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Cover’s theorem

* A complex pattern-classification problem, cast in a high-dimensional
space nonlinearly, is more likely to be linearly separable than in a low-
dimensional space, provided that the space is not densely populated.
(Cover, 1965)

* Once we have linearly separable patterns, the classification problem
can be solved.



Cover’s theorem

Training set consists on N observations (sample)
(xl.xz. .o .x". o _xN)
each of which isassigned to one of two classes ('} and

This dichotomy (binary partition) of the points is said to be separable with
respect to the family of surfaces if a surface exists in the family that separates
the points in the class C'; from those in the class ('

For each x,, point define a vector as

(pl (X,,)

P,(x,) = ¢2(?(")

OMm (X,,)



Cover’s theorem

The vector @, (x,) maps the points in the D-dimensional input space into
corresponding points in a new space of dimension M

®,(x,) is a hidden function, because it plays a role similar to that of a
hidden unit in a feedforward neural network

The space spanned by the set of hidden functions ®,(x,,) is referred to as the
feature space.

A dichotomy C, (' of C'is said to be separable if there exists a M-dimensional
vector w such that we may write the following (Cover, 1965):

wl . ®(x) >0, if xeCC

wl - ®(x) <0, if xeOy

The hyperplane defined by the equation

wl - d(x) =0



Cover’s theorem

* Cover’s theorem on the separability (1965)

* Given a set of training data that is not linearly separable, one can with
high probability transform it into a training set that is linearly
separable by projecting it into a higher-dimensional space via some
non-linear transformation @, (x,)

* Lift N samples onto the vertices of the simplex in the N - 1
dimensional real space. Every partition of the samples into two sets is
separable by a linear separator. (VC-dimension of a Perceptron)



Simplex

* A simplex is a generalization of the notion of a triangle or tetrahedron
to arbitrary dimensions.

* A k-simplex is a k-dimensional polytope which is the convex hull of its
k + 1 vertices.




XOR Problem

A pair of Gaussian hidden functions is defined as:

1) = exp(—lx ), 1= ()

o

d2(x) = exp(—|x — tof*), t2= ( 0 )

C)l (xl )
D, (x,) = !
105 = (o
There is no increase in the dimensionality of the hidden space compared with
the input space.

Nonlinearity exemplified by the use of Gaussian hidden functions is suffi-
cient to transform the XOR problem into a linearly separable one.
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o1 (x) - exp(—||x - tl " )’ tl - ( 1 ) @ 061 \\\h»und.\r.‘
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P2(x) = exp(—|x — t2f|7), t2= ( 0 ) : ©.1)
02f (1,0)
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n(xn) ( ¢2(xn) ) 0 0.2 0.4 0.6

Input Pattern First Hidden Function  Second Hidden Function

X ¢i(x) ¢:(x)
(1.1) 1 0.1353
(0.1) 0.3678 0.3678
(0,0) 0.1353 1

(1.0) 0.3678 0.3678




Interpolation Problem

s:RP S R!

The maps s defines a hypersur face (graph) I' C RP*! in the same the map-
ping f(z) = x? draws a parabola in R?

The interpolation problem:

Given a set of N different points x,, € RP and a set of real numbers d, € R!
with p =1,2,--- , N, find a function F : RN — R! that satisfies the interpo-
lation condition:

F(X,’) - d—,,. n= 1.2.--- N

The interpolating surface is constrained to pass through all the training data
points



Interpolation Problem

* The radial-basis-functions (RBF) technique consists of choosing a
function F that has the form

F(x) = Z wy - O(||x — x,||)

N
n=1

with ¢(||jx — x,||) being a set of N arbitrary (generally nonlinear) functions
called radial-basis functions.

The N known data points x,, are taken to be the centers of the radial-basis
functions.



Interpolation Problem

The N known data points x, are taken to be the centers of the radial-basis
functions.

