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* A key concept in the field in machine learning is that of uncertainty
* Through noise on measurements
* Through the finite size of data sets

* Probability theory provides a consistent framework for the
guantification and manipulation of uncertainty

* Forms one of the central foundations for pattern recognition.



Kolmogorov’s Axioms of Probability (1933)

* To each sentence a, a numerical degree of belief between 0 and
1 is assigned

O<p(a)<1
p(true)=1, p(false)=0

* The probability of disjunction is given by

p(aVb) = p(a) + p(b) — pla A D)



Where do these numerical degrees of belief
come from?

* Humans can believe in a subjective viewpoint from experience. This
approach is called Bayesian

* For a finite sample we can estimate the true fraction. We count the
frequency of an event in a sample. We do not know the true value
because we cannot access the whole population of events. This
approach is called frequentist

* From the true nature of the universe, for example, for a fair coin, the
probability of heads is 0.5. This approach is related to the Platonic
world of ideas. However, we can never verify whether a fair coin
exists



* From the frequentist approach, one can determine the probability of
an event a by counting

 If Qis the set of all possible events, p(Q) =1, then a €Q.

e card(Q) is the number of elements of the set Q, card(a) is the number
of elements of the set a and

_ card(a)
pla) = card(S2)
pla Ab) = card(a A\ b)

card(2)



* Now we can define the posterior probability, the probability of a after the
evidence b is obtained

~ card(a Ab)
| plalp) = card(b)
* using
plant) = Cﬁag(g)b)
* we get
~ planbd) h :p(a/\b)
p(a’b) o p(b) p< ’CL) p(&)



Bayes’ Rule

p(alb) = p(bla) =

* The Bayes' rule follows from both equations

p(alb) - p(b)
p(a)

p(bla) =




Law of Total Probability

* For mutually exclusive events b, ..., b, with
Zp(bz) =1
1=1

* the law of total probability is represented by
pla) =Y pla) Ap(bi) =) pla,b;)
1=1 1=1

n

pla) = Zp(a\bi) - p(bi)

1=1



The Rules of Probability

Sum Rule p(X) =) p(X,Y)

Product Rule p(X,Y) =p(Y|X)p(X)




Bayes’ rule

* Bayes rule can be used to determine the prior total probability p(h,) of hypothesis
h, to given data D.

* For example, what is the probability that some illness is present?

p(D|h,,,) -p(h/,,)
p(D) ‘

* p(D[h,)is the probability that a hypothesis h, generates the data D
* can be easily estimated
* For example, what is the probability that some illness generates some symptoms?

p(h,,,|D) =

* The probability that an illness is present given certain symptoms, can be then determined by
the Bayes rule



Maximum a Posteriori (MAP) Hypothesis

* The most probable hypothesis h, out of a set of possible hypothesis
h, h, ---given some present data is according to the Bayes rule

* To determine the maximum a posteriori hypothesis h,,,, we maximize

Dlh,) - p(h
h]\[AP — arg max p( ‘ 7}) p( f})
o p(D)
* The maximisation is independent of p(D), it follows

harap = arg maxp(D h'r)) ' p(h'r))

hy)

posterior olikelihood x prior



Maximum Likelihood (ML) Hypothesis

* If assume p(h,) = p(h ) for all h, and h,, then can further simplify, and
choose the maximum likelihood (ML) hypothesis

har, = argmax p(D|h,)

hy)



Bayesian Learning

p(D|w) - p(w)
p(D)

* p(D[w) is evaluated on the observed data set D and is called
likelihood function.
It indicates how probable the observed data set is for different
settings of w.

p(w|D) =

* Given likelihood we can state: posterior « likelihood x prior
* According to linear relation



Example

* Does patient have cancer or not?

A patient takes a lab test and the result comes back positive. The test
returns a correct positive result (+) in only 98% of the cases in which
the disease is actually present, and a correct negative result (-) in only
97% of the cases in which the disease is not present

Furthermore, 0.008 of the entire population have this cancer



Suppose a positive result (+) is returned...

