
Lecture 2: Decision Trees

Andreas Wichert
Department of Computer Science and Engineering

Técnico Lisboa

• Learning through search (AI)

• Blind search
• Impossible since the search space grows exponentially fast

• Greedy Search
• Doesn't guarantee to find the best result

• Relation to Gradient Descent, local minima problem….

When to consider Decision Trees

• Instances describable by attribute-value pairs
• Target function is discrete valued
• Disjunctive hypothesis may be required

• Possibly noisy training data
• Missing attribute values

• Examples:
• Medical diagnosis
• Credit risk analysis
• Object classification for robot manipulator (Tan 1993)

Decision tree for credit risk assessment

• The decision tree represents the classification of the table
• It can classify all the objects in the table
• Each internal node represents a test on some property
• Each possible value of that property corresponds to a branch of the

tree
• An individual of unknown type may be classified be traversing this

tree

• In classifying any given instance, the tree does not use all the
properties in the table
• Decision tree for credit risk assessment

• If a person has a good credit history and low debit, we ignore her
collateral income and classify her as low risk
• In spite of omitting certain tests, the tree classifies all examples in the

table

• In general, the size of a tree necessary to classify a given set of
examples varies according to the order with which properties
(=attributes) are tested

• Given a set of training instances and a number of different decision
trees that correctly classify the instances, we may ask which tree has
the greatest likelihood of correctly classifying using instances of the
population?

• This is a simplified decision tree for credit risk
assessment

• It classifies all examples of the table correctly

• ID3 algorithm assumes that a good decision tree is the simplest
decision tree

• Heuristic:
• Preferring simplicity and avoiding unnecessary assumptions
• Known as Occam‘s Razor

• The simplest decision tree that covers all examples should be the
least likely to include unnecessary constraints

• Occam Razor was first articulated by the medieval logician William of
Occam in 1324

• born in the village of Ockham in Surrey (England) about 1285, believed that he died in
a convent in Munich in 1349, a victim of the Black Death

• It is vain do with more what can be done with less..
• We should always accept the simplest answer that correctly fits our

data
• The smallest decision tree that correctly classifies all given examples

• Because the order of tests is critical to constructing a simple tree, ID3
relies heavily on its criteria for selecting the test at the root of each
sub tree
• How many different decision tree exist?
• N=Number Of Attributes
• There exist N! different ordering of attributes, different decision trees
• Algorithm:

• Blind Search finds the global minima, the smallest decision tree (optimal)
• Compute all N! decision trees and chose the smallest one

N! grows extremely fast

• N=4, 4!=24 manageable, no problem

• Plot of N!

1 2 3 4 5 6

50

100

150

200

250

2 4 6 8 10 12

1×106

2×106

3×106

4×106

5×106

6×106

7×106

We have to use a heuristic function

• ID3 selects a property to test at the current node of the tree and uses
this test to partition the set of examples
• The algorithm then recursively constructs a sub tree for each partition
• This continuous until all members of the partition are in the same

class

• That class becomes a leaf node of the tree

Top-Down Induction of Decision Trees ID3

1. A ¬ the “best” decision attribute for next node
2. Assign A as decision attribute (=property) for

node
3. For each value of A create new descendant
4. Sort training examples to leaf node according to

the attribute value of the branch
5. If all training examples are perfectly classified

(same value of target attribute) stop, else
iterate over new leaf nodes

• ID3 constructs the tree for credit risk assessment
• Beginning with the full table of examples, ID3 selects
income as the root property using function selecting
“best” property (attribute)

• The examples are divided, listed by their number in the list

• ID3 applies the method recursively for each partition
• The partition {1,4,7,11} consists entirely of high-risk individuals, a node is

created
• ID3 selects credit history property as the root of the subtree for the partition

{2,3,12,14}
• Credit history further divides this partition into {2,3},{14} and {12}

• ID3 implements a form of hill climbing in the space of all possible
trees using a heuristic function
• Doesn’t guarantee to find the smallest decision tree, can find a local

maxima.

