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Hopfield Model 
• The Hopfield model represents a model of the associative memory. In 

a Hopfield model n units units are connected to each other by the
weights wij, the dynamic of the network are represented by



• Usually the units are updated asynchronously, updated them one at 
the time. For example at each time step, a random unit i is selected
and updated
• A set of N binary patterns of dimension n

is stored using the Hebbian learning rule with wij = wji for all i,j and wii = 0 for all i 



• Patterns that the network uses for training (called retrieval states) 
become attractors of the system. 
• After the training we start with some configuration xquery and the

network will converge after several steps using the update rule to an 
attractor



Hopfield Model 

• Convergence is generally assured. The attractors are the stored
patterns, however sometimes the network will converge to spurious
patterns (different from the training patterns) 

• The storage capacity of the model is

L = 0.138 · n



Energy function

• One important property of the model is the idea of the energy
function

• The energy function describes the configuration of the system by a hilly
“surface” In statistics and physics the energy function is called Hamiltonian. 
• The Hamiltonian always decrease (or remains constant) as the system evolves to its

dynamical rule. 
• Attractors are the local minima of the Hamiltonian (energy function). 

• The dynamics of the system is similar to the motion of a particle on the hilly energy
“surface” under the influence of gravity. 



Ising Model 

• We can describe a magnetic material by a set of atomic magnets 
arranged on a regular lattice that represents the crystal structure of 
the material
• We call the atomic magnets spins. A simple model of spin 1/2 atoms 

is the Ising model. 
• The spins represented by a variable si can point only into two 

different distinct directions that is oriented up si = 1 and down si = −1. 
• The Ising model is related to the Hopfield associative memory in 

which a unit can fire xi = 1 or be inactive xi = −1. 



Ising Model

• The magnetic field consist of the internal field produced by the spins 
and the external field hext that influences the spins. 
• The coefficient wij measures the strength of the influence of spin. The 

influence is symmetric wij = wji resulting in magnetic field 



Ising Model - Hamiltonian

• The updates are asynchronously or in random order. The energy 
function (Hamiltonian) is 



Spin Glass 

• A spin glass is an Ising model without external field the model with the 
energy function (Hamiltonian) 

• Only nearest neighbor interactions similar to the Ising model. 
• The spin glass is named from the n analogy between the magnetic disorder 

in a spin glass and the positional disorder of a conventional window glass. 
• At low temperature the model is the same as Hopfield model. 



Finite Temperature Dynamics 

• If the temperature is not very low thermal fluctuations tend to flip the 
spins randomly up and down. 
• The thermal fluctuations become important at high temperature and 

decrease at low temperature and vanish at the absolute zero 
temperature. 
• At high temperature the thermal fluctuations dominate the dynamics 

of the spin. 



• The thermal fluctuations can be described by the Glauber dynamics 
that result in a stochastic rule

• The “Glauber” choice is represented by the sigmoid function 

• where T is the absolute temperature and k the Boltzmann’s constant 



• The probability of spin si being 1 or −1

• The temperature controls the steepness near h = 0  



Boltzmann-Gibbs Distribution 

• Hα denote the energy of the system when it is in state α. A 
fundamental  result from the physics tells us that in thermal 
equilibrium each of the possible states α occurs with probability

• The partition function that is the sum over all states, with Z because 
the German name Zustadsumme. 



• For a Hopfield network with probabilistic units and a bias bi with the 
resulting energy function 

• The partition function is over all possible stats, all 2n combinations of 
xi = ±1 

• where β = 1/T since the temperature of a stochastic network is not 
related to physical temperature and we set k = 1 



• The average activation of unit i is

• Since the thermal average of the measured value of A is

• We have to compute two times sum over all combinations 



• Knowing Z as a function of bi we can simplify to 



Stochastic Dynamics

• Transition probability of flipping from si to −si are represented as 



• In general the transition probabilities for the states α and αʹ are

• It is important to seek a condition on W(α → αʹ) to guarantee 
equilibrium 
• A sufficient condition for a thermal equilibrium is that the average 

number of transitions from α to αʹ and from αʹ to α be equal 



• This is called the principle of detailed balance 



Gibs Sampling 

• The stochastic dynamics of the Ising model can be described by Gibs sampling. 
• Suppose that the system is in a state s and we have chosen an arbitrary 

coordinate i. 
• We can then ignore the actual state of the spin si and ask for the conditional 

probability that this spin points upwards given all other spins. 



• The algorithm then starts with a randomly chosen state and 
subsequently applies a large number of Gibbs sampling steps. 
• After some time, called the burn-in time, the states after each step 

then form the sample we are looking for represented by he
equilibrium distribution. 



Markov chain Monte Carlo algorithm 

• Gibbs sampling is a simple and widely applicable Markov chain Monte 
Carlo algorithm. 
• It generates a Markov chain with the Gibbs distribution as the 

equilibrium distribution since during the evolution none of the 
conditional distributions be anywhere zero 



• Consider the distribution 
from which we want to sample. 
• We have chosen some initial state for the Markov chain. 
• Each step of the Gibbs sampling procedure involves replacing the 

value of one of the variables by a value drawn from the distribution of 
that variable conditioned on the values of the remaining variables. 



