
Lecture 13: Deep Learning

Andreas Wichert
Department of Computer Science and Engineering

Técnico Lisboa

Deep Learning and Backpropagation

• According to the universality theorem, a neural network with a single
hidden layer is capable of approximating any continuous function
• However, attempting to build a network with only one layer to

approximate complex functions often requires a very large number of
nodes

• Why does deep learning not have a local minimum?
• Is this true?

• It is assumed that an artificial neural network with several hidden
layers is less likely to be stuck in a local minima and it is easier to find
the right parameters as demonstrated by empirical experiments

How to set network parameters

16 x 16 = 256

1x

2x

…
…

256x

…
…

……

……

……

Ink → 1
No ink → 0

…
…

y1

y2

y10

0.1

0.7

0.2

y1 has the maximum value

Set the network parameters 𝜃 such that ……

Input:

y2 has the maximum valueInput:

is 1

is 2

is 0
Softm

ax

𝜃 = 𝑊!, 𝑏!,𝑊", 𝑏", ⋯𝑊# , 𝑏#

Softmax

• Softmax layer as the output layer

Ordinary Layer

()11 zy s=

()22 zy s=

()33 zy s=

1z

2z

3z

s

s

s

In general, the output of
network can be any value.

May not be easy to interpret

Cost

1x

2x

…
…

256x

…
…

……

……

……

…
…

y1

y2

y10

Cost

0.2

0.3

0.5

“1”
…

…

1

0

0
…

…

Cost can be Euclidean distance or cross
entropy of the network output and target

Given a set of network parameters 𝜃,
each example has a cost value.

target

𝐿(𝜃)

Mini-Batch

• A gradient is usually determined ver the whole training data set.
• This is called the batch gradient descent
• The model updates parameters after processing the whole training

data (one epoch)

• In deep learning the training data set can be too big to fit the
computer memory and the gradient cannot be computed efficiently

Mini-Batch

• In stochastic gradient descent one updates model parameters after
processing every instance, however the model updates are noisy and
for big training data sets not computationally efficient
• Therefore, mini batch gradient descent is introduced as a trade-off,

learning is preformed in small groups.
• For example, if the training data has 50000 instances, and the size of a mini

batch is set to 50, then there will be 1000 mini batches.
• They are as well called mini batch stochastic methods or stochastic methods

Cross Entropy

• It is not a distance, because it is not symmetric
• When computing many of these quantities, it is common to

encounter ex-pressions of the form 0 · log 0
• By convention, in the context of information theory, we treat these

expressions as x · log x = 0.

Cross-entropy vs. Quadratic loss

Figure from Glorot & Bentio (2010)

Universality Theorem

Any continuous function f

M: RRf N ®

Can be realized by a network
with one hidden layer
(given enough hidden neurons)

Why “Deep” neural network not “Fat” neural network?

Fat + Short v.s. Thin + Tall

1x 2x …… Nx

Deep

1x 2x …… Nx

……

Shallow

Output
LayerHidden Layers

Input
Layer

Deep Means Many Hidden Layers

Input Output

1x

2x

Layer 1

…
…

Nx

…
…

Layer 2

…
…

Layer L

…
…

……

……

……

…
…

y1

y2

yM

Why: Hierarchical Organization

• The idea of hierarchical structures is based on the decomposition of a
hierarchy into simpler parts.
• Hierarchy offers a more efficient way of representing informa- tion.

Deep learning enables high-level abstractions in data by architectures
composed of multiple nonlinear transformations.
• It offers a natural progression from low-level structures to high-level

structure, as demonstrated by natural complexity

Why: Boolean Functions

• Any Boolean function can be represented by a truth table.
• For D variables there are 2D raws in the table.
• A table can be described by a disjunctive normal form (DNF).
• A disjunctive normal form can is described as an OR of ANDs.

• Each AND operation can be implemented by a perceptron.
• All the AND perceptrons are ordered in one hidden layer.
• Their output is feed into one perceptron that implements an OR operation.

This kind of representation can lead to an exponential explosion of the AND
operations.

• One could try to represent the formula by a circuit of bigger depth
but lesser complexity.

Can represent Big Training Sets

• Deep networks may be trained on big training sets since they have
many free parameters.
• “Flat” networks cannot do it, since for big training lead to the the

curse of dimensionality.

