Lecture 19: K Nearest Neighbour & Locally Weighted Regression

Andreas Wichert

Department of Computer Science and Engineering

Técnico Lisboa

Parametric Models

- We select a hypothesis space and adjust a fixed set of parameters with the training data, y = y(x, w)
- We assume that the parameters **w** summarise the training (compression)
- This methods are called parametric models
- Example:
 - Liner Regression
 - Non Linear Regression
 - Perceptron
 - Stochastic Gradient Descent
- When we have a small amount of data it makes sense to have a small set of parameters (avoiding overfitting)
- When we have a large quantity of data, overfitting is less an issue

Histogram

- To construct a histogram
 - Divide the range between the highest and lowest values in a distribution into several bins of equal size
 - Toss each value in the appropriate bin of equal size
 - The height of a rectangle in a frequency histogram represents the number of values in the corresponding bin

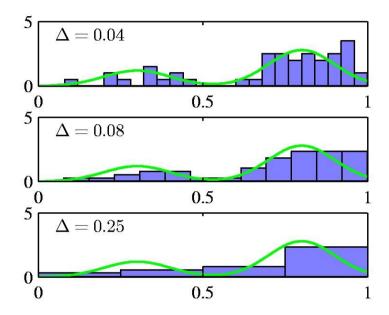
Nonparametric Methods

Histogram methods

partition the data space into distinct bins with widths and count the number of observations, n_i, in each bin.

$$p_i = \frac{n_i}{N\Delta_i}$$

Often, the same width is used for all bins,



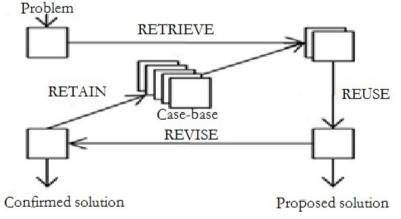
 In a D-dimensional space, using M bins in each dimension will require M^D bins!

Non Parametric Learning

- A non parametric model is one that can not be characterised by a fixed set of parameters
- A family of non parametric models is Instance Based Learning
- Instance based learning is based on the memorisation of the database
- There is not a model associated to the learned concepts
- The classification is obtained by looking into the memorised examples
- When a new query instance is encountered, a set of similar related instances is retrieved from memory and used to classify the new query instance

Case-based reasoning

- Instance-based methods can also use more complex, symbolic representations
- In case-based learning, instances are represented in this fashion and the process for identifying neighbouring instances is elaborated accordingly



- The cost of the learning process is *O*, all the cost is in the computation of the prediction
- This kind learning is also known as *lazy learning*
- One disadvantage of instance-based approaches is that the cost of classifying new instances can be high
 - Nearly all computation takes place at classification time rather than learning time
- Therefore, techniques for efficiently indexing training examples are a significant practical issue in reducing the computation required at query time

- A distance function is needed to compare the examples similarity
- The most popular metrics are the Taxicab or Manhattan metric d_1 with

$$d_1(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_1 = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_m - y_m|$$

and the Euclidean metric

$$d_2(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_2 = \sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2 + \dots + |x_m - y_m|^2}.$$

• This means that if we change the distance function, we change how examples are classified

K-Nearest Neighbor

- In nearest-neighbor learning the target function may be either discrete-valued or real valued
- Learning a discrete valued function

•
$$f: \mathfrak{R}^d \to V$$
, V is the finite set $\{v_1, \dots, v_n\}$

• For discrete-valued, the *k*-NN returns the most common value among the k training examples nearest to *x*_q.

•
$$Data = \{(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \cdots, (\mathbf{x}_N, t_N)\}$$

$$f(\mathbf{x}_{\eta}) = t_{\eta} = v_{\eta}$$

K-Nearest Neighbor

$$Data = \{(\mathbf{x}_1, f(\mathbf{x}_1)), (\mathbf{x}_2, f(\mathbf{x}_1)), \cdots, f(\mathbf{x}_N, (\mathbf{x}_N))\}$$

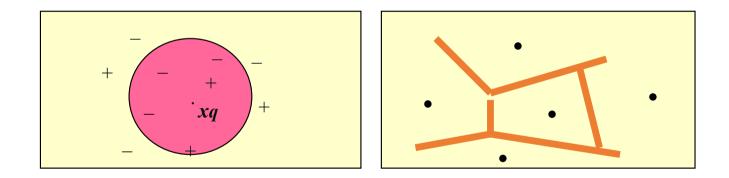
- Training algorithm
 - For each training example (x, f(x)) add the example to the list
- Classification algorithm
 - Given a query instance x_q to be classified
 - Let $x_1, ..., x_k$ k instances which are nearest to x_q

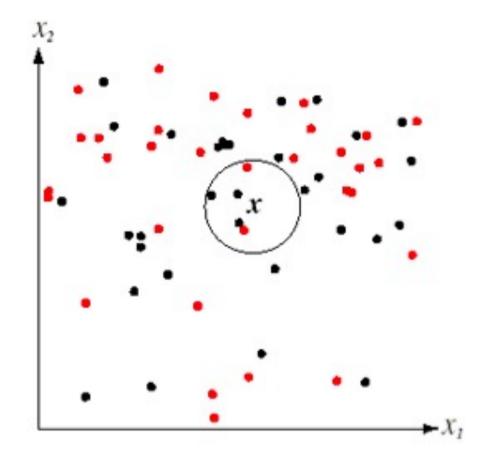
$$\hat{f}(x_q) \leftarrow \frac{\arg\max}{v \in V} \sum_{i=1}^k \delta(v, f(x_i))$$

