returned...

$$
\begin{gathered}
P(\text { cancer })=0.008 \\
P(+\mid \text { cancer })=0.98 \\
P(+\mid \neg \text { cancer })=0.03 \\
P(+\mid \text { cancer })=0.992 \\
P(+\mid \neg \text { cancer }) \cdot P(\text { cancer }) \cdot P(\neg \text { cancer })=0.02 \\
\\
\left.h_{M A P}=\neg \text { cancer }\right)=0.98 \cdot 0.008=0.0 .992=0.078 \\
\text { cancer })
\end{gathered}
$$

Normalization

$$
\begin{aligned}
& P(\text { cancer } I+)=\frac{0.0078}{0.0078+0.0298}=0.20745 \\
& P(\neg \text { cancer } I+)=\frac{0.0298}{0.0078+0.0298}=0.79255
\end{aligned}
$$

- The result of Bayesian inference depends strongly on the prior probabilities, which must be available in order to apply the method

Naive Bayes Classifier

- Along with decision trees, neural networks, nearest neighbor, one of the most practical learning methods
- When to use:
- Moderate or large training set available
- Attributes that describe instances are conditionally independent given classification
- Successful applications:
- Diagnosis
- Classifying text documents

Naive Bayes Classifier

- Assume target function $f: X \rightarrow V$, where each instance x described by attributes $a_{1}, a_{2} . . a_{n}$
- Most probable value of $f(x)$ is:

$$
\begin{aligned}
v_{M A P} & =\arg \max _{v_{j} \in V} P\left(v_{j} \mid a_{1}, a_{2} \ldots a_{n}\right) \\
v_{M A P} & =\arg \max _{v_{j} \in V} \frac{P\left(a_{1}, a_{2} \ldots a_{n} \mid v_{j}\right) P\left(v_{j}\right)}{P\left(a_{1}, a_{2} \ldots a_{n}\right)} \\
& =\arg \max _{v_{j} \in V} P\left(a_{1}, a_{2} \ldots a_{n} \mid v_{j}\right) P\left(v_{j}\right)
\end{aligned}
$$

V_{NB}

- Naive Bayes assumption:

$$
P\left(a_{1}, a_{2} \ldots a_{n} \mid v_{j}\right)=\prod_{i} P\left(a_{i} \mid v_{j}\right)
$$

- which gives

$$
\text { Naive Bayes classifier: } v_{N B}=\arg \max _{v_{j} \in V} P\left(v_{j}\right) \prod_{i} P\left(a_{i} \mid v_{j}\right)
$$

Naive Bayes Algorithm

- For each target value v_{j}
- $\hat{P}\left(v_{j}\right) \leftarrow$ estimate $P\left(v_{j}\right)$
- For each attribute value a_{i} of each attribute a
- $\hat{P}\left(a_{i} \mid v_{j}\right) \leftarrow$ estimate $P\left(a_{i} \mid v_{j}\right)$

$$
v_{N B}=\arg \max _{v_{j} \in V} \hat{P}\left(v_{j}\right) \prod_{a_{i} \in x} \hat{P}\left(a_{i} \mid v_{j}\right)
$$

Training dataset

Class:

C1:buys_computer='yes' C2:buys_computer='no'

Data sample:
X =
(age<=30,
Income=medium,
Student=yes
Credit_rating=Fair)

age	income	student	credit rating	buys computer
$<=30$	high	no	fair	no
$<=30$	high	no	excellent	no
$30 \ldots 40$	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
$31 \ldots 40$	low	yes	excellent	yes
$<=30$	medium	no	fair	no
$<=30$	low	yes	fair	yes
>40	medium	yes	fair	yes
$<=30$	medium	yes	excellent	yes
$31 \ldots 40$	medium	no	excellent	yes
$31 \ldots 40$	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayesian Classifier: Example

