_ecture 19: K Nearest
Neighbour & Locally Weighted
Regression

Andreas Wichert
Department of Computer Science and Engineering

Técnico Lisboa

Parametric Models

* We select a hypothesis space and adjust a fixed set of parameters with the
training data, y = y(x, w)

* We assume that the parameters w summarise the training (compression)
* This methods are called parametric models

* Example:

Liner Regression

Non Linear Regression
Perceptron

Stochastic Gradient Descent

* When we have a small amount of data it makes sense to have a small set of
parameters (avoiding overfitting)

* When we have a large quantity of data, overfitting is less an issue

Histogram

 To construct a histogram

* Divide the range between the highest and lowest values in a distribution into
several bins of equal size

* Toss each value in the appropriate bin of equal size

* The height of a rectangle in a frequency histogram represents the number of
values in the corresponding bin

Nonparametric Methods

Histogram methods

partition the data space into distinct
bins with widths and count the
number of observations, n;, in each

bin.

n;

T NA,

Pi

Often, the same width is used for all

bins, * In a D-dimensional space,
using M bins in each
dimension will require M°
bins!

Non Parametric Learning

* A non parametric model is one that can not be characterised by a
fixed set of parameters

* A family of non parametric models is Instance Based Learning
* Instance based learning is based on the memorisation of the database

* There is not a model associated to the learned concepts
* The classification is obtained by looking into the memorised examples

 When a new query instance is encountered, a set of similar related
instances is retrieved from memory and used to classify the new

guery instance

Case-based reasoning

* Instance-based methods can also use more complex, symbolic
representations

* In case-based learning, instances are represented in this fashion and
the process for identifying neighbouring instances is elaborated
accordingly

Problem
s

| RETRIEVE
. [?/Uil N

Case-base
REVISE

\) N

Confirmed solution Proposed solution

* The cost of the learning process is 0, all the cost is in the computation
of the prediction

* This kind learning is also known as lazy learning

* One disadvantage of instance-based approaches is that the cost of
classifying new instances can be high
* Nearly all computation takes place at classification time rather than learning
time
* Therefore, techniques for efficiently indexing training examples are a

significant practical issue in reducing the computation required at
guery time

* A distance function is needed to compare the examples similarity

* The most popular metrics are the Taxicab or Manhattan metric d,
with
di(x,y) = ”X - YHI = |-T'1 — ';’/1| + |51'7‘2 — '!/‘2| +r T |-"?1'7'r‘11» - ym»|

e and the Euclidean metric

da(x,y) = [|x = ¥l2 = V]T1 — 912 + |22 — 22+ - + |Tm — Ym[*-

* This means that if we change the distance function, we change how
examples are classified

K-Nearest Neighbor

* In nearest-neighbor learning the target function may be either
discrete-valued or real valued

* Learning a discrete valued function
R/ -V, Visthefinite set {vy,.....,v,}

* For discrete-valued, the k-NN returns the most common value among
the k training examples nearest to xg.

e Data = {(Xl, /‘1), (Xg, /2), PR (XA,\;', /\)}

./'(Xu> p— [‘71 = Uy

K-Nearest Neighbor
Data = {(x31, f(x1)), (X2, f(x1)), -+ ,, f(Xn, (XNn))}

* Training algorithm
* For each training example (x,f(x)) add the example to the list

* Classification algorithm

* Given a query instance x, to be classified
* Let x,,..,x; k instances which are nearest to x,

Faep=" vEV }ja(v F(x)

* Where (a,b)=1 if a—b, else o(a,b)= 0 (Kronecker function)

Definition of Voronoi diagram

* The decision surface induced by 1-NN for a typical set of
training examples.

