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• A key concept in the field in machine learning is that of uncertainty 
• Through noise on measurements
• Through the finite size of data sets 

• Probability theory provides a consistent framework for the 
quantification and manipulation of uncertainty 
• Forms one of the central foundations for pattern recognition. 



Kolmogorov’s Axioms of Probability (1933)

• To each sentence a, a numerical degree of belief between 0 and 
1 is assigned 

0 ≤ p(a) ≤ 1 
p(true)=1,  p(false)=0

• The probability of disjunction is given by



Where do these numerical degrees of belief 
come from? 
• Humans can believe in a subjective viewpoint from experience. This 

approach is called Bayesian
• For a finite sample we can estimate the true fraction. We count the 

frequency of an event in a sample. We do not know the true value 
because we cannot access the whole population of events. This 
approach is called frequentist
• From the true nature of the universe, for example, for a fair coin, the 

probability of heads is 0.5. This approach is related to the Platonic 
world of ideas. However, we can never verify whether a fair coin 
exists 



• From the frequentist approach, one can determine the probability of 
an event a by counting 
• If Ω is the set of all possible events, p(Ω) = 1, then a ∈ Ω. 
• card(Ω) is the number of elements of the set Ω, card(a) is the number 

of elements of the set a and 



• Now we can define the posterior probability, the probability of a after the 
evidence b is obtained

• using

• we get



Bayes’ Rule

• The Bayes' rule follows from both equations 



Law of Total Probability 

• For mutually exclusive events b1, ..., bn with 

• the law of total probability is represented by 



The Rules of Probability

Sum Rule

Product Rule



Bayes’ rule 

• Bayes rule can be used to determine the prior total probability p(hη) of hypothesis 
hη to given data D. 

• For example, what is the probability that some illness is present?

• p(D|hη) is the probability that a hypothesis hη generates the data D
• can be easily estimated 
• For example, what is the probability that some illness generates some symptoms? 

• The probability that an illness is present given certain symptoms, can be then determined by 
the Bayes rule 



Maximum a Posteriori (MAP) Hypothesis

• The most probable hypothesis hη out of a set of possible hypothesis 
h1, h2, · · · given some present data is according to the Bayes rule 
• To determine the maximum a posteriori hypothesis hMAP we maximize 

• The maximisation is independent of p(D), it follows 

posterior ∝ likelihood × prior 



Maximum Likelihood (ML) Hypothesis

• If assume p(hη) = p(hγ) for all hη and hγ, then can further simplify, and 
choose the maximum likelihood (ML) hypothesis 



Bayesian Learning

• p(D|w) is evaluated on the observed data set D and is called 
likelihood function.
It indicates how probable the observed data set is for different 
settings of w. 
• Given likelihood we can state:  posterior ∝ likelihood × prior 
• According to linear relation



Example

• Does patient have cancer or not?

A patient takes a lab test and the result comes back positive.  The test 
returns a correct positive result (+) in only 98% of the cases in which 
the disease is actually present, and a correct negative result (-) in only 
97% of the cases in which the disease is not present

Furthermore, 0.008 of the entire population have this cancer



Suppose a positive result (+) is returned...



Normalization

• The result of Bayesian inference depends strongly on the prior 
probabilities, which must be available in order to apply the method

€ 

P(cancer |+) =
0.0078

0.0078 + 0.0298
= 0.20745

€ 

P(¬cancer | +) =
0.0298

0.0078 + 0.0298
=  0.79255



Naive Bayes Classifier

• Along with decision trees, neural networks, nearest neighbor, one of 
the most practical learning methods

• When to use:
• Moderate or large training set available
• Attributes that describe instances are conditionally independent given 

classification 

• Successful applications:
• Diagnosis
• Classifying text documents



Naive Bayes Classifier

• Assume target function f: X è V, where each instance x described by 
attributes a1, a2 .. an

• Most probable value of f(x) is:



vNB

• Naive Bayes assumption:

• which gives 



Naive Bayes Algorithm     

• For each target value vj
• ç estimate P(vj)
• For each attribute value ai of each attribute a
• ç estimate P(ai|vj)



Training dataset

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
30…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

Class:
C1:buys_computer=‘yes’
C2:buys_computer=‘no’

Data sample:

X =
(age<=30,
Income=medium,
Student=yes
Credit_rating=Fair)



Naïve Bayesian Classifier:  Example
• Compute P(X|Ci) for each class

P(age=“<30” | buys_computer=“yes”)  = 2/9=0.222
P(age=“<30” | buys_computer=“no”) = 3/5 =0.6
P(income=“medium” | buys_computer=“yes”)= 4/9 =0.444
P(income=“medium” | buys_computer=“no”) = 2/5 = 0.4
P(student=“yes” | buys_computer=“yes)= 6/9 =0.667
P(student=“yes” | buys_computer=“no”)= 1/5=0.2
P(credit_rating=“fair” | buys_computer=“yes”)=6/9=0.667
P(credit_rating=“fair” | buys_computer=“no”)=2/5=0.4