- Compute $\mathrm{P}\left(\mathrm{X} \mid \mathrm{C}_{\mathrm{i}}\right)$ for each class

```
P(age="<30" | buys_computer="yes") = 2/9=0.222
P(age="<30" | buys_computer="no") = 3/5 =0.6
P(income="medium" | buys_computer="yes")= 4/9 =0.444
P(income="medium" | buys_computer="no") = 2/5 = 0.4
P(student="yes" | buys_computer="yes)= 6/9 =0.667
P(student="yes" | buys_computer="no")= 1/5=0.2
P(credit_rating="fair" | buys_computer="yes")=6/9=0.667
P(credit_rating="fair" | buys_computer="no")=2/5=0.4
- \(X=\) (age \(<=30\),income =medium, student=yes,credit_rating=fair)
```

```
P(X|C 1 ): P(X|buys_computer="yes")= 0.222 x 0.444 x 0.667 x 0.0.667 =0.044
```

```
P(X|C 1 ): P(X|buys_computer="yes")= 0.222 x 0.444 x 0.667 x 0.0.667 =0.044
```



```
P(X|\mp@subsup{C}{1}{})*P(\mp@subsup{\mathbf{C}}{1}{}): P(X|buys_computer="yes") * P(buys_computer="yes")=0.028
```

P(X|\mp@subsup{C}{1}{})*P(\mp@subsup{\mathbf{C}}{1}{}): P(X|buys_computer="yes") * P(buys_computer="yes")=0.028
P(X|C)*P(C)

```
P(X|C)*P(C)
```

X belongs to class "buys_computer=yes" $\quad P\left(C_{1} \mid X\right)=0.028 /(0.028+0.007)$

Sampling of a Distribution

Loop K times
$r:=0$
tosses
Loop N times
Generate a random $0 \leq x \leq 1.0$
If $x>=p$ increment $r \quad / / p$ is the probability of a head Push r onto sampling_distribution
Print sampling_distribution

Frequency ($\mathrm{K}=1000$)

Number of heads in 10 tosses

x	$P(x)$
2	$1 / 16$
3	$2 / 16$
4	$3 / 16$
5	$4 / 16$
6	$3 / 16$
7	$2 / 16$
8	$1 / 16$

- In probability and statistics, a probability mass function (PMF) is a function that gives the probability that a discrete random variable is exactly equal to some value.
- Sometimes it is also known as the discrete density function. The probability mass function is often the primary means of defining a discrete probability distribution

Gaussian Distribution

- Gaussian distribution or normal is defined by the probability

$$
p\left(x \mid \mu, \sigma^{2}\right)=\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp \left(-\frac{1}{2 \cdot \sigma^{2}} \cdot(x-\mu)^{2}\right)
$$

Probability Density Function (PDF)

$$
\begin{array}{r}
p(x \in(a, b))=\int_{a}^{b} p(x) \mathrm{d} x \\
P(z)=\int_{-\infty}^{z} p(x) \mathrm{d} x
\end{array}
$$

Cumulative distribution function (CDF)

Relative Probability

- Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.
- The Gaussian distribution or normal distribution is defined as PDF (Probability Density Function) that reflects the relative probability.
- The PDF may give a value greater than one (small standard deviation).
- It is the area under the curve that represents the probability. However, the PDF reflects the relative probability.
- Does a continuous probability distribution exist in the real world?

- Two Gaussian (normal) distribution with $\mu=0 \sigma=1$ and $\mu=0 \sigma=2 . \mu$ describes the centre of the distribution and σ the width, the bigger σ the more flat the distribution.