Hypothesis Space Search ID3
two classes: +,-

+ - +

+ - +

A1

- - +
+ - +

A2

+ - -

+ - +

A2

-
A4

+ -

A2

-
A3

- +
Greedy Search

Heuristic function: Shannon Entropy

• Shannon formalized these intuitions
• Given a universe of messages M={m1,m2,...,mn} and a probability p(mi)

for the occurrence of each message, the information content (also
called entropy)of a message M is given

€

I(M) = −p(mi
i=1

n

∑)log2(p(mi))

• Information content of a message telling the outcome of the flip of an
honest coin

€

I(Coin _ toss) = −p(heads)log2(p(heads)) − p(tails)log2(p(tails))
I(Coin _ toss) = −p(0.5)log2(p(0.5)) − p(0.5)log2(p(0.5))
I(Coin _ toss) =1 bit

• However if the coin has been rigged to come up heads 75 percent

€

I(Coin _ toss) = −p(heads)log2(p(heads)) − p(tails)log2(p(tails))
I(Coin _ toss) = −p(0.75)log2(p(0.75)) − p(0.25)log2(p(0.25))
I(Coin _ toss) = 0.811 bits

Only two probabilities

• We may think of a decision tree as conveying information about the
classification of examples in the decision table

• The information content of the tree is computed from the
probabilities of different classifications

• The credit history loan table has following information
• p(risk is high)=6/14
• p(risk is moderate)=3/14
• p(risk is low)=5/14

€

I(credit _ table) = −
6
14
log2

6
14
⎛

⎝
⎜

⎞

⎠
⎟ −

3
14
log2

3
14
⎛

⎝
⎜

⎞

⎠
⎟ −

5
14
log2

5
14
⎛

⎝
⎜

⎞

⎠
⎟

I(credit _ table) =1.531 bits

• For a given test, the information gain provided by making that test at
the root of the current tree is equal to

• Total information of the table - the amount of information needed to
complete the classification after performing the test
• The amount of information needed to complete the tree is defined as

weighted average of the information content of each sub tree

• The amount of information needed to complete the tree is
defined as weighted average of the information content of
each sub tree by the percentage of the examples present

• C a set of training instances. If property (for example
income) with n values, C will be divided into the subsets
{C1,C2,..,Cn}

• Expected information needed to complete the tree after
making P root

€

E(P) =
|Ci |
|C |i=1

n

∑ I(Ci)

• The gain from the property P is computed by subtracting the
expected information to complete E(P) fro the total information

€

E(P) =
|Ci |
|C |i=1

n

∑ I(Ci)

€

gain(P) = I(C) − E(P)

• In the credit history loan table we make income the property tested
at the root
• This makes the division into

• C1={1,4,7,11},C2={2,3,12,14},C3={5,6,8,9,10,13}

€

E(income) =
4
14

I(C1) +
4
14

I(C2) +
6
14

I(C3)

E(income) =
4
14
0 +

4
14
1.0 +

6
14
0.65

E(income) = 0.564 bits

gain(income)=I(credit_table)-E(income)
gain(income)=1.531-0.564
gain(income)=0.967 bits

gain(credit history)=0.266
gain(debt)=0.581
gain(collateral)=0.756

• Because income provides the greatest information gain, ID will select
it as the root of the tree

• The algorithm continues to apply this analysis recursively to each
subtree, until it has completed the tree.

Day Outlook Temp. Humidity Wind Play Tennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Weak Yes
D8 Sunny Mild High Weak No
D9 Sunny Cold Normal Weak Yes
D10 Rain Mild Normal Strong Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Overfiting

• The ID3 algorithm grows each branch of the tree just deeply enough
to perfectly classify the training examples
• Difficulties may be present:

• When there is noise in the data
• When the number of training examples is too small to produce a

representative sample of the true target function

• The ID3 algorithm can produce trees that overfit the training
examples

• We will say that a hypothesis overfits the training examples - if some
other hypothesis that fits the training examples less well actually
performs better over the entire distribution of instances (included
instances beyond training set)

Overfitting

Consider error of hypothesis h over
• Training data: errortrain(h)
• Entire distribution D of data: errorD(h)
Hypothesis hÎH overfits training data if there is an

alternative hypothesis h’ÎH such that
errortrain(h) < errortrain(h’)

and
errorD(h) > errorD(h’)

Overfitting

• How can it be possible for a tree h to fit the training examples better
than h’, but to perform more poorly over subsequent examples