Why: Curse of dimensionality

• In a “fat” neural networks there are many hidden neurons, its many
outputs represent a high dimensional vector that is classified by the
output neurons.
• The high dimensionality of the vector influences negatively the

classification of the output neurons during learning and
generalization.
• It corresponds to the curse of dimensionality.

• Deep neural networks can ovoid the curse of dimensionality problem
by constraining the number of hidden neurons.

Why: Local Minima

• It is assumed that an artificial neural network with several hidden layers is
less likely to be stuck in a local minima as demonstrated by empirical
experiments.
• It was commonly thought that simple gradient descent would get trapped

in poor local minima.
• In practice, poor local minima are rarely a problem with large networks but a big

problem with small networks.
• Most local minima are equivalent in large networks and close to global

minimum Chomoranksa et. al (2015).
• However this is not true for small networks where bad local minima are present

Swirscz et. al. (2016).
• For large networks, the loss function may have a large number of saddle

points where the gradient is zero Dauphin et. al (2015).

Why: Efficient Model Selection

• To overcome overfitting one has to use a model that has the right
capacity.
• However this task is difficult and costly since it involves the search

trough many different architectures and parameters.
• Many experiments with different number of neurons and hidden

layers have to be done.
• Instead one choses a deep over-parameterized neural network.
• The search for the model of the right capacity is done by a search for the

correct regularization value.
• This kind of search is easier to implement

Why: Efficient Model Selection

• This kind of search is easier to implement since for example the l2 or l1
regularization are described by one variable α

• The search for the correct model complexity can be done efficiently,
by em-pirical experiments for searching for just one correct α value.
• This leads to a model with the optimal predictive capability is the one

that leads to the best balance between bias and variance.

Why Not?

• It seems as well that the deep learning revolution results mainly from
brute force, it is not based on new mathematical models and appears
to be biologically unlikely.
• Deep neural networks require a very large labeled sample training set

that can become a bottleneck, since in many special application it is
difficult to generate big labeled sample training sets.
• Often these huge sets have to be manually labeled by some experts

which results in high costs.

Vanishing Gradient Problem

Larger gradients

Almost random Already converge

Learn very slow Learn very fast

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

Smaller gradients

Vanishing Gradient Problem, sigmoid

Sigmoid

• Squashes numbers to range [0,1]
• Historically popular
• Have nice interpretation as a saturating “firing rate” of a neuron
• 3 problems:
• Saturated neurons “kill” the gradients
• Sigmoid outputs are not zero-centered
• exp() is a bit compute expensive

€

f (x) =σ (x) =
1

1+ e(−α⋅x)

€

f ' (x) =σ ' (x) =α ⋅σ(x) ⋅ (1−σ(x))

• The sigmoid function and the derivative indicated by doted line.

• Squashes numbers to range [-1,1]
• - zero centered (nice)
• - kills gradients when saturated L

Rectified Linear Unit (ReLU)

• f(x) = max(0,x)
• Function defined as the positive part of its argument

• Does not saturate (in +region)
• Very computationally efficient
• Converges much faster than

sigmoid/tanh in practice (e.g. 6x)
• More biologically plausible

• But: Not zero-centered output L
• Non-differentiable at zero; however it is differentiable anywhere else, and

a value of 0 or 1

ReLu function

Derivative of ReLu function

• (a) Rectifier activation function (ReLU), the derivative is in- dicated by
the doted line. (b) Comparing the the derivative of the sigmoid
activation function and the rectifier activation function indicated by a
doted line.

ReLU

1x

2x

1y

2y

0

0

0

0

𝑧

𝑎
𝑎 = 𝑧

𝑎 = 0

ReLU

1x

2x

1y

2y

A Thinner linear network

Do not have
smaller gradients

𝑧

𝑎
𝑎 = 𝑧

𝑎 = 0

• Not zero-centered output

• An annoyance (?):
• Whaat is the gradient when x < 0?
• ReLU zero will never activate again (it dies)
• Is this good or bad?