Precision

- Instead of inverting σ one uses precision which is often used in Bayesian software

$$
\begin{gathered}
\beta=\frac{1}{\sigma^{2}}, \quad \beta^{-1}=\sigma^{2} \\
p(x \mid \mu, \beta)=\mathcal{N}\left(x \mid \mu, \beta^{-1}\right)=\frac{\beta}{\sqrt{2 \cdot \pi}} \cdot \exp \left(-\frac{1}{2} \cdot \beta \cdot(x-\mu)^{2}\right)
\end{gathered}
$$

Normal Distribution in D dim

Over D dimensional space
$p(\mathbf{x} \mid \boldsymbol{\mu}, \Sigma)=\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \Sigma)=\frac{1}{(2 \cdot \pi)^{D / 2}} \cdot \frac{1}{|\Sigma|^{1 / 2}} \cdot \exp \left(-\frac{1}{2} \cdot(\mathbf{x}-\boldsymbol{\mu})^{T} \Sigma^{-1} \cdot(\mathbf{x}-\boldsymbol{\mu})\right)$
where

- $\boldsymbol{\mu}$ is the D dimensional mean vector
- Σ is a $D \times D$ covariance matrix
- $|\Sigma|$ is the determinant of Σ

- (a) The Gaussian distribution over 2 dimensional space with $\mu=(0,0)^{\top}$ and the covariance matrix Σ

$$
\Sigma=\left(\begin{array}{cc}
2 & 0.5 \\
0.5 & 1
\end{array}\right)
$$

- (b) Three dimensional plot of the Gaussian.

Precision

Instead of inverting Σ one uses precision matrix $\boldsymbol{\beta}$

$$
\boldsymbol{\beta}=\Sigma^{-1}
$$

$$
p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\beta})=\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\beta}^{-1}\right)=\sqrt{\frac{|\boldsymbol{\beta}|}{(2 \cdot \pi)^{D}}} \cdot \exp \left(-\frac{1}{2} \cdot(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\beta} \cdot(\mathbf{x}-\boldsymbol{\mu})\right)
$$

Laplace Distribution

- The probability distribution is

$p(x \mid \mu, b)=\operatorname{Laplace}(x \mid \mu, b)=\left(\frac{1}{2 \cdot b}\right) \exp \left(\frac{-|x-\mu|}{b}\right)$
b >0 is referred to as the diversity, is a scale parameter

Surprise

- "Dog bites man"
- No surprise
- Quite common
- not very informative
- "Man bites dog"
- Most unusual
- Seldom happens
- Worth a headline!
- Information is inversely related to probability

Information

$$
I_{i}=\log _{2}\left(u_{i}\right)=\log _{2}\left(1 / p_{i}\right)=-\log _{2}\left(p_{i}\right)
$$

Information and probability:

- Probabilities are multiplied
- Information is summed
- Use a logarithmic measure:
- I = $\log 1 / p$
- One unit of information (bit):
- Yes/No
- On/Off
- 1 Binary symbol - use Base 2:
- I = $\log _{2} 1 / p$ bits

Bit

J.W. Tukey
"After some more informal contacts during the first war years, on the initiative of mathematician Norbert
 Wiener, a number of scientists gathered in the winter of 1943-44 at a seminar, where Wiener himself tried out his ideas for describing intentional systems as based on feedback mechanisms. On the same occasion J.W. Tukey introduced the term a "bit" (binary digit) for the smallest informational unit, corresponding to the idea of a quantity of information as a quantity of yes-or-no answers."

Information Theory

- Involves the quantification of data with the goal of enabling as much data as possible to be reliably stored on a medium or communicated over a channel
- The measure of information, known as information entropy, is usually expressed by the average number of bits needed for storage or communication
- Let \boldsymbol{F} be an experiment (e.g. : two dice)
- Before we perform the experiment, we do not know what will be the results....
- We are uncertain about the outcome
- How can we measure the uncertainty
- Instead of uncertainty we use the word Entropy of the experiment

$$
0 \leq H(F) \leq \infty
$$

Entropy - Information

- Experiments starts at t_{0} and ends at t_{1}
- At t_{0} we have no information about the results of the experiment
- At t_{1} we have all information, so the Entropy of the experiment is 0
- From t_{1} to t_{0} we have wone information

Time	Entropy	Information
t_{0} (before)	$\mathrm{H}(F)$	0
t_{1} (after)	0	$H(F)$

- We can describe an experiment by probabilities
- Experiment, outcome of the flip of a honest coin
- Head or Tail, both probability 0.5 , the outcome can be either heat or tail, $p=(0.5,0.5)$
- $H(F)=H\left(p_{l}, p_{2}\right)=(0.5,0.5)$

