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Example

* Descriptors of objects like patterns are mostly represented as feature
vectors of a fixed dimension
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Norm

A norm is a function given a vector space V that maps a vector into a real

number with
[v]| >0

and with « scalar
o x| = [af - [|x]]

Ix+yll < [xl + 1yl

The [, norm is defined as the following (for p = 2 it is the Euclidean norm):

S |-

1xllp = (lza]” + o] + - - 4 |2m[")

[, norms are equivalent and the following relation holds for 0 < ¢ < p

1 1
1xllp < [lx]lg < mae - ix]],



Distance function

Metric defines a distance between two vectors with

d(x,y) >0

symmetry
d(x,y) = d(y,x)

and the triangle inequality
d(x,y) <d(x,z) + d(z,y).
The [, norm induces the distance between two points (metric)
dp(%,y) = % = yllp = (|11 = 91| + |22 — ol + -+ + |20 — )7
The most popular metrics are the Taxicab or Manhattan metric d; with
di(x,y) =[x = yli = |z1 =l + |va = yo| + -+ [Tm — Y]

and the FEuclidean metric

d2(x3Y) = ||X - y||2 = \/l-’If.l - yl‘2 + |:1:2 - :l/2|2 + -+ |:I:111, - ym|2-



e Euclidean norm is induced by the inner product (scalar product)
[x[]2 = v/ (x[x)

* |t defines a Hilbert space, which extends the two or three
dimensional Euclidean space to spaces with any finite or infinite
number of dimensions. A scalar product exists in /, but not in /; space.

* A normed vector space (does not need to have a scalar product) is
called a Banach space. Without a scalar product there is no
orthogonality.



Often one writes for Euclidean distance function and norm simply

dx,y) =[x -yl = VIr1 — ]2+ |ra — 922+ + [T — Y|

By normalising the vector to the length one the Euclidean distance function
is constrained to the unit sphere

0<d (L’ L) _
x| [yl

and corresponds to the angle w between the vectors

* Y st/ﬁ
x|yl

(x|y)

COSW = —————
[ - [yl

with a similarity function

0 < sim(x,y) =cosw <1



o/

If we do not normalise the vectors, then we get the simple scalar product
also called the dot product

(x|w) = cosw - [|x|[ - [|w],
it is measure of the projection of one vector onto another.

The dot product of a vector with a unit vector is the projection of that
vector in the direction given by the unit vector. The dot product is a linear
representation represented by the value net,

D
y = net := (x|w) = ij - X5,

1=1



David Hilbert, one of the most famous German mathematicians, attended
a banquet in 1934, and he was seated next to the new minister of edu-
cation, Bernhard Rust [Reid (1996)]. Rust asked, “How is mathematics
in Gottingen now that it has been freed of the Jewish influence?” Hilbert
replied, “Mathematics in Gottingen? There is really none any more.” David
Hilbert died in 1943. On his tombstone, at Gottingen, one can read his epi-

taph:

e Wir miissen wissen (We have to know)
e Wir werden wissen (We shall know!)




K-Nearest Neighbor

* In nearest-neighbor learning the target function may be either
discrete-valued or real valued

* Learning a discrete valued function
of MY — V, Vis the finite set {v,,......,v,}

* For discrete-valued, the k-NN returns the most common value among
the k training examples nearest to xg.

o Data = {(Xl, /.1>, (XQ, /.2), L (X‘,\r, f‘,.\,r>}

./.(X11> - ,‘7/ = Uy



K-Nearest Neighbor
Data = {(Xl, ./'(Xl))ﬁ (Xza ./'(Xl))ﬂ Ty ./'(X‘,\.f, (Xi\"'»}

* Training algorithm
* For each training example (x,f(x)) add the example to the list

* Classification algorithm

* Given a query instance x, to be classified
* Let xy,..,. X, k instances which are nearest to x,

- argmax
fap=" ", Zé(v,fu,-))

* Where Ja,b)=1 if a=b, else & a,b)= 0 (Kronecker function)



Definition of Voronoi diagram

* The decision surface induced by 1-NN for a typical set of
training examples.
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* kNN rule leeds to partition of the space into cells (Vornoi cells)
enclosing the training points labelled as belonging to the same

class
* The decision boundary in a Vornoi tessellation of the feature space
resembles the surface of a crystall



1-Nearest Neighbor
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3-Nearest Neighbors
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The Curse of Dimensionality

* A broad variety of mathematical effects can be observed when one
increases the dimensionality of the data space

* One cannot think about these effects, by simply extending two- or
three-dimensional experiences

* Rather, one has to think for example, at least 10-dimensional to even
see the effect occurring

* Furthermore, some are pretty nonintuitive



Curse of dimensionality
Some intuition




* 100 points cover the one-dimensional unit interval [0,1] on the real
line quite well