Derivative of ReLu function

Leaky ReLU

• Does not saturate
• Computationally efficient
• Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
• Will not die

Parametric ReLUs

• Parametric ReLUs (PReLUs) take this idea further by making the
coefficient of leakage 𝞪 into a parameter that is learned along with
the other neural network parameters

Exponential Linear Units (ELU)

• All benefits of ReLU
• - Closer to zero mean outputs
• - Negative saturation regime
• compared with Leaky ReLU adds some robustness to noise

• Computation requires exp() L

Maxout

• Learnable activation function [Ian J. Goodfellow, ICML’13]

Max

1x

2x

Input

Max

+ 5

+ 7

+ −1

+ 1

7

1

Max

Max

+ 1

+ 2

+ 4

+ 3

2

4

ReLU is a special cases of Maxout

You can have more than 2 elements in a group.

neuron

Maxout “Neuron”

• Does not have the basic form of dot product -> nonlinearity
• Generalizes ReLU and Leaky ReLU
• Linear Regime! Does not saturate! Does not die!

• Problem: doubles the number of parameters/neuron :(

• Use ReLU.
• Be careful with your learning rates
• Try out Leaky ReLU / Maxout / ELU

• Try out tanh but don’t expect much
• Don’t use sigmoid

Residual neural network

Pyramid Cells

building block

• Residual neural networks do this by utilizing skip connections,
or short-cuts to jump over some layers.
• One motivation for skipping over layers is to avoid the problem of

vanishing gradients, by reusing activations from a previous layer until
the adjacent layer learns its weights.
• During training, the weights adapt to mute the upstream layer, and

amplify the previously-skipped layer.
• In the simplest case, only the weights for the adjacent layer's connection are

adapted, with no explicit weights for the upstream layer.

Weight Initialization

• Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)
• Works for small networks, but problems with deeper networks.

• Deeper networks:
• All activations can become zero!
• Almost all neurons completely saturated, either -1 and 1.
• Gradients will be all zero.

Xavier initialization

• Weights from a Gaussian distribution with
• zero mean
• variance of 1/N
• N specifies the number of input neurons.
• when using the ReLU nonlinearity it breaks L

• Better [He et al., 2015]:
• Weights from a Gaussian distribution with
• zero mean
• variance of 2/N
• Does not break with ReLU

Preprocess the data

Batch Normalization

• We normalize all training data so that it resembles a normal
distribution (that means, zero mean and a unitary variance)

• In the intermediate layers the distribution of the activations is
constantly changing during training
• This slows down the training process because each layer must learn to adapt

themselves to a new distribution in every training step.
• Batch normalization is a method we can use to normalize the inputs of each

layer, in order to fight the internal covariate shift problem

Batch Normalization

• During training time, a batch
normalization layer does the
following:
• Calculate the mean and variance

of the layers input
• Normalize the layer inputs using

the previously calculated batch
statistics

• Scale and shift in order to obtain
the output of the layer

• γ and β are learned during
training along with the original
parameters of the network.

Test

• During test (or inference) time, the mean and the variance are fixed.
They are estimated using the previously calculated means and
variances of each training batch.

Overfitting

• The training data contains information about the regularities in the
mapping from input to output.
• But it also contains noise
• The target values may be unreliable.
• There is sampling error

• When we fit the model, it cannot tell which regularities are real and
which are caused by sampling error
• If the model is very flexible it can model the sampling error really well. This is

a disaster

• Examples of two-layer networks trained on 10 data points drawn from
the sinusoidal data set. The graphs show the result of fitting networks
having M = 1, 3 and 10 hidden units, respectively, by minimizing a
sum-of-squares error function

Preventing overfitting

• Get more data!
• Always the best

• Use a model that has the right capacity:
• enough to model the true regularities
• not enough to also model the spurious regularities (assuming they are weaker)

• Early stopping
• Start with small weights and stop the learning before it overfits

• Weight-decay: Penalize large weights using penalties or constraints on their
squared values (L2 penalty) or absolute values (L1 penalty).
• Use Dropout that drops randomly some weights
• Noise: Add noise to the weights or the activities

Using a Validation Set

• Divide the total dataset into three subsets:
• Training data is used for learning the parameters of the model.
• Validation data is not used of learning but is used for deciding what

type of model and what amount of regularization works best.
• Test data is used to get a final, unbiased estimate of how well the

network works. We expect this estimate to be worse than on the
validation data

l2 Regularization

• The standard L2 weight penalty involves adding an extra term to the
cost function that penalizes the squared weights
• This keeps the weights small unless they have big error derivatives.
• It prevents the network from using weights that it does not need.
• This can often improve generalization a lot because it helps to stop the

network from fitting the sampling error.
• It makes a smoother model in which the output changes more slowly as the

input changes.