We get a set of linear equations

(9"511 P12 P13 - <£31N\ ('11--’1\ /dl\

P21 Q22 @23 QaN Wo ds
\ ON1 ON2 ON3 *° ONN ) \ Wy ) \ dn )

¢ij = o([|xi — x4]|)

with



We can simplify with

w d 1

wo dg
W = ., d=

WwN dn

with the interpolation matrix
© = {¢i;}i;
The compact notation is given by
o.-w=d
Assuming that ® is nonsingular
w=0&1.d

How can we be sure that the interpolation matrix ¢ is nonsingular?’



Micchelli’s Theorem

Let set of N different points x,, € R”. Then the N x N interpolation matrix
@, whose ij-th element is ¢;; = ¢(||x; — x;||) is nonsingular.

Functions that are covered by Micchelli’s Theorem with r = ||x; — x|

1. Multiquadratics:

pry=vVr24+c2, >0

2. Inverse Multiquadratics:

3. Gaussian functions:

2.02

2
o(r) = exp (— , > , o0>0



Radial Basis Function Networks

1. Input Layer: Dimension D of the input vector x

2. Hidden Layer: Same number N of units as the size of the training
sample

on = O([|lx—x,/), n=1,2,--- N

x, defines the centre of the radial-basis function.

3. Output Layer: Consists of single computational unit. However there is
no constraint on the size.

Usually we use

: : x — X, ||? i
(pTI - (D(Hx - X7]H) - CXI) <_ || 2 . 0_2’” ) bl 77 - 1,2, et ,4"1\"



Radial Basis Function Networks




Modifications of Radial Basis Function
Networks

Hidden Layer: Same number N of units as the size of the training sample

Reduce the number of hidden units to K < N using K means clustering

on
K

F(x) =) wi-o(|x — ckl)

k=1

Training set consists on N observations (sample)
X = (X1,Xa, -+, Xp, -+, XN)
each cluster set is defined as the set of points with where
k=1 ..,K
Cr — {x|da(x,¢ci) — 1117_'111 day(x,cj)}-

Each cluster (. contains the points that are closest to the centroid c,.. The
centroid c; is represented by the mean value of all the points of C.



1
Ck —_ T Z X.
|Ck| z€Clh

and with the same width
d‘rn.n..’r

V2-K

where K is the number of centres and d,,,,, is the maximum distance between

them (Lowe, 1989).

g =

Ensures that the individual Gaussian units are not too peaked or too flat;
both extreme conditions should be avoided

Cx el
202

ok=¢<||x—ck||)=exp( ) F=12. K

, , x —c.|? K
¢k=<p(||x—ck||)=exp(—” d ),k=1,2,---,K



Radial Basis Function Networks with K-Means




EM-Clustering

Reduce the number of hidden units to K < N using EM clustering on

K

F(x)= Z wy = P(|Ix — g1 ]])

k=1

with

| | 1 _ .
O = (P(”x_u'k”) = €XPp <_§ ’ (xn - uk)Tzkl ’ (xn - I-"’k)> ) k= 13 23 e ,IX



Em_Clustering
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Figure 8-8(a). Radially symmetric basis function.
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Figure 8-8(b). Diagonal inverse covariance matrix—equal components.

Figure 8-8(c) and (d)
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. Nondiagonal inverse covariance matrices.
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Output Layer

Use Perceptron

Use Logistic Regression with

1
b
PK

1 G(nct)

p(Ci|) = o(net) =

with ¢y = 1 bias,

1+ e(—net) - 1+ elnet)

K

p(Cilp) =0 (Z wy, - @k) =o(w' o)

k=0



K
p(Cil@) =0 (Z Wy, * (Pk) =o(w' - o)
k=0

Error function is defined by negative logarithm of the likelihood which leads
to the update rule where the target ¢, can be only one or zero (a constraint)

The update rule for gradient decent is given for target ¢, € {0, 1}

N
Awy =1 - Z(tn — 0p) * Pn.k-

n—1
With L output units use softmax function

exp(nety)
>oier exp(nety)

o(nets) =



The update rule for gradient decent is given for target t,, € {0, 1}

with s =1,2,--- .L
(1)

)

Au’ks =" Z(tns _ 7)& @r) k-

n=1

Usually the training process performed on the RBF network was significantly
faster than that performed on the MLP.