Interpretation of $\mathrm{H}(\mathrm{F})$

- The experiment F was done
- Person A knows the outcome, person B not
- How to define H ?
- H = number of questions to A, B has to pose to know the result of the experiment
- Questions of the form yes/no

Interpretation of $\mathrm{H}(\mathrm{F})$

- Example coin, $p=(0.5,0.5)$
- We can pose the question, is it tail?
- $\mathrm{H}=1$
- Not interesting
- Example cards, $p=(1 / 2,1 / 4,1 / 4)$
- „red", „clubs", „spade"

- We can ask, is the card red, if the answer is no, we have only to ask is it spade...
- If the card is red, we need only one question, else we need two questions
- We have to speak about the mean number of questions
- $H(F)=1 / 2 * 1+1 / 4 * 2+1 / 4 * 2=1.5$
- If the card is red, we need only one question, for clubs and spade we need 2 questions...

Interpretation of $\mathrm{H}(\mathrm{F})$

- The experiment F was done
- Person A knows the outcome, person B not
- How to define H ?
- $H=$ mean number of optimal questions to A, B has to pose to know the result of the experiment
- Questions of the form yes/no
- For four cards of which one is the joker the probability of a joker is 0.25 and of other cards 1-0.25=0.75, $\quad p=(0.25,0.75)$
- In the mean we have to ask
- $1^{*} 0.25+1^{*} 0.75=1$
- questions to determine to determine if the card is a joker or not.
- Given n cards of which one is the joker the probability of a joker is $1 / n$ and of other cards is $1-1 / n$
- In the mean we have to ask

$$
1 * 1 / n+1 *(1-1 / n)
$$

questions to determine if the card is a joker or not.

- Its results in one question independent of the size of n.
- It seems some thing is missing in our definition
- Our result is correct for one independent experiment
- For several experiments the mean number of questions is lower

Real Entropy

- We define the real entropy:
- for one experiment as $H_{0}\left(F^{1}\right)$
- for two experiments as $H_{0}\left(F^{2}\right)$
- ..
- For k experiments as $H_{0}\left(F^{k}\right)$
- The mean number of question for one experiment in the sequence of k experiments is
- $1 / k{ }^{*} H_{0}\left(F^{k}\right)$

$H_{0}\left(F^{1}\right)$

- For four cards of which one is the joker the probability of a joker is 0.25 and of other cards 1-0.25=0.75
- $H_{0}\left(F^{1}\right)=1$
- $H_{0}\left(F^{1}\right)=1=1 * 0.75+1 * 0.25=1$
- $k=1,1 / k * H_{0}\left(F^{k}\right)=1 / 1 * H_{0}\left(F^{1}\right)=1$

$$
H_{0}\left(F^{2}\right)
$$

results	probability
card, card	$0.75 \cdot 0.75$
joker, card	$0.25 \cdot 0.75$
card, joker	$0.75 \cdot 0.25$
joker, joker	$0.25 \cdot 0.25$

$H_{0}\left(F^{2}\right)=1 \cdot 0.75 \cdot 0.75+2 \cdot 0.75 \cdot 0.25+3 \cdot 0.25 \cdot 0.75+3 \cdot 0.25 \cdot 0.25$

$$
H_{0}\left(F^{2}\right)=1.6875 \quad \frac{H_{0}\left(F^{2}\right)}{2}=0.84375
$$