P(cancer) = 0.008 P(—cancer) = 0.992
P(+|cancer) = 0.98 P(—|cancer) = 0.02

P(+

P(+
P(+

—cancer) = 0.03 P(—|—cancer) =0.97

cancer) - P(cancer) = 0.98 -0.008 = 0.0078
—cancer) - P(—cancer) = 0.03-0.992 = 0.0298

hyap = —cancer



Normalization

P(cancer | +) = 0.0078 =0.20745
0.0078 + 0.0298
P(=cancer|+) = 0.0298 = 0.79255
0.0078 + 0.0298

* The result of Bayesian inference depends strongly on the prior
probabilities, which must be available in order to apply the method



Naive Bayes Classifier

» Along with decision trees, neural networks, nearest neighbor, one of
the most practical learning methods

* When to use:
* Moderate or large training set available
 Attributes that describe instances are conditionally independent given

classification
 Successful applications:
* Diagnosis
* Classifying text documents



Naive Bayes Classifier

* Assume target function f: X = V, where each instance x described by
attributes a,, a, .. a,

* Most probable value of f(x) is:

vpap = argmax P(vjlay,az. . .ay)
\-’_/EV

P(al,az x -anlvj)P(Vi)
ViAp = arg max |
MAP =S8NV T Plav,as...ay)

— argmaxP(al,az . .a,.,|v,-)P(vj)
v;eV ‘



VB

* Naive Bayes assumption:

P(al,a?_---anlvj) :l—IP(ai|Vj)

* which gives

Naive Bayes classifier: vyp = argmax P(v;) nP(ai|Vj)
1

\f‘jE V



Naive Bayes Algorithm

* For each target value v,

+ P(v;) € estimate P(v)

* For each attribute value g, of each attribute a
e P(aj]v;) € estimate P(a;|v))

VNB = dromde (v; nP a|v;)
vieV a;,ex



Training dataset

income |student| credit ratin buys computer

Class:
C1:buys_computer='yes’
C2:buys_computer='no’

Data sample:

X =

(age<=30,
Income=medium,
Student=yes
Credit_rating=Fair)



Naive Bayesian Classifier: Example

* Compute P(X|C) for each class

P(age="<30" | buys_computer=“yes”) =2/9=0.222 P(buys_computer=,,yes“)=9/14
P(age="<30" | buys_computer=“no”) = 3/5 =0.6 P(buys_computer=,,no“)=5/14
P(income="“medium” | buys_computer=“yes”)= 4/9 =0.444

P(income=“medium” | buys_computer=“no”) =2/5=0.4

P(student="yes” | buys_computer="yes)= 6/9 =0.667

P(student="yes” | buys_computer=“no”)=1/5=0.2

P(credit_rating="fair” | buys_computer="“yes”)=6/9=0.667

P(credit_rating="fair” | buys_computer=“no”)=2/5=0.4

* X=(age<=30,income =medium, student=yes,credit_rating=fair)

P(X]|C,): P(X|buys_computer="yes”)=0.222 x 0.444 x 0.667 x 0.0.667 =0.044
P(X|C,) : P(X|buys_computer=“no”)= 0.6 x 0.4 x 0.2 x 0.4 =0.019
P(X]|C.)*P(C,) : P(X|buys_computer="yes”) * P(buys_computer="yes”)=0.028
P(X]|C,)*P(C,) : P(X|buys_computer="“no”) * P(buys_computer=“no”)=0.007

X belongs to class “buys_computer=yes”  P(C, |X) =0.028/(0.028+0.007)



Sampling of a Distribution

Frequency
70
_ 60
Loop K times 59 ]
r:=0 // ris num.heads in N 40
tosses 30~
Loop N times // simulate the tosses >0 —
Generate arandom0<x<1.0 ]

If x>=pincrement r // p is the probability of a head 10

Push r onto sampling_distribution
Print sampling_distribution

(K = 1000

)
o H‘lh
(1 10 17 171 1 1 T 1

© 1 23 4 56 7 8 910

Number of heads in 10 tosses
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* In probability and statistics, a probability mass function (PMF) is a
function that gives the probability that a discrete random variable is
exactly equal to some value.

* Sometimes it is also known as the discrete density function. The
probability mass function is often the primary means of defining a
discrete probability distribution



Gaussian Distribution

* Gaussian distribution or normal is defined by the probability

i i 1 1 ¢
v K pr— Tl - pr— - e — \r — U -
p(x|p, 0%) = N(x|p, o) o exp ( e (x — p) )

N(z|p, %)

oo
[t is the mean / N (a:\,u, 02) dr =1
—00

o 1s the standard deviation

o2 is the variance N (x| 02) <0
9




Probability Density Function (PDF)

4

P(z) = /_ ; p(z) da

Cumulative distribution function (CDF)

ox T



Relative Probability

e Gaussian distribution is a type of continuous probability distribution
for a real-valued random variable.

* The Gaussian distribution or normal distribution is defined as PDF
(Probability Density Function) that reflects the relative probability.

* The PDF may give a value greater than one (small standard
deviation).

* It is the area under the curve that represents the probability.
However, the PDF reflects the relative probability.