>\

* KNN rule leeds to partition of the space into cells (Vornoi cells)
enclosing the training points labelled as belonging to the same

class

* The decision boundary in a Vornoi tessellation of the feature space
resembles the surface of a crystall

1-Nearest Neighbor

1
09

guery point XqN

0.7F

nearest neighbor Xx; ~]

05

3-Nearest Neighbors

1r

09r

query point)(q\:i

3 nearest neighbors

2X,10

/-Nearest Neighbors

1~

09

query point Xq\:

06

/ nearest neighbors s}
3x,40 § o)

K-Nearest-Neighbours for Classification (2)

2]] o)
O &
[} ®
[® ® &
.
@ L @ 5]
5] [3)
@))
® - ® e
O @ o
@ 5] ® ®
=] /
@}] © ® ® ® @
e o ® 5 o®
& &
T X1

K-Nearest-Neighbours for Classification

T

K=1 K =3
2
.‘ -] 0.' .3 ® []
* g .!'- g ° e goo .!'0 g e
X7
1 = 1 =
L LN
& &
®* &
0 s ® 0 [] .. I
0 1 i 0 1 i

* K acts as a smother

v
o. et .
e goe .!'- g
Z7
1 ®
(] X
e
* =
0]

* For N — 00, the error rate of the 1-nearest-neighbour classifier is never more than

twice the optimal error (obtained from the true conditional class distributions).

Distance Weighted

* Refinement to kNN is to weight the contribution of each k neighbor
according to the distance to the query point x,
* Greater weight to closer neighbors
* For discrete target functions

Fap=" vEV Evvé(v f(x))

1 .
i X # X,
d(xq,xi)2 / o

1 else

<
I

How to determine the good value for k?

* Determined experimentally

e Start with k=1 and use a test set to validate the
error rate of the classifier

* Repeat with k=k+2 (For two classes)

 Choose the value of k for which the error rate is
minimum

* Note: k should be odd number to avoid ties

Curse of Dimensionality

* Imagine instances described by 20 features (attributes) but only 3 are
relevant to target function

* Curse of dimensionality: nearest neighbor is easily misled when
instance space is high-dimensional

* Dominated by large number of irrelevant features

Possible solutions

* Stretch j-th axis by weight z, where z,,...,z, chosen to minimize
prediction error (weight different features differently)

* Use cross-validation to automatically choose weights z,,...,2,

* Note setting z; to zero eliminates this dimension altogether (feature
subset selection)

* PCA (later)

Disatvantages

* One disadvantage of instance-based approaches is that the cost of
classifying new instances can be high

 How can we reduce the classification costs (time)?

* Therefore, techniques for efficiently indexing training examples are a
significant practical issue in reducing the computation required at
qguery time (High Dimensional Indexing, tree indexing will not work!)

* Compression, reduce the number of representatives (LVQ)
* Two Examples...

Epsilon similarity
* For a range query vector y from a collection of s vectors

xl'. x2x.§ e -.x.‘p‘
all vectors x; that are e-similar according to the distance function d are searched

(](Xi_, y) < E.

GEneric Multimedia INdexIng

feature space

A

Christos
Faloutsos -

QBIC 1994

-

 a feature extraction function maps the high dimensional objects into a
low dimensional space

* objects that are very dissimilar in the feature space, are also very
dissimilar in the original space

Lower bounding lemma

° dfeature(F(Ol)?F(Oz)) = d(Ol’Oz)

* if distance of similar “objects” is smaller or equal to ¢in original space
* then it is as well smaller or equal € in the feature space

Range query

() € DB|i € {1..s}}

y]n = {d(x(i)a)’) | Ve {l..s} : d[y|, < d[y]n+1}

* Range query: sediCl covers dil POINLS I Lie spdee wiiose cuciididrl uistance to the query
y is smaller or equal to €

DB[y|. := {x") € DB | d[y]» = d(x",y) < ¢}

o = |DBly||

Linear subspace sequence

* Sequence of subspaces with, V=U, and I"[B”lgem BL[J
Uy, Ui, Us, ..., U, Multimedia Databases

U DU DU, D...DO U,
dim(Uy) > dim(U,) > dim(U,) ... > dim(U,)

* Lower bounding lemma,

d(Un(x1),Un(x2)) < ... <d(Ui(x1),Ui(x2)) < d(Uo(x1),Up(x2))

* Example,

R"HOR®™15R™ 25 SR!