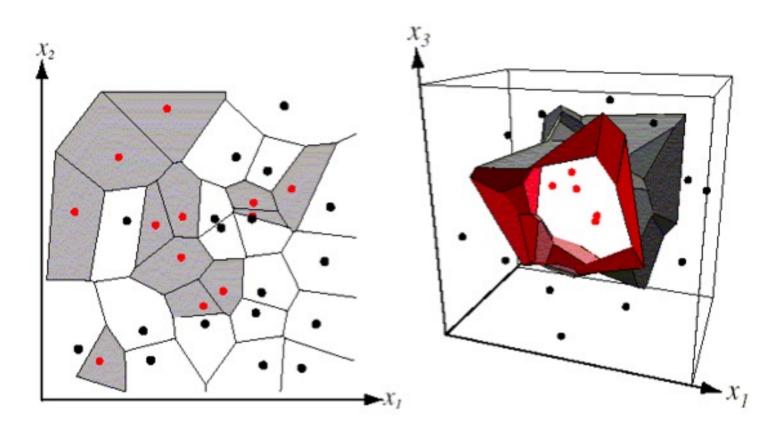
• Where $\delta(a,b)=1$ if a=b, else $\delta(a,b)=0$ (Kronecker function)

Definition of Voronoi diagram

• The decision surface induced by 1-NN for a typical set of training examples.

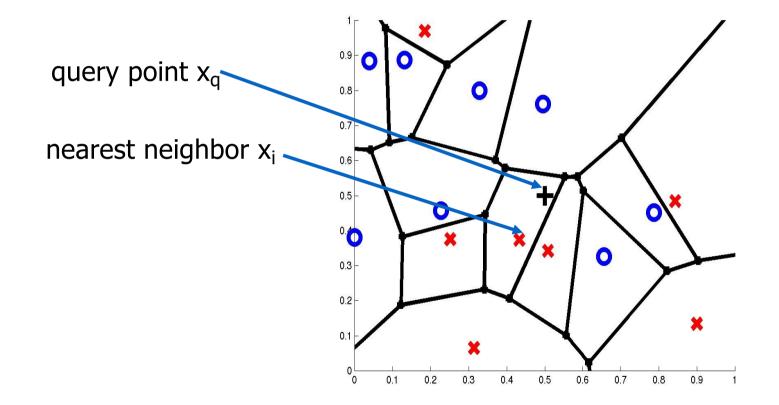




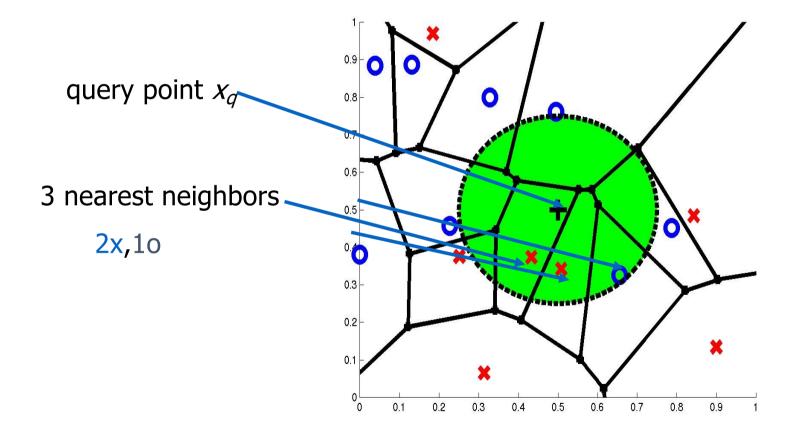


- kNN rule leeds to partition of the space into cells (Vornoi cells) enclosing the training points labelled as belonging to the same class
- The decision boundary in a Vornoi tessellation of the feature space resembles the surface of a crystall

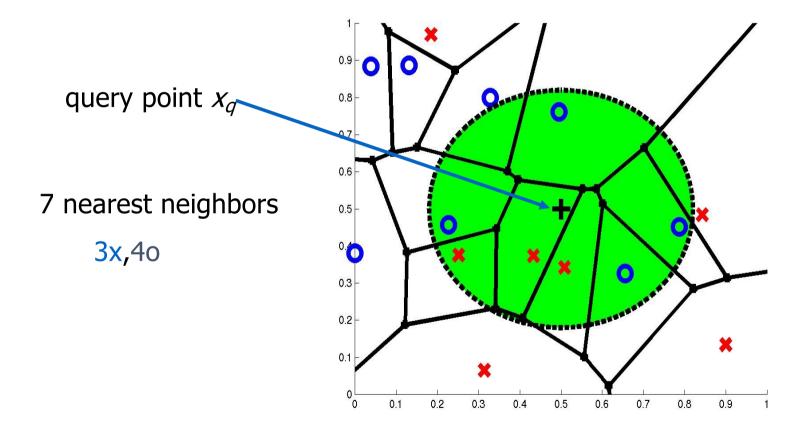
1-Nearest Neighbor



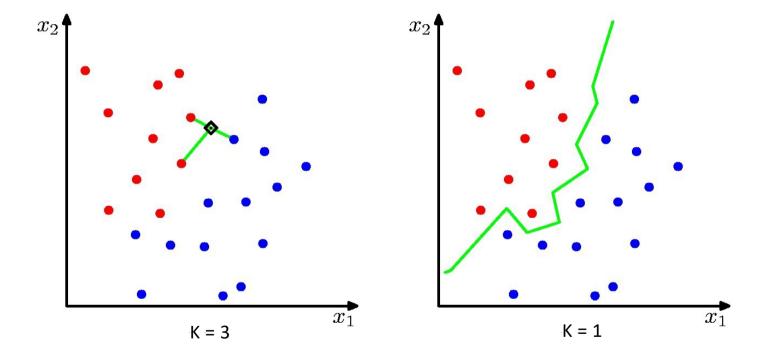
3-Nearest Neighbors



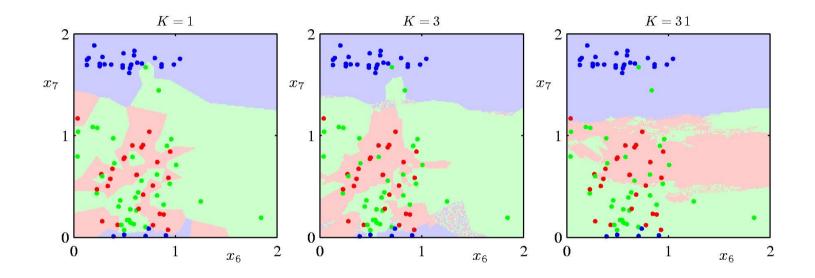
7-Nearest Neighbors



K-Nearest-Neighbours for Classification (2)



K-Nearest-Neighbours for Classification



• K acts as a smother

• For $N \to \infty$, the error rate of the 1-nearest-neighbour classifier is never more than twice the optimal error (obtained from the true conditional class distributions).

