
Lecture 17: Autoencoders

Andreas Wichert
Department of Computer Science and Engineering

Técnico Lisboa



Structure of an Autoencoder

• An autoencoder is a neural network 
that is trained to attempt to copy its 
input to its output. 
• It has a hidden layer h that 

describes a code used to represent 
the input. 
• The network may be viewed as 

consisting of two parts: 
• An encoder function h = f(x) 
• A decoder that produces a 

reconstruction r = g(h). 



• Unsupervised Learning
• Data: no labels!
• Goal: Learn the structure of the 

data

• Traditionally, autoencoders were 
used for dimensionality 
reduction or feature learning. 



Avoiding Trivial Identity 

• Undercomplete autoencoders 
• h has lower dimension than x
• f or g has low capacity (e.g., linear g) 
• Must discard some information in h

• Overcomplete autoencoders
• h has higher dimension than x
• Must be regularized 



Undercomplete Autoencoders 

• An autoencoder whose code dimension is less than the input dimension is 
called undercomplete 
• Minimising the Loss function

• If our input is interpreted as bit vectors or vectors of bit probabilities the 
cross entropy can be used 



Applications

• Dimensionality reduction 
• Visualization
• Feature extraction
• How to learn binary codes
• How good are 256-bit codes for retrieval of small color images?



Undercomplete AE

𝑥

"𝑥

𝑤

𝑤′
𝑓 𝑥

• Hidden layer is Undercomplete if 
smaller than the input layer
• Compresses the input
• Compresses well only for the 

training dist.

• Hidden nodes will be
• Good features for the training 

distribution.
• Bad for other types on input



• trained with backpropagation using minibatches 

• Learning an undercomplete representation forces the autoencoder to 
capture the most important features of the training data.
• When the decoder is linear and L is the mean squared error, an 

under- complete autoencoder learns to span the same subspace as 
PCA 



• Autoencoders with nonlinear encoder functions f and nonlinear 
decoder functions g can thus learn a more powerful nonlinear 
generalization of PCA (later) 





Too much Capacity 

• An autoencoder with a one-dimensional code but a very powerful 
nonlinear encoder could learn to represent each training example x(i)
with the code i. 
• The decoder could learn to map these integer indices back to the 

values of specific training examples. 
• An autoencoder trained to perform the copying task can fail to learn 

anything useful about the dataset if the capacity of the autoencoder 
is allowed to become too great. 



Deep Autoencoders
(Geoffrey Hinton with Ruslan Salakhutdinov)

• They always looked like a really nice 
way to do non-linear dimensionality 
reduction:

• But it is very difficult to optimize 
deep autoencoders using 
backpropagation.

• Layer-wise training

1000  neurons

500 neurons

500 neurons

250 neurons

250 neurons

30

1000  neurons

28x28

28x28

1

2

3

4

4

3

2

1

W

W

W

W

W

W

W

W

T

T

T

T



Layer-wise

• Pretraining involves successively adding a new hidden layer to a 
model and refitting
• Allowing the newly added model to learn the inputs from the existing 

hidden layer, often while keeping the weights for the existing hidden 
layers fixed.
• This gives the technique the name “layer-wise” as the model is 

trained one layer at a time.



A comparison of methods for compressing 
digit images to 30 real numbers.
• Real Data

• 30-D   deep auto



Compressing a document  count vector to 2 numbers 

• We train the autoencoder 
to reproduce its input 
vector as its output

• This forces it to compress as 
much information as 
possible into the 2 real 
numbers in the central 
bottleneck.

• These 2 numbers are then a 
good way to visualize 
documents.

2000  reconstructed counts

500 neurons

2000  word counts

500 neurons

250 neurons

250 neurons

2

output 
vector

real-valued units



• We train the 
autoencoder to 
reproduce its input 
vector as its output

• This forces it to 
compress as much 
information as possible 
into the 2 real numbers

• Then use different 
colors for different 
document categories



Overcomplete Autoencoders 

• One way to obtain useful features from the autoencoder is to 
constrain h to have bigger dimension than x.
• An autoencoder whose code dimension is bigger than the input 

dimension is called overcomplete 
• For Overcomplete Autoencoders a linear encoder and linear decoder 

can learn to copy the input to the output without learning anything 
useful about the data distribution. 
• A regularized autoencoder can be nonlinear and overcomplete but 

still learn something useful about the data distribution even if the 
model capacity is great enough to learn a trivial identity function. 



Sparse Autoencoders 

• Limit capacity of autoencoder by adding a term to the cost function 
penalizing the code for being larger 
• Special case of variational autoencoder

• Probabilistic model
• Laplace prior corresponds to l1 sparsity penalty Dirac variational 

posterior 



Sparse Autoencoders 



Sparse Autoencoders 

• An autoencoder that has been regularized to be sparse must respond 
to unique statistical features of the dataset it has been trained on, 
rather than simply acting as an identity function. 
• In this way, training to perform the copying task with a sparsity 

penalty can yield a model that has learned useful features 
• One way to achieve actual zeros in h for sparse autoencodersis to use 

rectified linear units to produce the code layer. 
• With a prior that actually pushes the representations to zero λ · ∥w∥1, 

one  can  indirectly control the average number of zeros in the 
representation. 