• X=(age<=30 ,income =medium, student=yes,credit_rating=fair)

P(X|C1) : P(X|buys_computer=“yes”)= 0.222 x 0.444 x 0.667 x 0.0.667 =0.044
P(X|C2) : P(X|buys_computer=“no”)= 0.6 x 0.4 x 0.2 x 0.4 =0.019

P(X|C1)*P(C1) : P(X|buys_computer=“yes”) * P(buys_computer=“yes”)=0.028
P(X|C2)*P(C2) :   P(X|buys_computer=“no”) * P(buys_computer=“no”)=0.007

X belongs to  class “buys_computer=yes”       P(C1 |X) =0.028/(0.028+0.007)

P(buys_computer=„yes“)=9/14

P(buys_computer=„no“)=5/14



Sampling of a Distribution 

10
20
30
40
50
60
70

0 1 2 3 4 5 6 7 8 9 10

Number of heads in 10 tosses

Frequency (K = 1000)

Loop K times
r := 0 // r is num.heads in N 
tosses
Loop N times // simulate the tosses

Generate a random 0 ≤ x ≤ 1.0
If x >= p increment r // p is the probability of a head

Push r onto sampling_distribution
Print sampling_distribution



• In probability and statistics, a probability mass function (PMF) is a 
function that gives the probability that a discrete random variable is 
exactly equal to some value.

• Sometimes it is also known as the discrete density function. The 
probability mass function is often the primary means of defining a 
discrete probability distribution



Gaussian Distribution 

• Gaussian distribution or normal is defined by the probability

•



Probability Density Function (PDF)

Cumulative distribution function (CDF)



Relative Probability

• Gaussian distribution is a type of continuous probability distribution 
for a real-valued random variable.
• The Gaussian distribution or normal distribution is defined as PDF 

(Probability Density Function) that reflects the relative probability.
• The PDF may give a value greater than one (small standard 

deviation). 
• It is the area under the curve that represents the probability. 

However, the PDF reflects the relative probability.

• Does a continuous probability distribution exist in the real world?



• Two Gaussian (normal) distribution with μ = 0 σ = 1 and μ = 0 σ = 2. μ 
describes the centre of the distribution and σ the width, the bigger σ 
the more flat the distribution. 



Precision

• Instead of inverting σ one uses precision which is often used in 
Bayesian software



Normal Distribution in D dim



• (a) The Gaussian distribution over 2 dimensional space with μ = (0, 0)T and
the covariance matrix Σ 

• (b) Three dimensional plot of the Gaussian. 



Precision



Laplace Distribution 

• The probability distribution is

b > 0 is referred to as the diversity, is a scale parameter



Surprise

• “Dog bites man”
• No surprise
• Quite common
• not very informative

• “Man bites dog”
• Most unusual
• Seldom happens
• Worth a headline!

• Information is inversely related to probability



Information



Information and probability:

• Probabilities are multiplied
• Information is summed
• Use a logarithmic measure:
• I = log 1/p

• One unit of information (bit):
• Yes/No
• On/Off

• 1 Binary symbol – use Base 2:
• I = log2 1/p bits



Bit



Information Theory

• Involves the quantification of data with the goal of enabling as much 
data as possible to be reliably stored on a medium or communicated 
over a channel
• The measure of information, known as information entropy, is usually 

expressed by the average number of bits needed for storage or 
communication



• Let  F be an experiment (e.g. : two dice)
• Before we perform the experiment, we do not know what will be the 

results....
• We are uncertain about the outcome

• How can we measure the uncertainty
• Instead of uncertainty we use the word Entropy of the experiment



Entropy - Information

• Experiments starts at t0 and ends at t1
• At t0 we have no information about the results of the experiment
• At t1 we have all information, so the Entropy of the experiment is 0
• From t1 to t0 we have wone information

Time Entropy Information

t0 (before) H(F) 0

t1 (after) 0 H(F)



• We can describe an experiment by probabilities
• Experiment, outcome of the flip of a honest coin
• Head or Tail, both probability 0.5, the outcome can be either heat or 

tail, p=(0.5,0.5) 

• H(F)=H(p1,p2)=(0.5,0.5)



Interpretation of H(F)

• The experiment F was done
• Person A knows the outcome, person B not
• How to define H?
• H = number of questions to A, B has to pose to know the result of the 

experiment
• Questions of the form yes/no



Interpretation of H(F)

• Example coin, p=(0.5,0.5) 
• We can pose the question, is it tail?
• H=1

• Not interesting



• Example cards, p=(1/2,1/4,1/4)
• „red“, „clubs“, „spade“



• We can ask, is the card red, if the answer is no, we have only to ask is 
it spade...
• If the card is red, we need only one question, else we need two 

questions
• We have to speak about the mean number of questions

• H(F)=1/2*1+1/4*2+1/4*2=1.5

• If the card is red, we need only one question, for clubs and spade we need 2 
questions...