* Does a continuous probability distribution exist in the real world?



* Two Gaussian (normal) distribution withp=0oc=1andu=00=2. u
describes the centre of the distribution and o the width, the bigger o
the more flat the distribution.



Precision

* Instead of inverting o one uses precision which is often used in
Bayesian software




Normal Distribution in D dim

Over D dimensional space

1 1 1
p(x|p,X) = N(x|p, X) = 2 7)o o P (—5 (x—p)'ET (x - u))

where

) : : &
e p is the D dimensional mean vector 22
e Y is a D x D covariance matrix

e || is the determinant of X




() (b)

* (a) The Gaussian distribution over 2 dimensional space with p = (0, 0)" and
the covariance matrix 2
s_( 2 05
-\ 05 1 '

* (b) Three dimensional plot of the Gaussian.



Precision

Instead of inverting > one uses precision matrix 3

g=x"

plxin B) = N 7) = [ P e (<5 (= )78 (x - ) )



1=0, b= ——
H=0, b=2 =—
Laplace Distribution D —
0.3 -
* The probability distribution is 02|
0.1
0 4/| ———

10 8 6 4 2 0 2 4 6 8

1 |y —
p(x|p,b) = Laplace(x|p, b) = (2—b> exp ( | ; ,U|>

b > 0is referred to as the diversity, is a scale parameter



surprise

* “Dog bites man”
* No surprise
* Quite common
* not very informative

* “Man bites dog”
* Most unusual
* Seldom happens
e Worth a headline!

* Information is inversely related to probability



Information

>

/1 1d
’ log,

[;=log,(u)=log,(1/p)=-log,(p)



Information and probability:

* Probabilities are multiplied

* Information is summed
* Use a logarithmic measure:

* I=log 1/p

* One unit of information (bit):
* Yes/No
* On/Off

e 1 Binary symbol — use Base 2:
* 1 =log, 1/p bits



Hte-0 L, 1945

J W TUKEY

Bit

J.W. Tukey
"After some more informal contacts during the first

war years, on the initiative of mathematician Norbert
Wiener, a number of scientists gathered in the
winter of 1943-44 at a seminar, where Wiener
himself tried out his ideas for describing intentional
systems as based on feedback mechanisms. On the
same occasion J.W. Tukey infroduced the term a
"bit" (binary digit) for the smallest informational unit,
corresponding to the idea of a quantity of
information as a quantity of yes-or-no answers."




Information Theory

* Involves the quantification of data with the goal of enabling as much
data as possible to be reliably stored on a medium or communicated
over a channel

* The measure of information, known as information entropy, is usually
expressed by the average number of bits needed for storage or
communication



* Let Fbe an experiment (e.qg. : two dice)

* Before we perform the experiment, we do not know what will be the
results....

* We are uncertain about the outcome
* How can we measure the uncertainty
* Instead of uncertainty we use the word Entropy of the experiment

O< H(F)= oo



Entropy - Information

* Experiments starts at t, and ends at t,

* At t, we have no information about the results of the experiment

* At t; we have all information, so the Entropy of the experimentis O
* From t; to t, we have wone information

Time Entropy Information

t, (before) H(F) 0

t, (after) 0 H(F)




* We can describe an experiment by probabilities
* Experiment, outcome of the flip of a honest coin

* Head or Tail, both probability 0.5, the outcome can be either heat or
tail, p=(0.5,0.5)

* H(F)=H(p;p,)=(0.5,0.5)



Interpretation of H(F)

* The experiment F was done
* Person A knows the outcome, person B not
* How to define H?

* H=number of questions to A, B has to pose to know the result of the
experiment

e Questions of the form yes/no



Interpretation of H(F)

* Example coin, p=(0.5,0.5)
* We can pose the question, is it tail?
e H=1

* Not interesting



* Example cards, p=(1/2,1/4,1/4)
e ,red” ,clubs ,spade”

Reihe der akzeptxerten Karten >
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* We can ask, is the card red, if the answer is no, we have only to ask is
it spade...

* If the card is red, we need only one question, else we need two
guestions

* We have to speak about the mean number of questions

« H(F)=1/2%1+1/4*2+1/4*2=1.5

* If the card is red, we need only one question, for clubs and spade we need 2
guestions...



Interpretation of H(F)

* The experiment F was done
* Person A knows the outcome, person B not
* How to define H?

* H=mean number of optimal questions to A, B has to pose to know
the result of the experiment

e Questions of the form yes/no



* For four cards of which one is the joker the probability of a joker is
0.25 and of other cards 1-0.25=0.75, p=(0.25,0.75)

* In the mean we have to ask
e 1%0.25 + 1*0.75=1
e questions to determine to determine if the card is a joker or not.