Sparsely Regulated Autoencoders

- We want our learned features to be as sparse as possible.
- With sparse features we can generalize better.

= 1* + 1* + 1* + 1* + 1*

+ 1* + 1* + 0.8* + 0.8*



Sparse Codes 

• Why sparse codes? 
• Biologically Plausible 

• Sparse coding: Very small number of 1s is equally distributed over the 
coordinates of the vectors 
• “En Passant” we introduce the  Whilshaw Associative Memory



Sparse Codes: Associative Memory

• Human memory is based on associations with the memories it 
contains

• ... Just a snatch of well-known tune is enough to bring the whole thing back to 
mind

• ... A forgotten joke is suddenly completely remembered when the next-door 
neighbor starts to tell it again

• This type of memory has previously been termed content-
addressable, which means that one small part of the particular 
memory is linked - associated -with the rest.



Sparse Codes: Associative Memory

• The ability to correct faults if false information is given
• To complete information if some parts are missing
• To interpolate information, that means if a pattern is not stored the 

most similar stored pattern is determined



Sparse Codes 

• The cerebral cortex is a huge 
associative memory
• or rather a large network of 

associatively connected 
topographical areas
• Associations between 

patterns are formed by 
Hebbian learning





Sparse Codes 

• The patterns are represented by binary sparse vectors
• The presence of a feature is indicated by a one component of the 

vector, its absence through a zero component of the vector

• Always two pairs of these vectors are associated
• This process of the association is called learning



Sparse Codes 

• The first of the two vectors is called the question vector and the 
second the answer vector
• After the learning the question vector is presented to the associative 

memory and the answer vector is determined

• This process is called:

• association provided that the answer vector represents the reconstruction of 
the disturbed question vector

• heteroassocation if both vectors are different





Learning

• In the initialization phase of the associative memory no information is 
stored;
• because the information is represented in the w weights they are all set to zero

• In the learning phase, binary vector pairs are associated
• Let x be the question vector and y the answer vector, so that the learning 

rule 
• is:

• This rule is called the binary  Hebb rule



• In the one-step retrieval phase of the associative memory
• A fault tolerant answering mechanism recalls the appropriate answer 

vector for a question vector x
• To the presented question vector x the most similar learned xl

question vector regarding the Hamming distance is determined

• Hamming distance indicates how many positions of two binary vectors are 
different 

• The appropriate answer vector y is identified



Retrieval

• T is the threshold of the unit
• In the hard threshold strategy, the threshold T is set to the number of “one” 

components in the question vector
• If one uses this strategy it is quite possible that no answer vector is determined

• In soft threshold strategy, the threshold is set to the maximum sum



Sparse Codes: Storage Analysis

• For an estimation of the asymptotic number L of vector pairs (x, y) 
which can be stored in an associative memory before it begins to 
make mistakes in retrieval phase.
• It is assumed that both vectors have the same dimension n
• It is also assumed that both vectors are composed of M 1s, which are 

likely to be in any coordinate of the vector



Sparse Codes: Storage Analysis

• The optimum value for M is approximately

• L vector pairs can be stored in the associative memory

• This value is much greater then n if the optimal value for M is used  



Sparse Codes: Storage Analysis

• L is much greater then n if the optimal value for M is used
• Storage of data and fault tolerant answering mechanism!

• Sparse coding: Very small number of 1s is equally distributed over the 
coordinates of the vectors 

• For example, in the vector of the dimension n=1000000 M=18, ones should 
be used to code a pattern

• The real storage capacity value is lower when patterns are used which are not 
sparse



• The weight matrix after learning of 20000 test patterns, 
in which ten ones were randomly set in a 2000 
dimensional vector represents a high loaded matrix with 
equally distributed weights



• One of the Holy Grails of Neuroscience
• Sparse coding is the representation of 

items by the strong activation of a 
relatively small set of neurons
• Sparse coding is also relevant to the 

amount of energy the brain needs to 
use to sustain its function. 
• The total number of action potentials 

generated in a brain area is inversely 
related to the sparseness of the code
• The total energy consumption decreases 

with increasing sparseness.



Denoising Autoencoders 



Stochastic Encoders and Decoders 



Denoising Autoencoders 





Denoising Autoencoder 



Denoising Autoencoders

Intuition:
- We still aim to encode the input and to NOT mimic the identity function.
- We try to undo the effect of corruption process stochastically applied to 

the input. 