* If one now considers the corresponding 10-dimensional unit
hypersquare, 100 points are now isolated points in a vast empty
space

* To get similar coverage to the one-dimensional space would now
require 1020 points



* The volume of a high-dimensional cube approaches its surface with
an in- crease in dimension

* In high-dimensional spaces, a partition is only performed in a few
dimensions, which touch the boundary of the data space in most

dimensions.
X0 = max (|zq], |x2], -+, |Tm]) -

* A hypercube corresponds to a sphere in /_ space; the volume v of a
Euclidean ball of radius r in n-dimensional /_, space can be indicated
by el




Curse of Dimensionality
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* Surprisingly the volume decreases for a sphere with fixed radius rin /,
and [, space with the growing dimension

* The volume v of a sphere with /; norm and with radius rin n -
dimensional space is given by

n

. ',' ,

271

Th
n!

n

Suppose that r is fixed, then the volume v! approaches zero as n tends to
infinity because
(2.
lim )

n—00 n!

= (.




On the other hand the radius r of a sphere with /; norm and with the volume
v} in n-dimensional space is given by

n
1
(v,ll : n!) /n (v} . ph)t/m
T = —

2 )

Suppose that v} is fixed, then the radius r approaches infinity as n tends to

infinity because

(,Ul .n!)l/n
lim — = 00.
n—00 9




Conseguences

* The same relation between the volume, the radius and the dimension are as well true for
sphere with /, norm.

e Such a sphere with [, norm in dimension n is called a n ball, the volume can be indicated
by explicit formulas

. 2
Ug.n = | ! )
r.
2.n!. . n
)2 ~2-nl-(4-7) 2t
2m+1 = T
1T T 1)

* This relation have serious consequences for the similarity in popular /; and /, spaces!

* In high dimensions the value of r that describes the radius of the sphere is mostly larger than the
extension of the data space in most dimensions



Matrix Operations

Scalar multiplication is commutative

(x|w) =x"w = w'x = (w[x)

xr
( wy uwn ) : ( ¢ > = Wy To+ w1
i

wy Wy -Tog Wo- Ty
. ( o T )
un wy -Tro W1

Matrix multiplication is not commutative

but

A-B#4B-A



(A-B)f =BT . AT
it is
A-B= (BT AT)T

A symmetric matrix is
AT = A

An identity matrix of dimension D is defined as

10 0 0

01 0 0
I=1{ . .

00 0 1

An orthogonal matrix is
AT A=A AT =1

it implies that
Al =4AT



Tensor Product

The tensor product is defined for vector and matrices as

and
aii
ai - B a2 - B apy -
(6121'3 az - B ) a1

Wy
Wi
Wi

aiy -
asi -
a9y -

Wo - Wo
W
- Wo
W1

a9 -
a2 -
a2 -

a2 -
ay -+
a9 -



Gradient

Consider a continuously differentiable function f(x).
fRP SR f(x)=y

It maps the vector x into a real value.
The gradient operator for x is

o_[2 0 o 1"
|0z Oxy” T Oxp
or
of
ox
of
Vi) =| 7

orp



Jacobian matrix

Then the Jacobian matrix J of fis an K x D matrix

7 of of of
-\ Oz, 0xy’  Oxp

/ df1(x) ofilx) . of1(x) \

Oxq Oxo oz
0fs(x)  0f(x)  Ofa(x)
J = oz Jxo dxp

\afz\:(x) 0f1 (%) 8 i (x) )

oz A oxrp



e If K=1fis a scalar field and the Jacobian matrix is reduced to a row
vector of partial derivatives of f.

* It is the transpose of the gradient of f, when denoted as column
vector.



Rules

V(e f(x)+b-g(x))=a-Vf(x)+b-Vg(x), a,beR

V((XT°A'X) =(A+AT) - X

If A symmetric, then

V(x"-A-x)=2-4) x

V. (yTx) =y



Second Derivative

Consider a continuously twice differentiable function f(x).

fRPY 5 R: f(x) =

Then the Hessian matrix with respect to x, written V2f(x) or simply as H
is the D x D matrix of partial derivatives, it is the Jacobian of the gradient

of T ( ()zf(x) Prx) . 0Pf(x)
oz, Ozt Ox10x2 Oz10zp
of 0% f (x) 9% f(x) 9% f(x)
Vif (x) =J O3 = Or20z1 072072 dx20x
Of \ PIx) 0 9f(x) /
dzp drpdxy Oxpdxo ('):c%)

Be careful, we cannot take the gradient of a vector but only the Jacobian of
the gradient transpose, the relatiion is



Numerical Solution

» Consider a continuously differentiable function y = f(x)

* The function has extreme points for 0 = f'(x)

* We can determine the solution numerically, by approximating the real
zeros f'(x) =0



Gradient Descent for one Dimension

The gradient descent for one dimension is
Tpi1 = Tp — 1 - [ (2)
—n- fiz,) = (Tpse1 — )
By first-order Taylor series expansion we have
f(xns1) = fxn) + f(2n) - (ps1 — 20) = fx,) — 'r]f'(.':li.'“)2

and it follows

f('il'"'n+l) < f("I:”)



Gradient Descent
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Simple Example

* One dimension

function
value




Simple Example

 Move to better state

function
value




Approximate Optimization

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

Z |Ideally, we would like
to arrive at the global
minimum, but this

might not be possible.