Interpretation of H(F)

• The experiment F was done
• Person A knows the outcome, person B not
• How to define H?
• H = mean number of optimal questions to A, B has to pose to know 

the result of the experiment
• Questions of the form yes/no



• For four cards of which one is the joker the probability of a joker is 
0.25 and of other cards 1-0.25=0.75,   p=(0.25,0.75)
• In the mean we have to ask 
• 1*0.25 + 1*0.75=1  
• questions to determine  to determine if the card is a joker or not. 



• Given n cards  of which one is the joker the probability of a joker is 
1/n and of other cards  is 1-1/n
• In the mean we have to ask

1 * 1/n + 1 * (1 -1/n) 
questions to determine if the card is a joker or not.

• Its results in one question independent of the size of n.  



• It seems some thing is missing in our definition
• Our result is correct for  one independent experiment
• For several experiments the mean number of questions is lower



Real Entropy

• We define the real entropy: 

• for one experiment as H0(F1)
• for two experiments as H0(F2)
• ..
• For k experiments as H0(Fk)

• The mean number of question for one experiment in the sequence of k
experiments is 

• 1/k *H0(Fk)



H0(F1)

• For four cards of which one is the joker the probability of a joker is 
0.25 and of other cards 1-0.25=0.75

• H0(F1)=1
• H0(F1)=1= 1*0.75 + 1*0.25=1  
• k=1, 1/k *H0(Fk)=1/1*H0(F1)=1



H0(F2)



H0(F3)





H(F)

• it is called the ideal entropy, it converges to 



(Ideal) Entropy

• The ideal entropy indicates the minimal number of optimal questions 
that B must pose to know the result of the experiment on 
• Suppose that A repeated the experiment an infinite number of times
• The ideal entropy is the essential information obtained by taking out 

the redundant information that corresponds to the ideal distribution 
to which the results converge 



Entropy



• An experiment is described by probabilities p=(p1,p2,...,pn)
• Does the distribution of these probabilities have an effect on the 

ideal entropy? 
• It turns out that the ideal  entropy is maximal in the case all 

probabilities are equal, means p=(1/n,1/n...,1/n)
• In this case  the maximal ideal Entropy is



n=2



Entropy

• Coding theory: x discrete with 8 possible states; how many bits to transmit the 
state of x?

• All states equally likely



Entropy



Frequência de uso das letras na língua
portuguesa



Polish letters frequencies



• The relationship between log2 and any other base b involves 
multiplication by a constant, 



nat

• Instead of measuring the information in bits,  yes no questions, it 
measure the information in nepit (nat), it is the power of the Euler's 
number e=2.7182818… (sometimes also called Napier's constant). 



Conditional Entropy 

• Quantifies the amount of information needed to describe the 
outcome of a random variable Y given that the value of another 
random variable X is known



Mutual Information 

• Mutual information measures the information that X and Y share

• How much knowing one of these variables reduces uncertainty about 
the other 

• For example, if X and Y are independent, then knowing X does not 
give any information about Y and their mutual information is zero. 



Relative Entropy 

• Kullback-Leibler divergence (also called relative entropy) is a measure 
of how one probability distribution is different from a second 
• For discrete probability distributions p and q defined on the same 

probability space, the Kullback-Leibler divergence between p and q is 
defined as 



• Example Consider some unknown distribution p(x)
• Suppose that we have modelled this using an approximating 

distribution q(x)
• If we use q(x) to construct a coding scheme for the purpose of 

transmitting values of x to a receiver, then the average additional 
amount of information required to specify the value of x as a result of 
using q(x) is KL(p||q)



Cross Entropy

• For discrete probability distributions p and q defined on the same 
probability space, the cross entropy between p and q is defined as



In machine learning with the true distribution Y : 



• The distribution H(Y,O) defines a loss function measured

L(y, o) = H(Y, O)

• which is not a distance function since it is not symmetric and is only
defined over probability distributions. 

• Loss function indicates a cost function,  it is equivalent to the name
error function of energy function in other domains



The loss function that is based on cross entropy is much more
steep the a possible loss or error function that is based on 
quadratic loss that is based on squared Euclidean distance



• What about the vector space?

• What the Curse of Dimensionality?

• How to find a minimum of a function?



Literature

• Christopher M. Bishop, Pattern Recognition and Machine 
Learning (Information Science and Statistics), Springer 
2006
• Section 1.2, 1.6, 2.3



Literature

• Machine Learning - A Journey to Deep Learning, A. 
Wichert, Luis Sa-Couto, World Scientific, 2021
• Chapter 2