Distance Weighted

- Refinement to kNN is to weight the contribution of each k neighbor according to the distance to the query point x_q
 - Greater weight to closer neighbors
 - For discrete target functions

$$\hat{f}(x_q) \leftarrow \frac{\arg\max}{v \in V} \sum_{i=1}^k w_i \delta(v, f(x_i))$$
$$w_i = \begin{cases} \frac{1}{d(x_q, x_i)^2} & \text{if } x_q \neq x_i \\ 1 & \text{else} \end{cases}$$

How to determine the good value for *k*?

- Determined experimentally
- Start with *k=1* and use a test set to validate the error rate of the classifier
- Repeat with *k=k+2* (For two classes)
- Choose the value of *k* for which the error rate is minimum
- Note: *k* should be odd number to avoid ties

Curse of Dimensionality

- Imagine instances described by 20 features (attributes) but only 3 are relevant to target function
- Curse of dimensionality: nearest neighbor is easily misled when instance space is high-dimensional
- Dominated by large number of irrelevant features

Possible solutions

- Stretch j-th axis by weight z_j, where z₁,...,z_n chosen to minimize prediction error (weight different features differently)
- Use cross-validation to automatically choose weights z₁,..., z_n
- Note setting z_j to zero eliminates this dimension altogether (feature subset selection)
- PCA (later)

Disatvantages

- One disadvantage of instance-based approaches is that the cost of classifying new instances can be high
- How can we reduce the classification costs (time)?
- Therefore, techniques for **efficiently indexing** training examples are a significant practical issue in reducing the computation required at query time (High Dimensional Indexing, tree indexing will not work!)
- Compression, reduce the number of representatives (LVQ)
 - Two Examples...

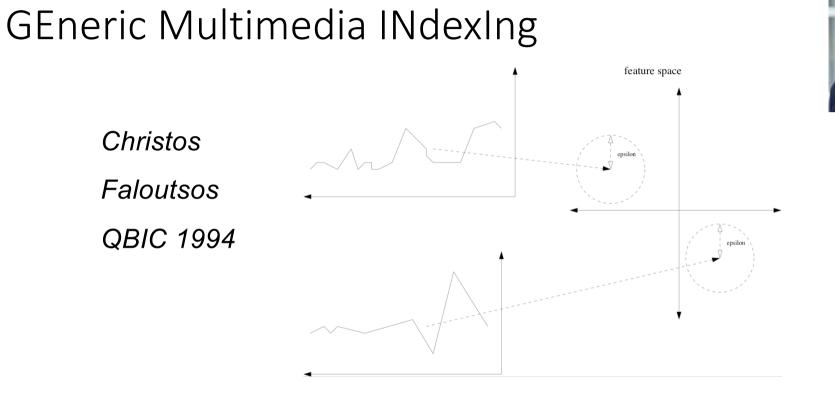
Epsilon similarity

• For a range query vector y from a collection of s vectors

 $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \cdots, \mathbf{x}_s$

all vectors \mathbf{x}_i that are ϵ -similar according to the distance function d are searched

 $d(\mathbf{x}_i, \mathbf{y}) < \epsilon.$



- a feature extraction function maps the high dimensional objects into a low dimensional space
- objects that are very dissimilar in the feature space, are also very dissimilar in the original space

Lower bounding lemma

•
$$d_{feature}(F(O_1), F(O_2)) \le d(O_1, O_2)$$

- if distance of similar "objects" is smaller or equal to ε in original space
- then it is as well smaller or equal $\boldsymbol{\epsilon}$ in the feature space

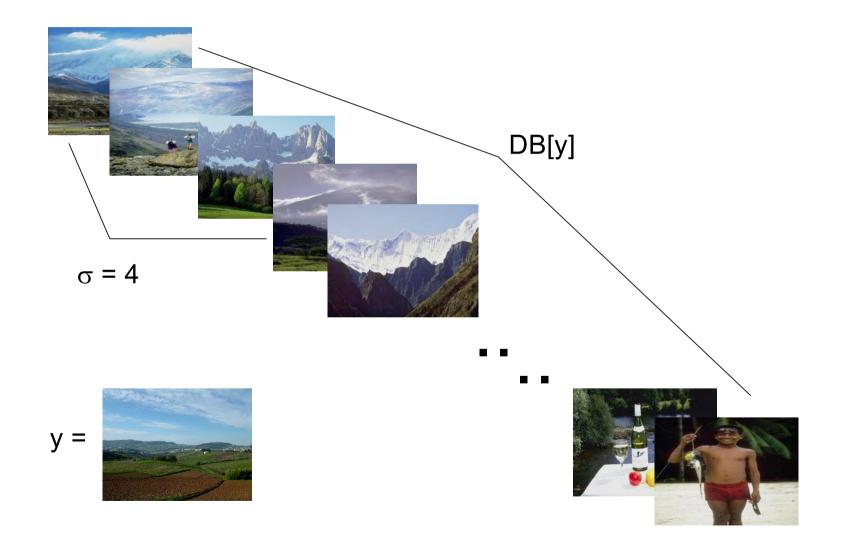
Range query

$$\{\vec{x}^{(i)} \in DB | i \in \{1..s\}\}$$

• Range query: search covers an points in the space whose Euclidian distance to the query