* Given n cards of which one is the joker the probability of a joker is
1/n and of other cards is 1-1/n

* In the mean we have to ask
1*1/n+1%*(1-1/n)
questions to determine if the card is a joker or not.
* Its results in one question independent of the size of n.



* It seems some thing is missing in our definition
* Our result is correct for one independent experiment
* For several experiments the mean number of questions is lower



Real Entropy

* We define the real entropy:

» for one experiment as Hy(F?)
for two experiments as Hy(F?)

For k experiments as Hy(F¥)

* The mean number of question for one experiment in the sequence of k
experiments is

o 1/k *Hy(F¥)



H,(F)

* For four cards of which one is the joker the probability of a joker is
0.25 and of other cards 1-0.25=0.75

Joker?
o H 0(/:1 )=1 A\
« Hy(F!)=1=1*0.75 + 1*0.25=1 / 0\
* k * 1 No / \ Yes
* k=1, 1/k *H,(F*)=1/1*H,(F')=1 \

\
\

0=0.75 0=0.25



Ho(F?)

results probability
card, card 0.75-0.75
joker, card 0.25-0.75
card, joker 0.75-0.25
joker, joker | 0.25-0.25

Card, Card?

Yes No

p=0.75*0.75 Card, Joker?

Yes &)

p=0.75%0.25 Joker, Card?

Yes No

p=0.25%0.75 p=0.25%0.25

Hy(F?)=1-0.75-0.754+2-0.75-0.25+3-0.25-0.75 + 3 - 0.25 - 0.25

Hy(F?) = 1.6875

Hy(F?)

= 0.84375
2




results probability

card, card, card 0.75-0.75-0.75
/—/ (F3) card, card, joker 0.75-0.75-0.25

0 card, joker, card 0.75-0.25-0.75
joker. card card 0.25-0.75-0.75
joker, joker, card | 0.25-0.25-0.75
joker, card, joker | 0.25-0.75-0.25
card, joker, joker | 0.75-0.25-0.25
joker, joker, joker | 0.25-0.25-0.25

Ho(F?) =1-0.42188 4+ 3-0.14062 + 3 - 0.14062 + 3 - 0.14062+
+5 - 0.046875 + 5 - 0.046875 + 5 - 0.046875 + 5 - 0.015625
Hy(F?) = 2.4688

Ho(F?) _ 0.82292




Card, Card, Card?
/e(\No\
p=0.75*0.75*.75 Card, Card, Joker OR Card, Joker, Card?
Ye No
Card, Card, Joker? Joker, Card, Card?
p=0.75%*0.75*0.25 p=0.75%*0.25*0.75 p=0.25*0.75*0.75 Joker, Joker, Card OR Joker, Card, Joker?
e
Joker, Joker, Card? Card, Joker, Joker?

p=0.25%0.25%*0.75 p=0.25%0.75*0.25 p=0.75%0.25%0.25 p=0.25*0.25*0.25



H(F)

Does the sequence hj = %Fk), with the values {1,0.84375,0.82292, ...}
for k =1,2,3,.. have a limit for lim_,~, hz?
It has. The limit is defined as

Hy(F*
) = Jim S

< Hy(F)

* it is called the ideal entropy, it converges to

H(F) = —sz’ logy pi-



(Ideal) Entropy

* The ideal entropy indicates the minimal number of optimal questions
that B must pose to know the result of the experiment on

* Suppose that A repeated the experiment an infinite number of times

* The ideal entropy is the essential information obtained by taking out
the redundant information that corresponds to the ideal distribution
to which the results converge



Entropy
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* An experiment is described by probabilities p=(p,,p,,...,p,)

* Does the distribution of these probabilities have an effect on the
ideal entropy?

* It turns out that the ideal entropy is maximal in the case all
probabilities are equal, means p=(1/n,1/n...,1/n)

* In this case the maximal ideal Entropy is

H(F) = — Zp,; logy pi = —logy 1/n = logyn



N

1,0
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Entropy

* Coding theory: x discrete with 8 possible states; how many bits to transmit the
state of x?

 All states equally likely

1 1
Hlz] = -8 x 3 log, 3= 3 bits.