$H_{0}\left(F^{3}\right)$

results	probability
card, card, card	$0.75 \cdot 0.75 \cdot 0.75$
card, card, joker	$0.75 \cdot 0.75 \cdot 0.25$
card, joker, card	$0.75 \cdot 0.25 \cdot 0.75$
joker. card card	$0.25 \cdot 0.75 \cdot 0.75$
joker, joker, card	$0.25 \cdot 0.25 \cdot 0.75$
joker, card, joker	$0.25 \cdot 0.75 \cdot 0.25$
card, joker, joker	$0.75 \cdot 0.25 \cdot 0.25$
joker, joker, joker	$0.25 \cdot 0.25 \cdot 0.25$

$$
\begin{gathered}
H_{0}\left(F^{3}\right)=1 \cdot 0.42188+3 \cdot 0.14062+3 \cdot 0.14062+3 \cdot 0.14062+ \\
+5 \cdot 0.046875+5 \cdot 0.046875+5 \cdot 0.046875+5 \cdot 0.015625 \\
H_{0}\left(F^{3}\right)=2.4688 \\
\frac{H_{0}\left(F^{3}\right)}{3}=0.82292
\end{gathered}
$$

H(F)
Does the sequence $h_{k}:=\frac{H_{0}\left(F^{k}\right)}{k}$, with the values $\{1,0.84375,0.82292, \ldots\}$ for $k=1,2,3, .$. have a limit for $\lim _{k \rightarrow \infty} h_{k}$?
It has. The limit is defined as

$$
H(F):=\lim _{k \rightarrow \infty} \frac{H_{0}\left(F^{k}\right)}{k} \leq H_{0}(F)
$$

- it is called the ideal entropy, it converges to

$$
H(F)=-\sum_{i} p_{i} \log _{2} p_{i}
$$

(Ideal) Entropy

- The ideal entropy indicates the minimal number of optimal questions that B must pose to know the result of the experiment on
- Suppose that A repeated the experiment an infinite number of times
- The ideal entropy is the essential information obtained by taking out the redundant information that corresponds to the ideal distribution to which the results converge

Entropy

- An experiment is described by probabilities $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$
- Does the distribution of these probabilities have an effect on the ideal entropy?
- It turns out that the ideal entropy is maximal in the case all probabilities are equal, means $p=(1 / n, 1 / n \ldots, 1 / n)$
- In this case the maximal ideal Entropy is

$$
H(F)=-\sum_{i} p_{i} \log _{2} p_{i}=-\log _{2} 1 / n=\log _{2} n
$$

$\mathrm{n}=2$

Entropy

- Coding theory: x discrete with 8 possible states; how many bits to transmit the state of x ?
- All states equally likely

$$
\mathrm{H}[x]=-8 \times \frac{1}{8} \log _{2} \frac{1}{8}=3 \text { bits. }
$$

Entropy

$$
\begin{aligned}
& \mathrm{H}[x]=-\frac{1}{2} \log _{2} \frac{1}{2}-\frac{1}{4} \log _{2} \frac{1}{4}-\frac{1}{8} \log _{2} \frac{1}{8}-\frac{1}{16} \log _{2} \frac{1}{16}-\frac{4}{64} \log _{2} \frac{1}{64} \\
& =2 \mathrm{bits} \\
& \text { average code length }=\frac{1}{2} \times 1+\frac{1}{4} \times 2+\frac{1}{8} \times 3+\frac{1}{16} \times 4+4 \times \frac{1}{64} \times 6 \\
& =2 \mathrm{bits}
\end{aligned}
$$

Frequência de uso das letras na língua portuguesa

Polish letters frequencies

- The relationship between $\log _{2}$ and any other base b involves multiplication by a constant,

$$
\begin{gathered}
\log _{2} x=\frac{\log _{b} x}{\log _{b} 2}=\frac{\log _{10} x}{\log _{10} 2} \\
H=-\frac{1}{\log _{10} 2} \cdot \sum_{i}^{n} p\left(m_{i}\right) \cdot \log _{10} p\left(m_{i}\right) \cdot=-\sum_{i}^{n} p\left(m_{i}\right) \cdot \log _{2} p\left(m_{i}\right)
\end{gathered}
$$

nat

$$
H=-\sum_{i} p\left(x_{i}\right) \ln p\left(x_{i}\right)=-\sum_{i} p\left(x_{i}\right) \log p\left(x_{i}\right)
$$

- Instead of measuring the information in bits, yes no questions, it measure the information in nepit (nat), it is the power of the Euler's number $e=2.7182818$... (sometimes also called Napier's constant).