 Range query: search covers an points in the space whose Euclidian distance to the query y is smaller or equal to ε

$$DB[y]_{\varepsilon} := \{x^{(i)} \in DB \mid d[y]_n = d(x^{(i)}, y) \le \varepsilon\}$$
$$\sigma = |DB[y]_{\varepsilon}|$$



Linear subspace sequence

• Sequence of subspaces with, $V=U_0$ and $U_0, U_1, U_2, \dots, U_n$ $U_0 \supset U_1 \supset U_2 \supset \dots \supset U_n$

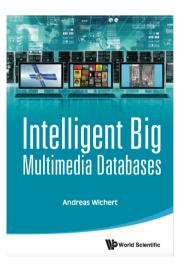
 $dim(U_0) > dim(U_1) > dim(U_2) \ldots > dim(U_n)$

• Lower bounding lemma,

$$d(U_n(x_1), U_n(x_2)) \leq \ldots \leq d(U_1(x_1), U_1(x_2)) \leq d(U_0(x_1), U_0(x_2))$$

• Example,

$$\mathbf{R}^m \supset \mathbf{R}^{m-1} \supset \mathbf{R}^{m-2} \supset \ldots \supset \mathbf{R}^1$$



DB in subspace

 $\begin{aligned} \{U_k(\vec{x})^{(i)} \in U_k(DB) | i \in \{1..s\} \} \\ d[U_k(y)]_n &:= \{d(U_k(x^{(i)}), U_k(y)) \mid \forall n \in \{1..s\} : d[U_k(y)]_n \le d[U_k(y)]_{n+1} \} \\ U_k(DB[y])_{\epsilon} &:= \{U_k(x)_n^{(i)} \in U_k(DB) \mid d[U_k(y)]_n = d(U_k(x)^{(i)}, U_k(y)) \le \epsilon \end{aligned}$

 $U_k(\sigma) = |U_k(DB[y]_{\varepsilon})|$

 $U_0(\sigma) < U_1(\sigma) < U_2(\sigma) < \ldots < U_{(n)}(\sigma) < s$

Computing costs

$$egin{aligned} &U_1(\sigma)\cdot m+U_2(\sigma)\cdot dim(U_1)+\ldots+s\cdot dim(U_n)=\ &U_1(\sigma)\cdot dim(U_0)+U_2(\sigma)\cdot dim(U_1)+\ldots+s\cdot dim(U_n)=\ &=\sum_{i=1}^n U_i(\sigma)\cdot dim(U_{(i-1)})+s\cdot dim(U_n) \end{aligned}$$

Orthogonal projection

- Corresponds to the mean value of the projected points
- Distance d between projected points in \mathbb{R}^m corresponds to the distance d_u in the orthogonal subspace U multiplied by a constant c

$$c = \sqrt{\frac{m}{f}}$$

Orthogonal projection
P:
$$\mathbb{R}^m \rightarrow U$$

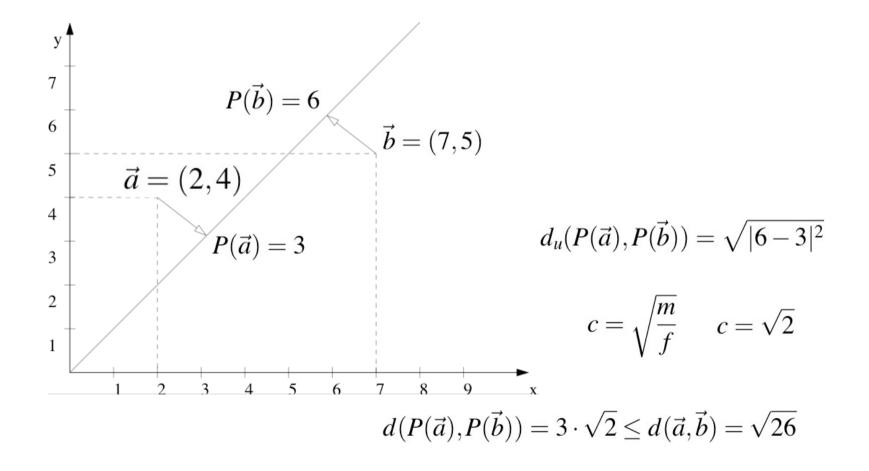
•
$$w^{(1)}, w^{(2)}, ..., w^{(m)}$$
 Orthonormalbasis of \mathbf{R}^m

• $w^{(1)}, w^{(2)}, ..., w^{(f)}$ Orthonormalbasis of U(Gram-Schmidt orthogonalization process)

$$\vec{x} = \sum_{i=1}^{f} \langle \vec{x}, w^{(i)} \rangle \cdot w^{(i)} + \sum_{i=f+1}^{m} \langle \vec{x}, w^{(i)} \rangle \cdot w^{(i)}$$
$$P(\vec{x}) = \sum_{i=1}^{f} \langle \vec{x}, w^{(i)} \rangle \cdot w^{(i)} \qquad O(\vec{x})^{\perp} = \sum_{i=f+1}^{m} \langle \vec{x}, w^{(i)} \rangle \cdot w^{(i)}$$

• Because of the Pythagorean theorem lower bound lemma follows

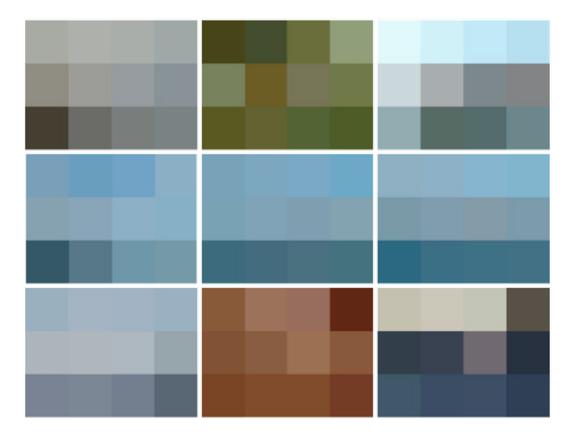
$$||\vec{x}||^{2} = ||P(\vec{x})||^{2} + ||O(\vec{x})^{\perp}||^{2} \qquad ||\vec{x}|| \ge ||P(\vec{x})||$$