This local minimum performs
poorly and should be avoided.




Critical Points

Minimum

Maximum

Saddle point

./




The gradient descent for D dimensions

Consider a continuously differentiable function f(x).
fiRP 5 R: f(x)=y

It maps the vector x into a real value.
The gradient operator for x is

o_[0 0 o 1"
| 0xy Oxy’ T Oxp
or
QL
Vi =| 7
of

orp



The gradient descent for D dimensions

Xnt1 = X — - Vf(X5)

By first-order Taylor series expansion we have

FXni1) = f(%0) + (VF (%) (Xng1 — Xn)

(1) = f(xn) =0 (VF(x0))" (Vf(x0))
f(%ni1) & f(x0) = |V f (x0) ]|

and it follows



Learning parameter n

* The method of steepest descent converges to the optimal solution
slowly The learning-rate parameter n has a profound influence on its
convergence behaviour:

* When n is small, the transient response of the algorithm follows a smooth
path (slow)

* When n is large, the transient response of the algorithm follows a zigzagging
(oscillatory) path

* When n exceeds a certain critical value, the algorithm becomes unstable (i.e.,
it diverges)
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Newton’s Method

» Consider a continuously twice differentiable function f(x)
fRP SR f(x)=y

Then the Hessian matrix with respect to x, written VZf(x) or simply as H
is the D x D matrix of partial derivatives,

0% f(x) Pflx) . 9*f(x)
( ('):cf Ox10x9 Or10xp \
2f(x) 0 . P
2 . 0:132 (‘):El (‘)CL‘Q (').’152 (‘)IQ(‘):ED
Vif(x) = . . .
\ (')2f(x) i)zf(x) . i)zf!x! )
drpdx, JdxpOoxa ('):z:‘i)



By second-order Taylor series expansion we have

f(ns1) = f(xn) + (VF(x0))" - (Xng1 = X5) +

(Xn+1 - Xn)T Hn (Xn+1 - Xn)
2

We can reformulate to

(Xn+1 - Xn)T Hn (Xn+1 - Xn)

f(ns1) = fn) = (VF(xn))" - (g1 = ) + >



Newton’s Method

We minimise the resulting change with

T
Xn — Xp H n \Xn — Xpn
O - (vf(xn))T ' (Xn+1 - Xn) + ( = ) 9 ( 1 )

(xn—i-l - Xn)T Hn

0= (Vf(xa)" + >

we minimise when

0= vf(xn) + Hn (xn-}-l — xn)
(xn—}-l - Xn) — _H7:1 ' vf(xn)

and we get the update rule as

Xnt+1 = Xp — H;l ' vf(xn)




 Compared to the previous rule the is no learning parameter
Xn4+1 = Xp — 1) Vf (xn)

* Optimization algorithms that use only the gradient, such as gradient descent,
are called first-order optimisation algorithms.

X'IH—l = Xp — H;l ) v.[(xn)

* Optimization algorithms that also use the Hessian matrix, such as Newton’s
method, are called second-order optimisation algorithms



* Newton’s method converges quickly asymptotically and does not
exhibit the zigzagging behaviour that sometimes characterises the
method of steepest descent

* lteratively updating the approximation and jumping to the minimum
of the approximation can reach the critical point much faster than
gradient descent

* When f(x) is a positive definite quadratic function, Newton’s method
consists of once to jump to the minimum of the function directly.



* However: This is a useful property near a local minimum, but it can be
a harmful property near a saddle point




* A major limitation of Newton’s method is its computational
complexity

* Newton’s method to work, the Hessian H,, has to be a positive definite
matrix for all n.

x"Hx>0

* Unfortunately, in general, there is no guarantee that H, is positive
definite at every iteration of the algorithm.



Numerical Computation

* Machine learning algorithms require a high amount of numerical
computation

* Evaluating a mathematical function on computer can be difficult
when the function involves real numbers, which cannot be

represented precisely
* We need to represent real numbers with a finite number of bits.

* Rounding errors can cause algorithms that work in theory to fail in
practice



e Underflow
* Numbers near zero are rounded to zero
* Problem, we cannot divide by zero. Probabilities become zero.

e Overflow

* Overflow occurs when huge numbers become negative. No negative
logarithm.



What’s next?

* Machine Learning as Optimization Problem

* Example, Linear and Non-Linear Regression
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