DB in subspace

{U(®)Y € U(DB)Ji € {1..5}}

d|Ui(y)n:= {d(Uk(x(i)), Uc()) | Vn € {1..s} : d[Uk(y)]n < A[Uk(y)]n+1}

Uk(DB[y])e := {Uk(x)\) € U(DB) | d[Ui(y)]n = d(Ui(x)), Ui(y)) <

U(0) = |U(DBly]:)|

Uo(O') < U[(O’) < Uz(()) < <) U(n)(()') s

Computing costs

Ui(0) -m+Uy(0) -dim(Uy) +...+s-dim(U,) =

Ui (0) - dim(Uy) + Uy(0) - dim(Uy) + ... +s-dim(U,) =

— E U,-(O’) . dzm(U(,_l) + - dlm(Un)

=1

Orthogonal projection

* Corresponds to the mean value of the projected points

* Distance d between projected points in R™ corresponds to the
distance d, in the orthogonal subspace U multiplied by a constant ¢

m

Orthogonal projection
P:R™ > U

o« Wi w@ wm™ Orthonormalbasis of R™
o« w w2 wf Orthonormalbasis of U

(Gram-Schmidt orthogonalization process)

f : . m . .
=Y <xwld > w4 ; < 2wl > .yl
=1 i=f+1
Ji _ ' m . ‘
P =Y <Zwl > w0 OF)*" = Z £ 0. 50
=1 i=f+1

* Because of the Pythagorean theorem lower bound lemma follows

1Z]? = IP@I*+[l0@)*]* e ||7]| > [|PF)]]

U={(x3,x;) € R? [x;=x,}

A

p(B):o.

b=(7,5)

* In this case, the lower bounding lemma is extended:

* let O, and O, be two objects; F(), the mapping of
objects into f dimensional subspace U

* F() should satisfy the following formula for all
objects, where d is a distance function in the space V
and d in the subspace U

dU(F(01)7F(02)) Sd(F(Ol)aF(OQ)) Sd(OIaOQ)

U, (4*3)

U, (876)

U, (240*180)

Image Pyramid

gy AN Level 0 (apex)

2x2 Level 1
4x4 N
e | |
%
N2 X N2/

e

N XNy

Level j
input image

Level 2

Level J - 1

X
Level J (base)

Downsampler

o Apprl(_;.;(ligalion 2 +
2f Upsampler
lnlcrp!)lalion
filter
Prediction
L. +_

Tevelj— 1

T > approximation

Level j
prediction
residual

a
b

FIGURE7.2 (a) A
pyvramidal image
structure and

(b) system block
diagram for
creating it.

o=10
Uo(DB) 22540

* 15.7 less complex

* (would be = 20 sec)
* 1000 images, scaled to size 240*180
* (DB[y] = 5.3 min)

Hierarchy of subspaces

UoD U DU, D Us

* The distance between objects d=d, in the space U, can be obtained
from the distance d, between objects in the orthogonal subspace U,
by multiplying the distance d, by a constant

dim(U())
dim(Uy)

Cr—

Euclidian distance for a query y to the
elements of DB

00000000000000000000000000
\\\\\\

\\\\\\
\\\\\
\\\\\
JJJJJ
25000 | fresf o4 WOF g

\\\\\

0000000000000

‘‘‘‘‘‘‘‘‘‘‘‘‘‘

000000000000

xxxxxxxxx

* Distance in U, Distance in U,

dy,(Fox(01),Fox(02)) < dy,(Fox(O1),Fox(02))

30000 1 1] | T T T T

line 1
line 2 -
line 3
I§ne4 - |
25000 |- ine 8-~
line 7
AU = {d(UxD), Ur(y)) | ¥n € {1..s} - d[Ue0)]n < AU i1
20000 |- /; |
15000 f ’ o i g W d
10000 | - U;c(bB[y])e=={Uk(x)£i)eUk(DB) | d[U)], = d(U(x)D,U(y)) <& -
Ui(o) = [Uk(DB[yle)|
5000 F |
cost = ZUi(G) -dim(U;j—1) +s-dim(Uy).
i=1
0 - 1 1 1 1 ! . . .