- In this case, the lower bounding lemma is extended:
- let O₁ and O₂ be two objects; F(), the mapping of objects into f dimensional subspace U
- F() should satisfy the following formula for all objects, where d is a distance function in the space V and d_U in the subspace U

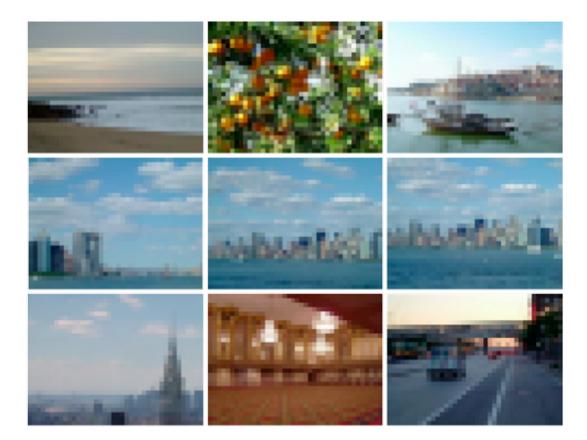
 $d_U(F(O_1), F(O_2)) \le d(F(O_1), F(O_2)) \le d(O_1, O_2)$

$$U_{3}(4*3)$$



$$U_2(8*6)$$

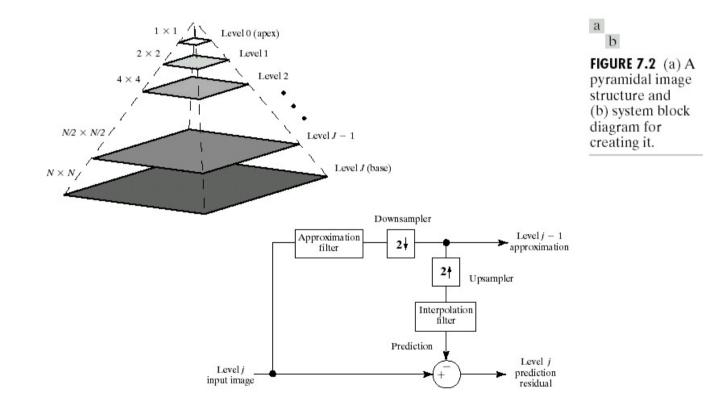
U₁ (40*30)

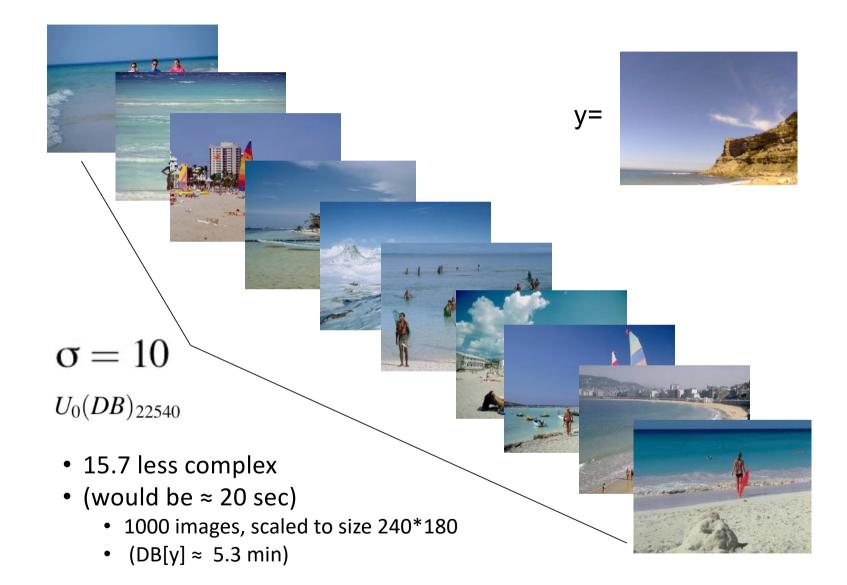


*U*₀ (240*180)



Image Pyramid





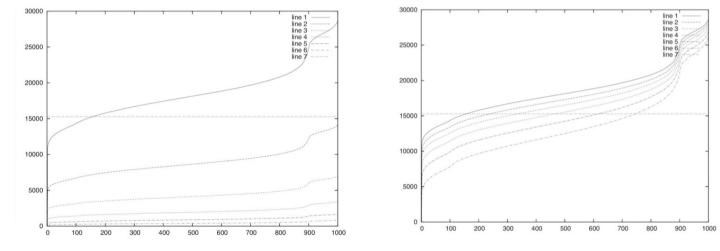
Hierarchy of subspaces

$$U_0 \supset U_1 \supset U_2 \supset U_3$$

• The distance between objects $d=d_{U0}$ in the space U_0 can be obtained from the distance d_{Uk} between objects in the orthogonal subspace U_k by multiplying the distance d_{Uk} by a constant