l2 Regularization

l1 Regularization

• Sometimes it works better to penalize the absolute values of the
weights.
• This makes some weights equal to zero which helps interpretation.

l1 Regularization

l2 versus l1 Regularization

lp Regularization

Regularization: Dropout

• Dropout is a stochastic regularization method.
• In each forward pass, randomly a set some neurons is set to zero

(sleep) for one pass.
• The probability of dropping the set out is described by a hyper-

parameter; usually 0.5 is commonly used.
• For input nodes, this should be low, because information is directly lost when

input nodes are ignored.

Regularization: Dropout
• In each forward pass, randomly set some neurons to zero (for one

pass only)
• Probability of dropping is a hyperparameter; 0.5 is common

Regularization: Dropout

• Only the reduced network is trained on the data in that stage
• The removed nodes are then reinserted into the network with their original

weights.
• For input nodes, this should be low, i because information is directly lost when input

nodes are ignored.

• By avoiding training all nodes on all training data, dropout decreases
overfitting.
• It also significantly improves training speed.
• It reduces node interactions, leading them to learn more robust features

• It is stochastic process, since each time a different set of neurons is drop
out and not allowed to learn

Faster Optimizers: Momentum

• One can in some cases speed up trining by using a faster gradient
descent as for example using the momentum α with τ indicating the
time step of the algorithm

• It prohibits fast changes of the direction of the gradient. The
momentum parameter α is chosen between 0 and 1, usually 0.9 is a
good value.

Nestrov Momentum

• The idea of Nesterov momentum optimization is to measure the
gradient of the cost function not at the local position but slightly
ahead in the direction of the momentum wti + ∆wti(τ)

AdaGrad

• The AdaGrad algorithm scales down the gradient vector along the
steepest dimensions and uses a different learning rate for every
parameter wi at every time step
• It scales them inversely proportional to the square root of the sum of all

squared values of the gradient representing the scale variable sti(τ)
• At the begin of learning with τ = 0 the scale variable is initialized to zero sti(0)

= 0.

RMSProp

• he AdaGrad algorithm can slow down a bit too fast and may end up
never converging to a minimum.
• RMSProp changes the gradient into an exponen tial weighted moving

average.
• It discard history from extreme past so that it can converge rapidly, it

accumulating only the gradinents from the most recent iterations

α being the decay rate with a typical
value of 0.9.

Adam

• Adam which stands for adaptive moment estimation, combines the
ideas of momentum

• and RMSProp

Adam

Notation...

• In deep learning community one often uses a vector notation and
indicates the free parameter as θ since beside the weights there are
as well other parameters
• The notation for Adam would be for momentum

• and RMSProp

Transfer Learning

• You need a lot of a data if you want to train
• Transfer learning and domain adaptation refer to the situation where

what has been learned in one setting (i.e., distribution P1) is exploited
to improve generalization in another setting (say distribution P2).
• We assume that many of the factors that explain the variations in P1

are relevant to the variations that need to be captured for learning P2.

Local Minima (what we know)

• It was commonly thought that simple gradient descent would get
trapped in poor local minima
• In practice, poor local minima are rarely a problem with large

networks.
• Regardless of the initial conditions, the system nearly always reaches

solutions of very similar quality.
• Recent theoretical and empirical results strongly suggest that local minima

are not a serious issue in general.
• Instead, the landscape is packed with a combinatorially large number of

saddle points where the gradient is zero

Conclusion

• Deep learning is: a black box but it is also a black art.
• Many approaches and hyperparameters:
• activation functions,
• learning rate,
• momentum?

• Often these need tweaking, and you need to know what they do to
change them intelligently.

Next

• Convolutional Neural Networks

Literature

• Christopher M. Bishop, Pattern Recognition and Machine
Learning (Information Science and Statistics), Springer
2006
• Chapter 5

• Deep Learning, I. Goodfellow, Y. Bengio, A. Courville
MIT Press 2016
• Chapter 6, 7, 8

Literature

• Machine Learning - A Journey to Deep Learning, A.
Wichert, Luis Sa-Couto, World Scientific, 2021
• Chapter 12

