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Example

• Descriptors of objects like patterns are mostly represented as feature 
vectors of a fixed dimension



Norm



Distance function 



• Euclidean norm is induced by the inner product (scalar product) 

• It defines a Hilbert space, which extends the two or three 
dimensional Euclidean space to spaces with any finite or infinite 
number of dimensions. A scalar product exists in l2 but not in l1 space. 
• A normed vector space (does not need to have a scalar product) is 

called a Banach space. Without a scalar product there is no 
orthogonality. 









K-Nearest Neighbor
• In nearest-neighbor learning the target function may be either 

discrete-valued or real valued
• Learning a discrete valued function

• , V is the finite set  {v1,......,vn}

• For discrete-valued, the k-NN returns the most common value among 
the k training examples nearest to xq.
•



K-Nearest Neighbor

• Training algorithm
• For each training example (x,f(x)) add the example to the list

• Classification algorithm
• Given a query instance xq to be classified

• Let x1,..,xk k instances which are nearest to xq

• Where d(a,b)=1 if a=b, else d(a,b)= 0 (Kronecker function)



Definition of Voronoi diagram

• The decision surface induced by 1-NN for a typical set of 
training examples.
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• kNN rule leeds to partition of the space into cells (Vornoi cells) 
enclosing the training points labelled as belonging to the same 
class

• The decision boundary in a Vornoi tessellation of the feature space 
resembles the surface of a crystall



1-Nearest Neighbor

query point xq

nearest neighbor xi



3-Nearest Neighbors

query point xq

3 nearest neighbors
2x,1o



7-Nearest Neighbors

query point xq

7 nearest neighbors
3x,4o



The Curse of Dimensionality 

• A broad variety of mathematical effects can be observed when one 
increases the dimensionality of the data space
• One cannot think about  these effects, by simply extending two- or 

three-dimensional experiences
• Rather,  one has to think for example, at least  10-dimensional to even 

see the effect occurring
• Furthermore, some are pretty nonintuitive



Curse of dimensionality
Some intuition
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• 100 points cover the one-dimensional unit interval [0,1] on the real 
line quite well 
• If one now considers the corresponding 10-dimensional unit 

hypersquare, 100 points are now isolated points in a vast empty 
space
• To get similar coverage to the one-dimensional space would now 

require 1020 points



• The volume of a high-dimensional cube approaches its surface with 
an in- crease in dimension
• In high-dimensional spaces, a partition is only performed in a few 

dimensions, which touch the boundary of the data space in most 
dimensions. 

• A hypercube corresponds to a sphere in l∞ space; the volume v of a 
Euclidean ball of radius r in n-dimensional l∞ space can be indicated 
by 



Curse of Dimensionality



• Surprisingly the volume decreases for a sphere with fixed radius r in l1
and  l2 space with the growing dimension
• The volume v of a sphere with l1 norm and with radius r in n -

dimensional  space is given by 





Consequences

• The same relation between the volume, the radius and the dimension are as well true for 
sphere with l2 norm.

• Such a sphere with l2 norm in dimension n is called a n ball, the volume can be indicated 
by explicit formulas 

• This relation have serious consequences for the similarity in popular l1 and l2 spaces!
• In high dimensions the value of r that describes the radius of the sphere is mostly larger than the 

extension of the data space in most dimensions 



Matrix Operations 





Tensor Product 



Gradient



Jacobian matrix 



• If K = 1 f is a scalar field and the Jacobian matrix is reduced to a row 
vector of partial derivatives of f . 
• It is the transpose of the gradient of f, when denoted as column 

vector. 



Rules



Second Derivative 



Numerical Solution

• Consider a continuously differentiable function y = f(x)
• The function has extreme points for 0 = fʹ(x) 
• We can determine the solution numerically, by approximating the real 

zeros fʹ(x) = 0



Gradient Descent for one Dimension



Gradient Descent



Simple Example

• One dimension

x

function
value



Simple Example

• Move to better state

x

function
value



Approximate Optimization 



Critical Points 



The gradient descent for D dimensions



The gradient descent for D dimensions



Learning parameter η

• The method of steepest descent converges to the optimal solution 
slowly The learning-rate parameter η has a profound influence on its 
convergence behaviour: 
• When η is small, the transient response of the algorithm follows a smooth 

path (slow) 
• When η is large, the transient response of the algorithm follows a zigzagging 

(oscillatory) path 
• When η exceeds a certain critical value, the algorithm becomes unstable (i.e., 

it diverges) 







Newton’s Method

• Consider a continuously twice differentiable function f(x)





Newton’s Method



• Compared to the previous rule the is no learning parameter

• Optimization algorithms that use only the gradient, such as gradient descent, 
are called first-order optimisation algorithms. 

• Optimization algorithms that also use the Hessian matrix, such as Newton’s 
method, are called second-order optimisation algorithms 



• Newton’s method converges quickly asymptotically and does not 
exhibit the zigzagging behaviour that sometimes characterises the 
method of steepest descent
• Iteratively updating the approximation and jumping to the minimum 

of the approximation can reach the critical point much faster than 
gradient descent
• When f(x) is a positive definite quadratic function, Newton’s method 

consists of once to jump to the minimum of the function directly.



• However: This is a useful property near a local minimum, but it can be 
a harmful property near a saddle point 



• A major limitation of Newton’s method is its computational 
complexity
• Newton’s method to work, the Hessian Hn has to be a positive definite 

matrix for all n. 
xT Hnx > 0

• Unfortunately, in general, there is no guarantee that Hn is positive 
definite at every iteration of the algorithm. 



Numerical Computation 

• Machine learning algorithms require a high amount of numerical 
computation 
• Evaluating a mathematical function on computer can be difficult 

when the function involves real numbers, which cannot be 
represented precisely 
• We need to represent real numbers with a finite number of bits.
• Rounding errors can cause algorithms that work in theory to fail in 

practice 



• Underflow 
• Numbers near zero are rounded to zero 
• Problem, we cannot divide by zero. Probabilities become zero. 

• Overflow 
• Overflow occurs when huge numbers become negative. No negative 
logarithm.



What’s next?

• Machine Learning as Optimization Problem 

• Example, Linear and Non-Linear Regression
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