Interpretation of Hidden Units

Receptive Fields Receptive —— Receptive Receplive
field 1 \ field 3 / field 2

e +
£ A ’(/_\0’ 4
f + + -\ * |
e (@) W
"\ Lo e 2 \ [
. 7R % a? : --/
Ne u r Ob 1 O 10 gy On-center, Off-surround Off<enter, On-surround \\\ A

In a neurobiological context, a receptive field is defined as that region of a

sensory field from which an adequate sensory stimulus will elicit a response
(Churchland and Sejnowski, 1992)

Relation of the receptive field in ¢, the size is described by ¢ or X in ¢ and
its centre by ¢ or p,.



Interpretation of Hidden Units

Statistics

— x. |2
Qb(X,Xk.):OXp —Hx2 x;| X k:l? I<
e

is called Gaussian function.

Formulation of a function as a kernel, denoted by k(x), is that the func-
tion has properties similar to those associated with the probability density
function of a random variable:

Property 1. The kernel k(x) is a continuous, bounded, and real function
of x and symmetric about the origin, where it attains its maximum value.



Interpretation of Hidden Units
Statistics

Property 2. The total volume under the surface of the kernel k(x) is unity;
that is, for an D-dimensional vector x, we have

/k:(x)dx =1

Except for a scaling factor, the Gaussian function ¢(x,x;) satisfies both of
these properties for the centre , x; located at the origin

Because of the interpretation of the Gaussian function as a kernel the term
kernel methods is used



Kernel Regression

Consider a nonlinear regression model
Yn = f(x'r)) +ep, n=12,- N

As a reasonable estimate of the unknown regression function f(x) is the
mean of observables, values of the model output y) near a point x.

The local average should be confined to observations in a small neighbor-
hood (receptive field) around the point x.

The unknown function f(x) is equal to the conditional mean of the observable
y given the regressor x.

f(x) =E(y|x) = / Y - Pyx (y[x)dy

— 00

with pyx(y|x) conditional probability density function (pdf) of the random
variable Y given that the random vector X is assigned the value x



Cumulative distribution function that maps a variable y into a probabil-
ity density function py(y) € [0, 1] like for example sigmoid function o(y)

Cumulative distribution function that maps a m dimensional vector y into a
probability density function py (y) € |0, 1] like for example Gaussian over m

dimensional space.

pY,X(y7 X)
px(x)

PY|X(y|X) =

oy pvix(y, x)dy



We may use a nonparametric estimator known as the Parzen-Rosenblatt den-
sity estimator (Rosenblatt, 1956, 1970; Parzen, 1962) with a kernel k(x)

Parzen-Rosenblatt density estimate of fx(x) as

Af
X | X — X,
Px(x)zN.hD'Zk( h ’)

n=1

h is a positive number called bandwidth, it & controls the size of the kernel

Af
A 1 X - x] y o y’
n=1



N
o 1 X — X > y—y
. d — . k n ok T’ d
/_wy pxy (X y)dy = 55 ,,E=1: ( ; )/_wy ( y ) Y

By integrating and changing the variable of integration we get (See Haykin,

2008) )
>0 1 X —X
Y- Pxy (%, y)dy = Yy k ( ")
/_ N hD 2 h

oo

After canceling common terms we get
N X—Xy)
N X—Xq
Zn:l k ( h )

There are two ways in which the approximating function F'(x) may be viewed,
either as Nadaraya-Watson regression estimator or Normalised RBF network.

F(x) = f(x) =



Nadaraya-Watson regression estimator

k)

ZfIVZl k (%)

Wi p(x) =

with

N
> Wiy(x) =1

n=1

N
F(X) - Z VVN,U(X) ' ?/7)

n=1

F(x) = is a weighted average of the observable y,. Proposed by Nadaraya

(1964) and Watson (1964)



Nadaraya-Watson regression estimator

* The Nadaraya-Watson kernel regression
model using isotropic Gaussian kernels, for

the sinusoidal data set.