Conditional Entropy

- Quantifies the amount of information needed to describe the outcome of a random variable Y given that the value of another random variable X is known

$$
H(Y \mid X)=-\sum_{x \in X, y \in Y} p(x, y) \log \left(\frac{p(x, y)}{p(x)}\right)
$$

Mutual Information

- Mutual information measures the information that X and Y share
- How much knowing one of these variables reduces uncertainty about the other

$$
I(X, Y)=-\sum_{y \in Y} \sum_{x \in X} p(x, y) \log \left(\frac{p(x) \cdot p(y)}{p(x, y)}\right)
$$

- For example, if X and Y are independent, then knowing X does not give any information about Y and their mutual information is zero.

Relative Entropy

- Kullback-Leibler divergence (also called relative entropy) is a measure of how one probability distribution is different from a second
- For discrete probability distributions p and q defined on the same probability space, the Kullback-Leibler divergence between p and q is defined as

$$
\begin{gathered}
K L(p \| q)=-\sum_{x \in X} p(x) \log q(x)-\left(-\sum_{x \in X} p(x) \log p(x)\right) \\
K L(p \| q)=-\sum_{x \in X} p(x) \log \left(\frac{q(x)}{p(x)}\right)
\end{gathered}
$$

- Example Consider some unknown distribution $p(x)$
- Suppose that we have modelled this using an approximating distribution $q(x)$
- If we use $q(x)$ to construct a coding scheme for the purpose of transmitting values of x to a receiver, then the average additional amount of information required to specify the value of x as a result of using $q(x)$ is $K L(p \mid / q)$

$$
K L(p \| q)=-\sum_{x \in X} p(x) \log q(x)-\left(-\sum_{x \in X} p(x) \log p(x)\right)
$$

Cross Entropy

- For discrete probability distributions p and q defined on the same probability space, the cross entropy between p and q is defined as

$$
H(p, q)=-\sum_{x \in X} p(x) \log q(x)
$$

$$
H(p, q)=H(p)-K L(p \| q)
$$

In machine learning with the true distribution Y :

- is either a binary value y_{k} for each data element y_{k} of the dataset

$$
\begin{gathered}
H(Y, O)=-\sum_{k=1}^{N}\left(y_{k} \cdot \log o+\left(1-y_{k}\right) \cdot \log (1-o)\right) \\
H(Y, O)=-\sum_{k=1}^{N}\left(y_{k} \cdot \log o+\neg y_{k} \cdot \log \neg o\right)
\end{gathered}
$$

and the estimated distribution is $O=(o, \neg o)$ does not need to be binary with $1=o+\neg o$.

- or a 1-of- K representation for \mathbf{y}_{k} vector of the dataset

$$
H(Y, O)=-\sum_{k=1}^{N} \sum_{t=1}^{K} y_{k t} \cdot \log o_{k t}
$$

and the estimated distribution does not need to be binary with the requirement $1=\sum_{t=1}^{K} o_{k t}$.

- The distribution $\mathrm{H}(\mathrm{Y}, \mathrm{O})$ defines a loss function measured

$$
L(y, o)=H(Y, O)
$$

- which is not a distance function since it is not symmetric and is only defined over probability distributions.
- Loss function indicates a cost function, it is equivalent to the name error function of energy function in other domains

The loss function that is based on cross entropy is much more steep the a possible loss or error function that is based on quadratic loss that is based on squared Euclidean distance

- What about the vector space?
- What the Curse of Dimensionality?
- How to find a minimum of a function?

Literature

- Christopher M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), Springer 2006
- Section 1.2, 1.6, 2.3

Literature

- Machine Learning - A Journey to Deep Learning, A. Wichert, Luis Sa-Couto, World Scientific, 2021
- Chapter 2