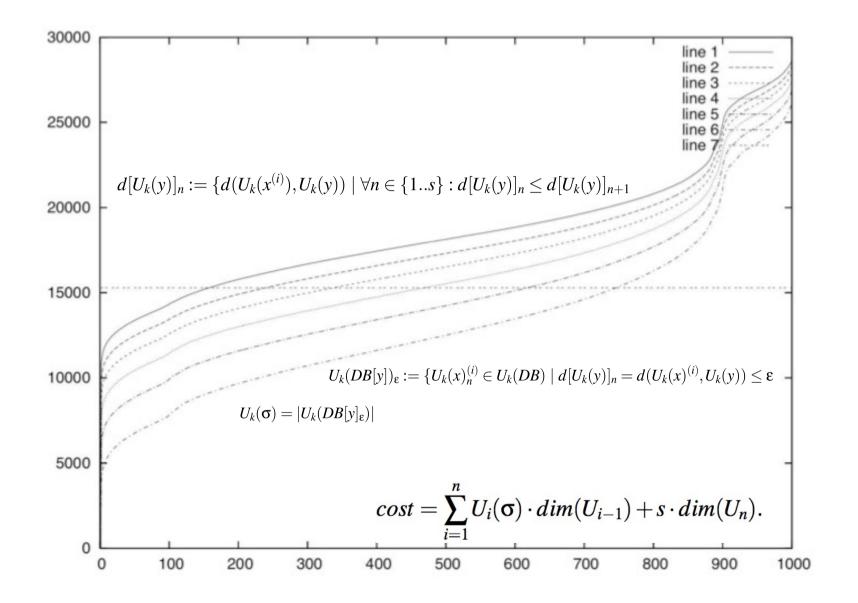
$$c_k = \sqrt{\frac{\dim(U_0)}{\dim(U_k)}}$$

Euclidian distance for a query **y** to the elements of DB



• Distance in U_k Distance in U_0

 $d_{U_k}(F_{0,k}(O_1), F_{0,k}(O_2)) \le d_{U_0}(F_{0,k}(O_1), F_{0,k}(O_2))$



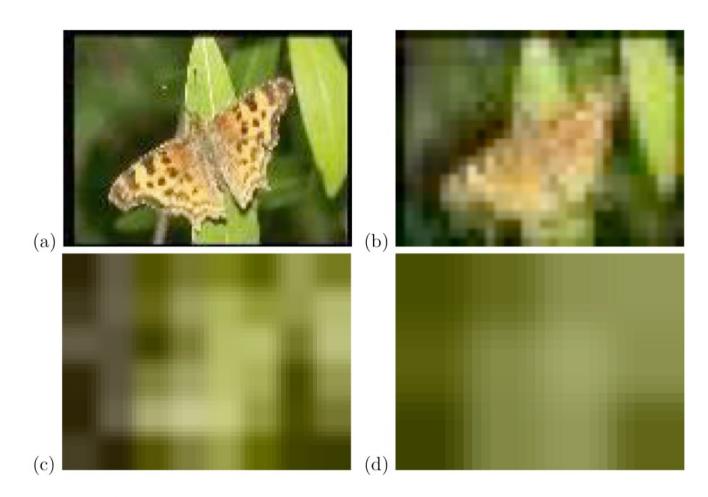
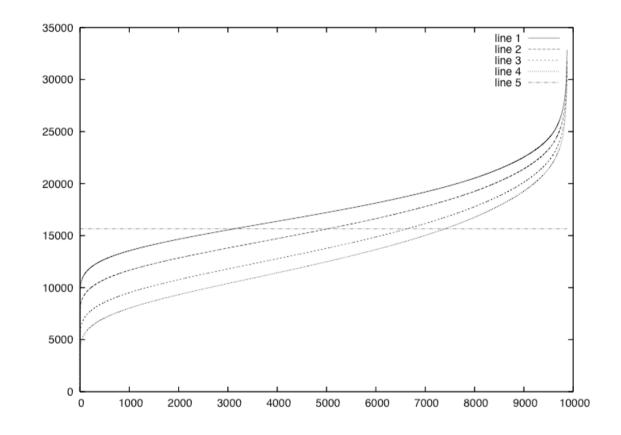
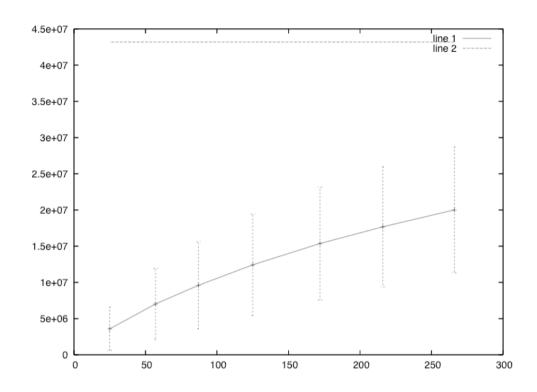


Figure 6: (a) Image of an butterfly, with the size 128×96 . (b) Image of the butterfly, resolution 32×24 . (c) The image of the butterfly resolution 8×6 . (d) The image of the butterfly, resolution 4×3 .



Database consists of **9.876** web-crawled color images

Mean Euclidian distance for a query y to the elements of DB



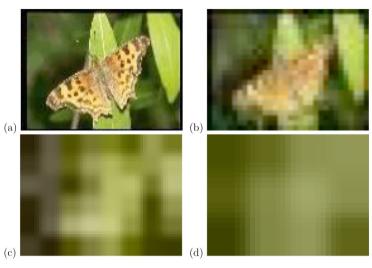


Figure 6: (a) Image of an butterfly, with the size 128×96 . (b) Image of the butterfly, resolution 32×24 . (c) The image of the butterfly resolution 8×6 . (d) The image of the butterfly, resolution 4×3 .