* The original sine function is shown by the
green curve, the data points are shown in
blue, and each is the centre of an isotropic
Gaussian kernel

* The blue ellipse around each data point
shows one standard deviation contour for
the corresponding kernel. These appear
noncircular due to the different scales on
the horizontal and vertical axes.
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Normalised RBF network

We set the kernel k(x)
X — X, |x — %, ||
k| ——2 ) =k | ———=
< h ) ( h )

and define the Normalised RBF

k(e

h
’l/)N(X, X',’ -

N g [ x=xql
anl k (Tl_>
with

N
Zz/;N(x,xn) =1
n=1

The linear weights w,, applied to the basic functions ¢y (x,x,) are the ob-
servables, y, of the regression model for the input data ,x,,



The linear weights w, applied to the basic functions ¢y (x,x,) are the ob-
servables, y, of the regression model for the input data ,x,

Yn = Wy
N

F(x) =) wy - n(x,x,)
n=1

Un (X, X,) may be interpreted as the probability of an event described by the
input vector x, conditional on x,,

The difference between the normalised radial-basis function and an ordinary
radial-basis function is a denominator term that constitutes the normalisa-
tion factor.



Constructing Kernels

The kernel function is defined by

k(xz,2') = (/)(:IJ)T - p(a')

with basis function ¢;(x)



Consider a kernel function n a two dimensional space given by

k(x,z) = (xT-z)2= (:1;1-z1+:1;2-z2)2=:1:f-212+2~:L'1 C X+ 2 -z2+x§-z§

k(x,z) = (x7 - 2)? = (22, V2 21 20, 22) - (22V2 21 - 29, 22)T
k(x,z) = (x' - 2)* = ¢(x)" - ¢(2)

with

d(x) = (a7, V2.2, 9, :L'g)T

A simple way to test whether a function constitutes a valid kernel withouf
having to construct the function ¢(x) explicitly.



A necessary and sufficient condition for a function k(x,x’) to be a valid
kernel (Shawe- Taylor and Cristianini, 2004) is that the Gram matrix K,
whose elements are given by k(x,,X,,), should be positive semidefinite for
all possible choices of the set {x,}

x' K x>0

for every non-zero column vector x



Constructing new kernels by building them
out of simpler kernels as building blocks

* f(-) is any function, g(:) is a
polynomial with nonnegative
coefficients,

* Ais a symmetric positive
semidefinite matrix, x, and x, are
variables (not necessarily disjoint)
with x = (x,, x,), and k, and k, are
valid kernel functions over their
respective spaces.
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X )

X )

X )

cki(x,x")
fx)ki(x,x")f(x")

q (ky(x, x'))

exp (k1(x,x))
ky(x,x") + kao(x, x")
ky(x, x" ks (x, X')

ks (d(x),d(x"))

x T Ax’

k,(X,. x,’, ) + ky(xp, X},

/ /
l":l (,xvl ’ x,, ) 1"/;(_ Xb, Xy, )



Gaussian Kernel |
k(x,x’) = exp (_ Ix — X,||2>

2. 02

with
2 = xT

|x —x xI x4+ x) x—2-x"-x

and we get

k(x,x’) = exp X x - exp XX - exp XX
’ P2 = o2 P\ 22

k(x,x") Fx)k(x,x") f(x")

* Since:
k(x,x') exp (ki(x,x"))

* The feature vector that corresponds to the Gaussian kernel has infinite
dimensionality



Generative mode Kernels

Given a generative model
p(x)

we can define a kernel by

k(x,x7) = p(x) - p(x)
Two inputs x and x’ are similar if they both have high probabilities.
With positive weighting coefficients p(%)

k(x,x’) = ZP(XI??) -p(x[2) - p()

with the index ¢ representing a latent variable

k(x,x%) =) p(x|z)  p(x|z) - p(z)

z is a latent variable



Sigmoidal kernel

A kernel function is the sigmoidal kernel given by
k(x,x’) = tanh(a - x' -x’ 4+ b)
whose Gram matrix in general is not positive semidefinite.

This form of kernel has, however, been used in practice (Vapnik, 1995),
because it gives kernel expansions such as the support vector machine and it
is similar to the one used in neural network models.
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