• One way this can occur when the training examples contain random
errors or noise

Training Examples

Day Outlook Temp. Humidity Wind Play Tennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Weak Yes
D8 Sunny Mild High Weak No
D9 Sunny Cold Normal Weak Yes
D10 Rain Mild Normal Strong Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Decision Tree for PlayTennis
Outlook

Sunny Overcast Rain

Humidity

High Normal

Wind

Strong Weak

No Yes

Yes

YesNo

• Consider of adding the following positive training example, incorrectly
labaled as negative
• Outlook=Sunny, Temperature=Hot, Humidty=Normal, Wind=Strong,

PlayTenis=No
• The addition of this incorrect example will now cause ID3 to construct

a more complex tree
• Because the new example is labeled as a negative example, ID3 will

search for further refinements to the tree

• As long as the new erroneous example differs in some attributes, ID3
will succeed in finding a tree
• ID3 will output a decision tree (h) that is more complex then the

original tree (h‘)

• Given the new decision tree a simple consequence of fitting noisy
training examples, h‘ will outperform h on the test set

Avoid Overfitting

• How can we avoid overfitting?
• Stop growing when data split not statistically significant
• Grow full tree then post-prune

• How to select ``best'' tree:
• Measure performance over training data
• Measure performance over separate validation data set

Pruning

• Remove the least reliable branches

Quinlan strategies of C4.5

• Derive an initial rule set by enumerating paths from the root to the
leaves
• Generalize the rules by possible deleting conditions deemed to be

unnecessary
• Group the rules into subsets according to the target classes they

cover
• Delete any rules that do not appear to contribute to overall performance on

that class

• Order the set of rules for the target classes, and chose a default class
to which cases will be assigned

• The resultant set of rules will probably not have the same coverage as
the decision tree
• Its accuracy should be equivalent
• Rules are much easier to understand
• Rules can be tuned by hand by an expert

From Trees to Rules

Once an identification tree is constructed, it is a simple matter to
concert it into a set of equivalent rules

• Example from Artificial Intelligence, P.H. Winston 1992

An ID3 tree consistent with the data

Hair Color

Lotion Used

Sarah
Annie

Dana
Katie

Emily Alex
Pete
John

Blond
Red

Brown

No Yes

Sunburned

Not Sunburned

Corresponding rules
If the person‘s hair is blonde
and the person uses lotion
then nothing happens

If the person‘s hair color is blonde
and the person uses no lotion
then the person turns red

If the person‘s hair color is red
then the person turns red

If the person‘s hair color is brown
then nothing happens

Unnecessary Rule Antecedents should be eliminated

If the person‘s hair is blonde
and the person uses lotion
then nothing happens

Are both antecedents are really necessary?
Dropping the first antecedents produce a rule with the same results

If the the person uses lotion
then nothing happens

• To make such reasoning easier, it is often helpful to construct a contingency table

• it shows the degree to which a result is contingent on a property

• In the following contingency table one sees the number of lotion users who
are blonde and not blonde and are sunburned or not
• Knowledge about whether a person is blonde has no bearing whether it gets sunburned

Not
sunburned

Sunburned

Person is blonde (uses
lotion)

2 0

Person is not blonde
(uses lotion)

1 0

• Check for lotion for the same rule

• Has a bearing on the result

Not
sunburned

Sunburned

Person uses lotion 2 0
Person uses no lotion 0 2

Unnecessary Rules should be Eliminated

If the person uses lotion
then nothing happens

If the person‘s hair color is blonde
and the person uses no lotion
then the person turns red

If the person‘s hair color is red
then the person turns red

If the person‘s hair color is brown
then nothing happens

• Note that two rules have a consequent that indicate that a person will
turn red, and two that indicate that nothing happens

• One can replace either the two of them by a default rule

Default rule

If the person uses lotion
then nothing happens

If the person‘s hair color is brown
then nothing happens

If no other rule applies
then the person turns red

What is CART?
• Classification And Regression Trees
• Developed by Breiman, Friedman, Olshen, Stone in early 80’s.