- Mean computing costs using the hierarchical subspace method
- Error bars indicate the standard deviation
- The x-axis indicates the number of the most similar images which are retrieved and the y-axis, the computing cost
- Database consists of **9.876** web-crawled color images

Logarithmic Cost

The cost are

logarithmic in dimension dim and the number of points N

log(N)+log(dim)

Andreas Wichert and Catarina Moreira, *Projection Based Operators in Ip space for Exact Similarity Search*, Fundamenta Informaticae, Annales Societatis Mathematicae Polonae, 136(4): 461-474, 2015

doi:10.3233/FI-2015-1166

Locally Weighted Regression

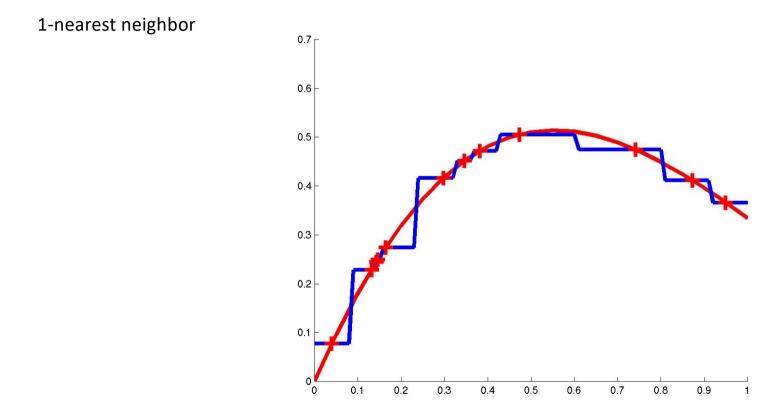
- We can extend this method from classification to regression
- Instead of combining the discrete predictions of k-neighbours we have to combine continuous predictions
- Averaging
- Local linear regression
 - K-NN linear regression fits the best line between the neighbors A linear regression problem has to be solved for each query (least squares regression)
- Local weighted regression

Continuous-valued target functions

- kNN approximating continous-valued target functions
- Calculate the mean value of the *k* nearest training examples rather than calculate their most common value

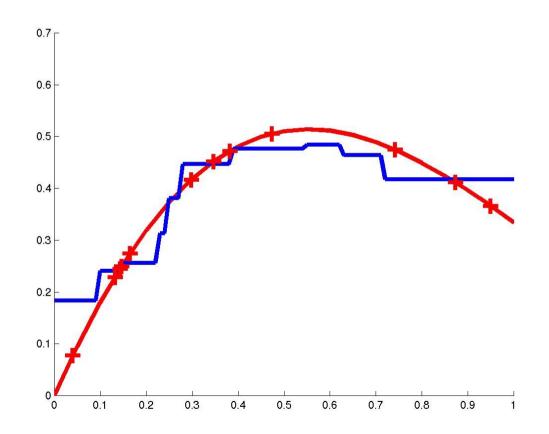
$$f: \mathfrak{R}^d \to \mathfrak{R}$$
 $\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k f(x_i)}{k}$

Nearest Neighbor (continuous)



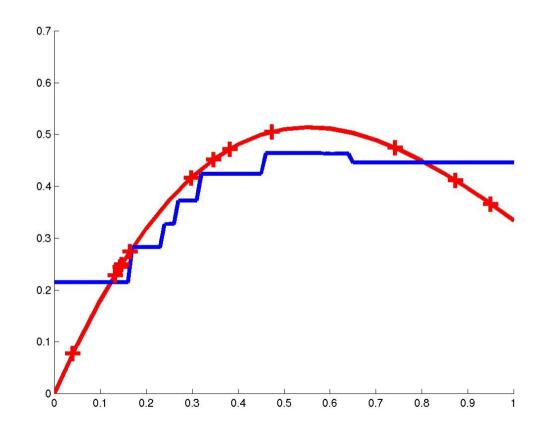
Nearest Neighbor (continuous)

3-nearest neighbor



Nearest Neighbor (continuous)

5-nearest neighbor



Distance Weighted

• For real valued functions

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i} \qquad \qquad w_i = \begin{cases} \frac{1}{d(x_q, x_i)^2} & \text{if } x_q \neq x_i \\ 1 & \text{else} \end{cases}$$

Weighted Linear Regression

- How shall we modify this procedure to derive a local approximation rather than a global one?
- The simple way is to redefine the error criterion *E* to emphasize fitting the local training examples
- Minimize the squared error over just the k nearest neighbors

Linear Unit (Before)

• Simpler linear unit with a linear activation function

$$o = \sum_{j=0}^{D} w_j \cdot x_j = net_0.$$

• We can define the training error for a training data set D_t of N elements with

$$E(\mathbf{w}) = \frac{1}{2} \cdot \sum_{k=1}^{N} (t_k - o_k)^2 = \frac{1}{2} \cdot \sum_{k=1}^{N} \left(t_k - \sum_{j=0}^{D} w_j \cdot x_{k,j} \right)^2$$

 \sim

One starts the process at some randomly chosen point $\mathbf{w}^{initial}$ and modifies the weights if required with the learning rule

$$w_j^{new} = w_j^{old} + \Delta w_j$$

and

$$\Delta w_j = -\eta \cdot \frac{\partial E}{\partial w_j}.$$

$$\frac{\partial E}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2} \cdot \sum_{k=1}^N (t_k - o_k)^2 = \frac{1}{2} \cdot \sum_{k=1}^N \frac{\partial}{\partial w_j} (t_k - o_k)^2$$

The update rule for gradient decent is given by

$$\Delta w_j = \eta \cdot \sum_{k=1}^N (t_k - o_k) \cdot x_{k,j}.$$

Now we have the basis functions for dimension D = 1 with $\phi_0(x) = 1$

$$\hat{f}(x_k) = \sum_{j=0}^{M-1} w_j \cdot \phi_j(x_k) = \mathbf{w}^T \Phi(x_k)$$

$$\hat{f}(x_k) = w_0 + w_1 \cdot \phi_1(x_k) + w_2 \cdot \phi_2(x_k) + \dots + w_{M-1} \cdot \phi_{M-1}(x_k)$$
$$\hat{f}(x_k) = o_k, \quad f(x_k) = t_k$$
$$E(\mathbf{w}) = \frac{1}{2} \cdot \sum_{k=1}^N (f(x_k) - \hat{f}(x_k))^2$$

$$E(\mathbf{w}) = \frac{1}{2} \cdot \sum_{k=1}^{N} (f(x_k) - \hat{f}(x_k))^2$$

The update rule for gradient decent is given by

$$\Delta w_j = \eta \cdot \sum_{k=1}^N (f(x_k) - \hat{f}(x_k)) \cdot \phi_j(x_k)$$