T | a b C d e f g h
1 1 1 1 1 1 1 1
p() | 3 7 % 16 o o 61 6
code o 10 110 1110 111100 111101 111110 111111
1 1 1 1 1 1 1 1 4 1
Hjz] = —-log,~— ~log,~ — —log, = — — log, — — — log, —
2] 9 0829 T B2y T 9982 g T 1698275 T g 9525y
= 2 bits
de length 1><1+1><2+1><3—|—1><4+4><1><6
T n = — — — N _
average code leng 5 1 3 T 6l

= 2 bits



Frequéncia de uso das letras na lingua
portuguesa

A B C D E F G H T J K L M NOP QR S T U VWX Y 2
Letras




Polish letters frequencies

0.83%| |

0.06%

5.64%

3.76%

4.65%

2.50%

3.98%

0.66%

4.32%

4.69%

3.18%

0.85%

7.75%

0.20%

5.52%

2.80%

1.82%

2.10%

3.51%

2.28%

8.21%

1.08%

1.42%

0.30%

1.11%

7.66%

3.25%

0.40%

3.96%

1.47%

0.99%

8.91%

9%
8%
7%
6%
5%
4%
3%
2%
1%
0%

tuwy z pa

S

r

agbcc¢cdeefghijkl tmn



* The relationship between log, and any other base b involves
multiplication by a constant,

logpr  logigx

log, & = — .
52 logy2 log102

H = Zp m;) - log,o p(m; Zp m;) - log, p(m;)

1

logm



nat

Zp ) In p(a Z p(x;)log p(x;)

* Instead of measuring the information in bits, yes no questions, it
measure the information in nepit (nat), it is the power of the Euler's
number e=2.7182818... (sometimes also called Napier's constant).



Conditional Entropy

* Quantifies the amount of information needed to describe the
outcome of a random variable Y given that the value of another
random variable X is known

S ) loe P(-I\!/))
X)=— > plz,y)] b< (o)

reX,yeY

H(Y




Mutual Information

 Mutual information measures the information that X and Y share

* How much knowing one of these variables reduces uncertainty about
the other

) o 1)(.1')'1’(!/))
[(X,Y) ZZI /)] ( p(z,y)

yeY zeX

* For example, if X and Y are independent, then knowing X does not
give any information about Y and their mutual information is zero.



Relative Entropy

» Kullback-Leibler divergence (also called relative entropy) is a measure
of how one probability distribution is different from a second

* For discrete probability distributions p and q defined on the same
probability space, the Kullback-Leibler divergence between p and g is
defined as

K L(pllq) = Z p(x)log q(a ( Z p(x)logp(a )

reX reX
))

KL(pllq) = Z;) ) log (

reX



* Example Consider some unknown distribution p(x)

* Suppose that we have modelled this using an approximating
distribution g(x)

* |f we use g(x) to construct a coding scheme for the purpose of
transmitting values of x to a receiver, then the average additional
amount of information required to specify the value of x as a result of

using q(x) is KL(p[ [q)

K L(p|lq) = Z p(x)log q(a Z p(x)logp(x)

reX reX



Cross Entropy

* For discrete probability distributions p and q defined on the same
probability space, the cross entropy between p and q is defined as

= - p(z)logq(z).

reX

H(p,q) = H(p) — K L(p||q)



In machine learning with the true distribution Y :

e is either a binary value y, for each data element y, of the dataset

N
H(Y,0) = =) (y-logo+ (1 —yx) - log(1 - 0))
k=1
N
H(Y,0) = —Z(yk -log o + —wy - log —0)
k=1

and the estimated distribution is O = (0, —0) does not need to be binary
with 1 = o + —o.

e or a l-of-K representation for y, vector of the dataset

N K
H(Y,0)==) > uu logo

k=1 t=1

and the estimated distribution does not need to be binary with the
requirement 1 = Efi | Okt



* The distribution H(Y,O) defines a loss function measured

L(y, o) = H(Y, O)

* which is not a distance function since it is not symmetric and is only
defined over probability distributions.

* Loss function indicates a cost function, it is equivalent to the name
error function of energy function in other domains



(a) o (b) =

The loss function that is based on cross entropy is much more
steep the a possible loss or error function that is based on
qguadratic loss that is based on squared Euclidean distance



 What about the vector space?

* What the Curse of Dimensionality?

* How to find a minimum of a function?

3 dimensions:
i 1000 positions!



Literature

B < Christopher M. Bishop, Pattern Recognition and Machine

= = Learning (Information Science and Statistics), Springer
2006

* Section 1.2, 1.6, 2.3

B o i = e



Literature

* Machine Learning - A Journey to Deep Learning, A.
Wichert, Luis Sa-Couto, World Scientific, 2021
e Chapter 2

Machine Learning
A Journey to Deep Learning
with Exercises and Answers