Encoder Decoder

Latent space representation Denoised 
Input

Noisy Input

A more robust model



Denoising Autoencoders

Use Case:
- Extract robust representation for a NN classifier.

Encoder

Latent space 
representation

Noisy Input



Denoising Autoencoders

A DAE instead minimizes:
𝐿 𝑥, 𝑔 𝑓 '𝑥

where '𝑥 is a copy of 𝑥 that has been corrupted by some form of noise.

Instead of trying to mimic the identity function by minimizing:
𝐿 𝑥, 𝑔 𝑓 𝑥

where L	is some loss function



Stochastic Encoders and Decoders 

• Data concentrates around a low-dimensional manifold or a small set 
of such manifolds
• Manifold is a topological space (which may also be a separated space) 

which locally resembles real n-dimensional space in, for example the 
real coordinate space Rn is the prototypical n-manifold, a circle is a 
compact 1-manifold. 
• Autoencoders take this idea further and aim to learn the structure of 

the manifold. 



Stochastic Autoencoders 

• An important characterization of a manifold is the set of its tangent 
planes. At a point x on a d-dimensional manifold, the tangent plane is 
given by d basis vectors that span the local directions of variation 
allowed on the manifold 



2-dimensional manifold in 3-dimensions



Denoising Autoencoders Learn a Manifold 

The autoencoder learns a vector field 



• An illustration of the concept of a tangent hyperplane. 
• Here we create a one-dimensional manifold in 784-dimensional 

space. 
• We take an MNIST image with 784 pixels and transform it by 

translating it vertically.
• The amount of vertical translation defines a coordinate along a one-

dimensional manifold that traces out a curved path through image 
space. 



• 1-D manifold obtained by vertically 
translating image. 
• In space of first 2 principal 

components
with tangent line (gray image) 



Denoising Autoencoders

𝑓 𝑥

𝑥

"𝑥

𝑤

𝑤′

Idea: A robust representation 
against noise:

- Random assignment of subset 
of inputs to 0,  with probability 
𝑣.

- Gaussian additive noise.



Denoising Autoencoders

𝑥

"𝑥

𝑤

𝑤′• Reconstruction !𝑥 computed from the 
corrupted input #𝑥.

• Loss function compares !𝑥
reconstruction with the noiseless 𝑥.

$𝑥 0 00

𝑓 $𝑥

Noise Process
𝒑 |#𝒙 𝒙

• The autoencoder cannot fully trust each 
feature of 𝑥 independently so it must learn 
the correlations of 𝑥’s features.

• Based on those relations we can predict a 
more ‘not prune to changes’ model.

• We are forcing the hidden layer to learn a 
generalized structure of the data.



Denoising Autoencoders - process

Taken some input 𝑥 Apply Noise $𝑥



Denoising Autoencoders (DAE)

$𝑥 Encode And Decode
DAE

𝑔 𝑓 '𝑥

DAE



"𝑥

Denoising Autoencoders - process

DAE

𝑔 𝑓 '𝑥

DAE



"𝑥

Denoising Autoencoders - process

Compare 𝑥



Denoising autoencoders



Denoising convolutional AE – keras

- 50 epochs.
- Noise factor 0.5
- 92% accuracy on validation set.





Convolutional AE



Convolutional AE

Input
(28,28,1)

Encoder Decoder

Conv 1
16 F 
@ (3,3,1)
same

C1
(28,28,16)

M.P 1
(2,2)

same

M.P1
(14,14,16)

Conv 2
8 F 
@ (3,3,16)
same

C2
(14,14,8)

M.P 2
(2,2)

same

M.P2
(7,7,8)

Conv 3
8 F 
@ (3,3,8)
same

C3
(7,7,8)

M.P 3
(2,2)

same

M.P3
(4,4,8)

Hidden 
Code

D Conv 1
8 F 
@ (3,3,8)
same

D.C1
(4,4,8)

U.S 1
(2,2)

U.S1
(8,8,8)

D Conv 2
8 F 
@ (3,3,8)
same

D.C2
(8,8,8)

U.S 2
(2,2)

U.S2
(16,16,8)

D Conv 3
16 F 
@ (3,3,8)
valid

D.C3
(14,14,16)

U.S 3
(2,2)

U.S3
(28,28,8)

D Conv 4
1 F 
@ (5,5,8)
same

D.C4
(28,28,1)

Output

* Input values are normalized
* All of the conv layers activation functions are relu except for the last conv which is sigm









• Next: Feature 
Extraction 



Literature

• Deep Learning, I. Goodfellow, Y. Bengio, A. Courville
MIT Press 2016

• Chapter 14

• Hands-On Machine Learning with Scikit-Learn and 
TensorFlow, Aurélien Géron , O'Reilly Media; 1 edition, 
2017

• Chapter 15



Literature

• Machine Learning - A Journey to Deep Learning, A. 
Wichert, Luis Sa-Couto, World Scientific, 2021

• Chapter 15