0 100 200 300 400 500 600 700 800 900 1000

() (d)

Figure 6: (a) Image of an butterfly, with the size 128 x 96. (b) Image of the butterfly,
resolution 32 x 24. (c¢) The image of the butterfly resolution 8 x 6. (d) The image
of the butterfly, resolution 4 x 3.

35000 T T T T T T T T T

line 1
line 2
line 3
line 4
30000 |- v i
25000 | -
20000 | -
15000 | . .

10000 [e |

5000

0 | L L 1 1 1 1 L 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Database consists of 9.876 web-crawled color images

Mean Euclidian distance for a query y to the elements of DB

4.5e+07

4e+07

3.5e+07

3e+07

2.5e+07

2e+07

1.5e+07

1e+07

5e+06

Mean computing costs using the hierarchical subspace method

line 1
line 2

50 100 150 200 250

Error bars indicate the standard deviation

300

(©) (@

Figure 6: (a) Image of an butterfly, with the size 128 x 96. (b) Image of the butterfly,
resolution 32 x 24. (c) The image of the butterfly resolution 8 x 6. (d) The image
of the butterfly, resolution 4 x 3.

S . L]

The x-axis indicates the number of the most similar images which are
retrieved and the y-axis, the computing cost

Database consists of 9.876 web-crawled color images

Logarithmic Cost

The cost are
logarithmic in dimension dim and the number of points N

log(N)+log(dim)

Andreas Wichert and Catarina Moreira, Projection Based Operators in
Ip space for Exact Similarity Search, Fundamenta Informaticae,
Annales Societatis Mathematicae Polonae, 136(4): 461-474, 2015

doi:10.3233/FI-2015-1166

http://dx.doi.org/10.3233/FI-2015-1166

Locally Weighted Regression

* We can extend this method from classification to regression

Instead of combining the discrete predictions of k-neighbours we have to
combine continuous predictions

Averaging

Local linear regression

* K-NN linear regression fits the best line between the neighbors
A linear regression problem has to be solved for each query (least squares
regression)

Local weighted regression

Continuous-valued target functions

* KNN approximating continous-valued target functions

 Calculate the mean value of the k nearest training examples rather
than calculate their most common value

k

Y fx)

iR >R fx,)< &t ;

Nearest Neighbor (continuous)

1-nearest neighbor

0.7

06

05

0.4r

03

0.2

011

0

0

!
0.1

1
0.2

1
0.3

|
0.4

Il
0.5

Il
0.6

I
0.7

|
0.8

1
0.9

|
1

Nearest Neighbor (continuous)

3-nearest neighbor

0.7

06

05

0.4

03|

0.2F

01}

I
0.1

!
0.2

!
03

I
0.4

!
05

!
0.6

!
0.7

L
0.8

!
0.9

Nearest Neighbor (continuous)

5-nearest neighbor

0.7

0.6

051

0.4

03

021

01 =

!
0.1

I
0.2

1
03

I
0.4

I
0.5

I
0.6

I
0.7

I
0.8

I
0.9

Distance Weighted

* For real valued functions

A Ewif(xi)
Fxp <

2"
i=1

J\\

al(xq,xl.)2
1

o

else

= X.

Weighted Linear Regression

* How shall we modify this procedure to derive a local approximation
rather than a global one?