• Introduced tree-based modeling into the statistical mainstream
• Rigorous approach involving cross-validation to select the optimal tree

• One of many tree-based modeling techniques.
• CART -- the classic
• CHAID
• C5.0
• Software package variants (SAS, S-Plus, R…)
• Note: the “rpart” package in “R” is freely available

Idea: Recursive Partitioning
• Take all of your data.
• Consider all possible values of all variables.
• Select the variable/value (X=t1) that produces the

greatest “separation” in the target.
• (X=t1) is called a “split”.

• If X< t1 then send the data to the “left”; otherwise,
send data point to the “right”.
• Now repeat same process on these two “nodes”

• You get a “tree”
• Note: CART only uses binary splits.

Gini Index
• The Gini Index (used in CART) measures the impurity

of a data partition D

• m: the number of classes
• pi: the probability that a tuple in D belongs to class Ci

• Gini index of the flip of an honest coin

• 1 - (0.52 + 0.52)=0.5

• Coin has been rigged to come up heads 75 percent

• 1 - (0.752 + 0.252)=0.375

• The Gini Index considers a binary split for each attribute A, say D1
and D2. The Gini index of D given that partitioning is:

• A weighted sum of the impurity of each partition
• Weighted mean, the same as before…..

• The reduction in impurity is given by

• The attribute that maximizes the reduction in impurity is chosen as
the splitting attribute

Binary Split: Continuous-Valued Attributes

• D: a data partition
• Consider attribute A with continuous values
• To determine the best binary split on A

• What to examine?
• Examine each possible split point

The midpoint between each pair of (sorted) adjacent values is taken
as a possible split-point

How to examine?

• For each split-point, compute the weighted sum of
the impurity of each of the two resulting partitions

• (D1: A<= split-point, D2: A > split-point)

• The split-point that gives the minimum Gini index for
attribute A is selected as its splitting subset

Binary Split: Discrete-Valued Attributes

• D: a data partition
• Consider attribute A with v outcomes {a1...,av}
• To determine the best binary split on A

• Examine the partitions resulting from all possible subsets
of {a1...,av}

• Each subset SA is a binary test of attribute A of the form
“A∈SA?”

• 2v possible subsets. We exclude the power set and the
empty set, then we have 2v-2 subsets

How to examine?

• For each subset, compute the weighted sum of the impurity of each
of the two resulting partitions

• The subset that gives the minimum Gini index for attribute A is
selected as its splitting subset

• This argument does not halt J :

Shannon Information vs. Gini

• -0.5*Log2[0.5] - 0.5*Log2[0.5]=-Log2[0.5]=1
• -Log2[0.25]=2
• …
• -Log2[1/256]=8

• 1 - (0.52 + 0.52)=0.5
• 1 - (0.252 + 0.252 + 0.252 + 0.252)=0.75
• 1 - (256*(1/256)2=0.996094

Shannon’s entropy for equal distribution vs. Gini…
Plot[-Log2[x], {x, 0.01, 1}] Plot[1 - ((1/x)*x^2), {x, 0.01, 1}]

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

7

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Gini grows linear, converges to oneShannon’s entropy grows nonlinear! Does not converge

Comparing Attribute Selection Measures

• Information Gain
• Biased towards multivalued attributes
• Multivalued Splits

• Gini Index
• Biased towards multivalued attributes
• Has difficulties when the number of classes is

large
• Tends to favor tests that result in equal-sized

partitions and purity in both partitions
• Only uses binary splits

Binary Tree

Attributes with Cost

Consider:
• Medical diagnosis : blood test costs 1000 secs
• Robotics: width_from_one_feet has cost 23 secs.

How to learn a consistent tree with low expected cost?
Replace Gain by :

Gain2(A)/Cost(A) [Tan, Schimmer 1990]
2Gain(A)-1/(Cost(A)+1)w w Î[0,1] [Nunez 1988]

Next:

Probability and Information

Literature

• Tom M. Mitchell, Machine Learning, McGraw-Hill; 1st
edition (October 1, 1997)

• Chapter 3

• Christopher M. Bishop, Pattern Recognition and Machine
Learning (Information Science and Statistics), Springer
2006

• Section 14.4

Literature

• Machine Learning - A Journey to Deep Learning, A.
Wichert, Luis Sa-Couto, World Scientific, 2021

• Chapter 2, Section 2.5
• C Decision Trees