Gibbs Algorithm: 





Metropolis Algorithm 

• Metropolis Algorithm is a modified Monte Carlo method, it is referred 
to as a Markov chain Monte Carlo. 
• Metropolis proposed the following stochastic matrix that is composed 

on transition probabilities that describe the transition of states
W(α → αʹ) with 



• The detailed balance holds for all i and j 



• With 



• The Metropolis algorithm states to accept a transition if the new 
configuration has a lower energy. 
• Otherwise the algorithm says to accept the change that increase the 

energy but only with the probability





Simulated Annealing 

• Rather, the preferred method for improved computational efficiency 
is to operate the stochastic system at a high temperature where 
convergence to equilibrium is fast, and then maintain the system at 
equilibrium as the temperature is slowly lowered 
• The Metropolis algorithm is the basis for the simulated-annealing 

process, in the course of which the temperature  is decreased slowly 
• The simulated-annealing process will converge to a configuration of 

minimal energy provided that the temperature is decreased no faster 
than logarithmically 



Simulated Annealing - Schedule



Combinatorial Optimization 





Boltzmann Machine 

• The Boltzmann machine is a stochastic Hopfield network with hidden 
units.
• It is a stochastic binary machine whose composition consists of 

stochastic neurons in state 1 or state 0 (or 1 and −1).
• Boltzmann machine is the uses symmetric synaptic connections 

between its neurons. The synaptic connection form neuron i to j are 



• The stochastic neurons of the Boltzmann machine are divided into 
visible and hidden neurons. 
• Visible neurons provide an interface between the network and the 

environment in which it operates. 
• When a partial information-bearing vector is clamped onto a subset 

of the visible neurons, the network performs completion on the 
remaining visible neurons. 
• By so doing, the network can perform pattern completion. 



Boltzman Machine



• Assuming the network is composed of n units. Usually the units are 
updated asynchronously, updated them one at the time. 
• For example at each time step, a random unit i is selected and updated with

• with bi being the bias. Unit i then turns on with a probability given by 
the sigmoid (logistic) function



Stochastic Dynamics 

• The stochastic dynamics of Boltzmann machine can be described by 
Gibs sampling. 
• Suppose that the system is in a state x and we have chosen an 

arbitrary coordinate i. 
• We can then ignore the actual state of the unit xi and ask for the 

conditional probability 





Learning

• During the training phase of the network there are two phases to the 
operation of the Boltzmann machine: 
• (1) Positive phase. In this phase, the network operates in its clamped con-

dition under the direct influence of the training sample. The visible neurons 
are all clamped onto specific states determined by the environ- ment. 

• (2) Negative phase. In this second phase, the network is allowed to run freely, 
and therefore with no environmental input.The states of the units are 
determined randomly. The probability of finding it in any particular global 
state depends on the energy function 











Proof of Learning in Boltzmann Machine 











Harmonium - Restricted Boltzmann Machine 

• A restricted Boltzmann machine (RBM) has only connections between 
visible and hidden units to make inference and learning easier. 
• It was initially invented under the name Harmonium by Paul 

Smolensky in 1986 



• Energy of a restricted Boltzmann machine can rewritten

since there are no connections between units hi · hj or vi · vj
• Due to the constraints an RBM it only takes one step to reach thermal 

equilibrium when the visible units are clamped and the the hidden 
units are chosen random (0 or 1) 



• During the negative phase the units are chosen random random (0 or 
1) one preforms Gibbs sampling until a thermal equilibrium is reached

and one preforms the update rule



Contrast Divergence 

• To avoid the long computing time of ⟨vihj⟩ model contrastive 
divergence (CD) based learning was proposed. It does not directly use 
Gibbs sampling 
• Starting at random chosen units. Instead the training starts with a 

clamped vector v0 on the visible units and the hidden layer values h0
are computed with 







Deep Learning with Deep Belief Nets 

• A deep belief network (DBN) is a generative graphical model, or alter-
natively a class of deep neural network, composed of multiple layers 
of latent variables (hidden units), with connections between the 
layers but not between units within each layer.
• It can be viewed as a composition of restricted Boltzmann machines 

Deep Belief Networks (Hinton, 2006( Capture higher-level 
representations of input features. 
• Around 2012, DBNs get renamed as Deep Neural Networks (DNNs) 



• A restricted Boltzmann machine (RBM) is trained directly on the input 
data, thereby making it possible for the stochastic neurons in the 
hidden layer of the RBM to capture the important features that 
characterize the input data. 
• Then treat the activations of the trained features as if they were input 

features and learn features of features in a second hidden layer. The 
activations of the trained features are then used as input data to train 
a second RBM that is trained. 
• The process of learning features of features is continued until a 

number t of hidden layers, until t RBMs have been trained 



A deep belief network 



• The model learned to to generate combinations of labels and images.

• To perform recognition we start with a random state of the label units and clamp the input image. 

• Then we do up-pass from the image followed by a few iterations of the top-level layers. 



• The deep belief network learns to disregard irrelevant features while 
simultaneously learning relevant features. 
• Deep belief nets provide a great deal of freedom.
• An efficient sampling method as proposed by future quantum 

annealers could extend this a creativity to yet unknown frontiers. 



Quantum Annealing

• In quantum annealing, the quantum fluctuation parameter replaces a 
local minimum state with a randomly selected neighboring state in 
some fixed radius. 
• The neighborhood extends over the whole search space at the 

beginning, and then, it is slowly reduced until the neighborhood 
shrinks to those few states that differ minimally from the current 
states. 
• In a quantum system, the quantum fluctuation can be performed 

directly by an adiabatic process rather than needing to be simulated.
• These processes are based on quantum tunneling. 



• Quantum tunneling is based on the Heisenberg uncertainty principle, 
as shown, and the wave-particle duality of matter represented by the 
wave propagation. 
• Quantum annealing can speed up some machine learning tasks 
• It is an alternative to the simulated annealing that is used in the 

learning and optimization tasks. 
• Adiabatic quantum computers based like D-Wave are based on 

quantum annealing 





D-Wave
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