* The simple way is to redefine the error criterion E to emphasize fitting
the local training examples

* Minimize the squared error over just the k nearest neighbors

Linear Unit (Before)

e Simpler linear unit with a linear activation function

D
0= E w; + T; = nety.
j=0

* We can define the training error for a training data set D, of N
elements with

One starts the process at some randomly chosen point wi@! and modifies
the weights if required with the learning rule

new __ , old ‘
wi® = wi® + Aw;

and -
A’U) —’17 8’1_1)]
OE 01 1 L9
(tk—o0k)’ =2-) —(te —ox)?
511)] Bwj kz::l 2 kzz:l ow,

The update rule for gradient decent is given by

N
Aw; =n- E (tx — o) « Tk, ;-
k=1

Now we have the basis functions for dimension D = 1 with ¢y(x) =1

M-1

flaw) =) wj-¢j(xr) = w'd(xy,)

j=0

f(xr) = wo + wy - d1(xp) +wa - Po(k) + -+ war—1 - ar—1(ws)
flax) = ok, flaw) =t

N

Bw) = 3 3 () — flz)?

k=1

1 N
=3 Z i)}
k=1

The update rule for gradient decent is given by

N
Aw;=1n-Y (f(tr)) - i (k)
k=1

Minimize the squared error over just the k nearest neighbours:

E(w) = Z (f(zx) — f(zx))?

x; 18 kNN of xzq4
Aw; =1 - > (flaw) — f(zx)) - ds(n)
x; 18 kNN of zq4

Minimize the squared error over the entires D of training examples, while
weighting the error of each training example by some decreasing function K
of its distance from =z,

N

> fl@n) = fmn)? - K(d(zq, 21))

k=1

E(w)

N
E(w) =) f(ax) = f(xx))® - K(d(zq, 21))

k=1

Kernel K function is the function of distance that is used to determine the
weight of each training example.

Local weighted regression uses a function K to weight the contribution of
the neighbours depending on the distance, this is done using a kernel func-
tion

Kernel functions have a width parameter that determines the decay of the
weight (it has to be adjusted)

Weighted Linear Regression

* Kernel functions have a width parameter that determines the decay
of the weight (it has to be adjusted)

* A weighted linear regression problem has to be solved for each query
(gradient descent search)

* Combine both approaches

Ew)= Y flan) - f@w)? - K(dagz0))

xz; 18 kNN of x4

Kernel Functions

K((x, X))=1/ct K((x, x))=e"™®
1 | | ‘ | 1 | I | |
29.8 F 29.8
X X
ot w6
))
30.4 3 30.4
X X
02t 02t
00 2 d4 6 8 10 00 2 d4 6 8 10
K(d0 K2t (1-+0) (o Xt dedty
29.8
X
w6
)
30.4
X
02t
0
0

Distance Weighted NN

K(d(quxi)) = 1/ d(XqIXi)2

0.7

06

051

0.4+

03

0.2

0.1

I
0.1

I
0.2

I
0.3

!
0.4

!
05

I
0.6

I
0.7

I
0.8

I
0.9

Distance Weighted NN

K(d(xg,x)) = 1/(dg+d(xq,x)))?

0.7

06

05

0.4r

03|

02f

0.1F

|
0.1

1
0.2

|
0.3

|
0.4

1
0.5

1
0.6

1
0.7

|
0.8

|
0.9

Distance Weighted NN

K(d(quxi)) = exp('(d(quxi)/GO)z)

0.7

0.6+

05+

0.4r

031

0.2+

0=

0

0

I
0.1

1
0.2

1
0.3

1
0.4

I
0.5

I
0.6

I
0.7

I
0.8

I
0.9

|
1

* Can fit low dimensional, very complex, functions very accurately
* Training, adding new data, is almost free

* Doesn’t forget old training data

* Lazy: wait for query before generalizings

* Lazy learner can create local approximations

Literature

* Tom M. Mitchell, Machine Learning, McGraw-Hill; 1st
edition (October 1, 1997)

e Chapter 8

; * Christopher M. Bishop, Pattern Recognition and
== Machine Learning (Information Science and
Statistics), Springer 2006

* Section 2,5

Literature (Additional)

* Intelligent Big Multimedia Databases, A. Wichert,
World Scientific, 2015
* Chapter 6: Low Dimensional Indexing
* Chapter 7: Approximative Indexing

Intelligent Big

Multimedia Databases

* Chapter 8: High Dimensional Indexing