Minimize the squared error over just the k nearest neighbours:

$$E(\mathbf{w}) = \sum_{\substack{x_i \text{ is } kNN \text{ of } x_q}} (f(x_k) - \hat{f}(x_k))^2$$
$$\Delta w_j = \eta \cdot \sum_{\substack{x_i \text{ is } kNN \text{ of } x_q}} (f(x_k) - \hat{f}(x_k)) \cdot \phi_j(x_k)$$

Minimize the squared error over the entires D of training examples, while weighting the error of each training example by some decreasing function Kof its distance from x_q

$$E(\mathbf{w}) = \sum_{k=1}^{N} f(x_k) - \hat{f}(x_k))^2 \cdot K(d(x_q, x_k))$$

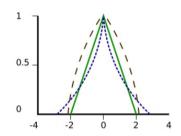
$$E(\mathbf{w}) = \sum_{k=1}^{N} f(x_k) - \hat{f}(x_k))^2 \cdot K(d(x_q, x_k))$$

Kernel K function is the function of distance that is used to determine the weight of each training example.

Local weighted regression uses a function K to weight the contribution of the neighbours depending on the distance, this is done using a kernel function

Kernel functions have a width parameter that determines the decay of the weight (it has to be adjusted)

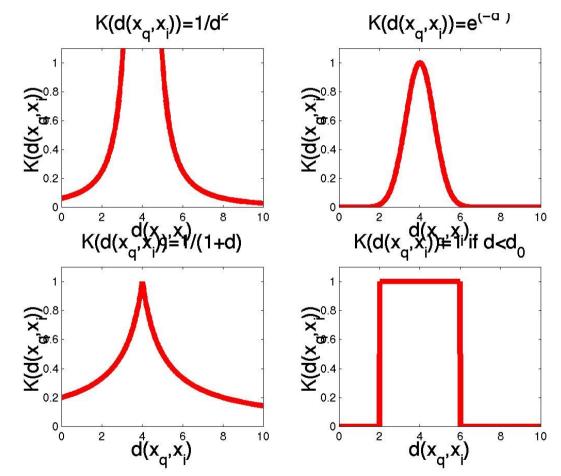
Weighted Linear Regression



- Kernel functions have a width parameter that determines the decay of the weight (it has to be adjusted)
- A weighted linear regression problem has to be solved for each query (gradient descent search)
- Combine both approaches

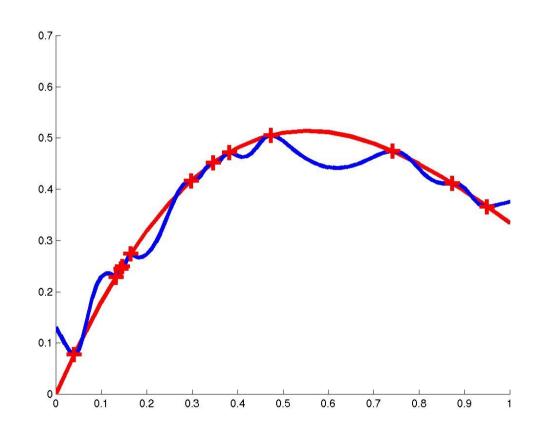
$$E(\mathbf{w}) = \sum_{x_i \text{ is } kNN \text{ of } x_q} f(x_k) - \hat{f}(x_k))^2 \cdot K(d(x_q, x_k))$$

Kernel Functions



Distance Weighted NN

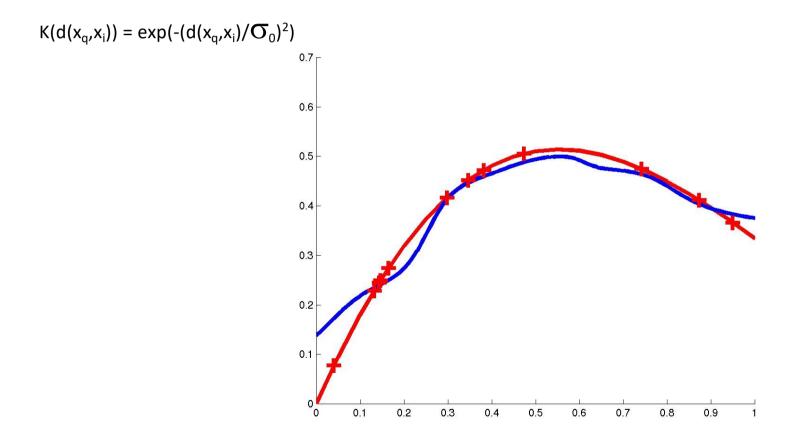
 $K(d(x_q, x_i)) = 1/d(x_q, x_i)^2$



Distance Weighted NN

 $K(d(x_q, x_i)) = 1/(d_0 + d(x_q, x_i))^2$ 0.7 _[0.6 0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

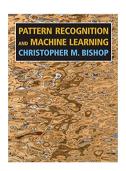
Distance Weighted NN



- Can fit low dimensional, very complex, functions very accurately
- Training, adding new data, is almost free
- Doesn't forget old training data
- Lazy: wait for query before generalizings
- Lazy learner can create local approximations

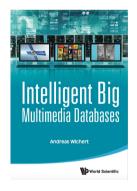
Literature

- Tom M. Mitchell, Machine Learning, McGraw-Hill; 1st edition (October 1, 1997)
 - Chapter 8



- Christopher M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), Springer 2006
 - Section 2,5

Literature (Additional)



- Intelligent Big Multimedia Databases, A. Wichert, World Scientific, 2015
 - Chapter 6: Low Dimensional Indexing
 - Chapter 7: Approximative Indexing
 - Chapter 8: High Dimensional Indexing