Lecture /7: Mu
Perceptro

Andreas Wichert

tilayer

1S

Department of Computer Science and Engineering

Técnico Lisboa

Similarity to real neurons...

Dendrites

W

Generic

A

f (net;)

/

Wio2 W13 W/4W/5W/6 W
\ n\

Terminal
arborization

Synapses

* The dot product is a linear representation represented by the value
net
D

Yy = net = <X‘W> p— Z 'l_l,..’j . '/.‘I""jﬂ

j=1

* Non linearity can be achieved be a non liner activation (transfer)
function ¢() with

D
0= ¢(net) = ¢((x|w)) = ¢ Z Ww; - T
j=1

S5gn

* Examples of nonlinear transfer functions are the sgn function

| 1 if net>0
¢(net) := sgn(net) = { 1 if net <0

1.0

Perceptron (1957)

* Linear threshold unit (LTU)

The “bias”, a constant term that does

not depend on any input value

1 if net=0

[= X 0 = sgn(ner) =
e ;w’ o gn(net) {—1 if net<0

McCulloch-Pitts model of a neuron (1943)

Linearly separable patterns

C n
0=sgn(2w1xl) wa.>0
i=0 ~ Lot
=
XI'I n
T Class 0 Ewl'xi <0
.. [] l_=0
':" X,=1, bias...
N o

Class 1

Hyperplane
W0+W1 X1 + W2X2+...+ Wan=O
determined by weight

vector w

* The goal of a perceptron is to correctly classify the set of pattern
D={x,x,,..x,.} into one of the classes C; and C,

* The output for class C; is 0=1 and for C, is 0=-1

Decision
/ Boundary

* Forn=2 =2

Perceptron learning rule

* Consider linearly separable problems

* How to find appropriate weights
* Initialize each vector w to some small random values

* Look if the output pattern o belongs to the desired class, has the
desired value d

ne

W' = w + Aw Aw=n-(d-0) x

* n7is called the learning rate
*0O<npns<li

* In supervised learning the network has its output compared with
known correct answers
e Supervised learning
* Learning with a teacher

* (d-0) plays the role of the error signal

* The algorithm converges to the correct classification
* if the training data is linearly separable
* and 7 is sufficiently small

XOR problem and Perceptron

* By Minsky and Papert in mid 1960

y=1l(0.1) y=00 (1,1)

W,

ot W, x1+w2x2=0

10, 0)

=
I
o
<
I
=
=
;Z
—

Multi-layer Networks

* The limitations of simple perceptron do not apply to feed-forward
networks with intermediate or , hidden” nonlinear units

* A network with just one hidden unit can represent any Boolean
function

* The great power of multi-layer networks was realized long ago
* But it was only in the eighties it was shown how to make them learn

Knowl Inf Syst (2012) 30:135-154 XO R |
DOI 10.1007/s10115-011-0392-6 -exan Ip e

REGULAR PAPER

A general insight into the effect of neuron structure
on classification

Hadi Sadoghi Yazdi - Alireza Rowhanimanesh -
Hamidreza Modares

* Multiple layers of cascade linear units still produce only linear
functions

* We search for networks capable of representing nonlinear functions
* Units should use nonlinear activation functions
e Examples of nonlinear activation functions

sgn(x)

A Aol

Gradient Descent for one Unit

(a) (b)
////'/'//
”~ /// -
~ _ ot |
(c) (d)

AAAAAAA

Figure 1.1: (a) Linear activation function. (b) The function o(net) with
a = 1. (¢) The function o(net) with a = 5. (d) The function o(net) with

a = 10 is very similar to sgng(net), bigger a make it even more similar.

Linear Unit

D

O = E Wy - Tk j

3=0

The update rule for gradient decent is given by

N
Aw; =1 - Z(t"’ — Ok) - Tk j-

k=1

Sigmoid Unit

1 e(a-net)

1+ e(—a-net) - 1+ e (a-net)

N
Op =0 E uvj . Ik.j

j=0

o(net) =
OF """
ow, 'Z(tk — o) - 0 (nety ;) - (1 — o (nety;)) - T
s k=1
N

Aw; =1 «- Z(tk — o) - 0 (nety ;) - (1 — o (netyj)) - xrj
k=1

Logistic Regression

1 e(net)
1 + e(—net) - 1 + e(net)

N
p(Cilx) =0 (Z wj - .rj> =0 (w' - x)

j=0

p(Ch|x) = o(net) =

Error function is defined by negative logarithm of the likelihood which leads
to the update rule where the target ¢ can be only one or zero (a constraint)

The update rule for gradient decent is given for target ¢, € {0, 1}

N
Aw; =1 - Z(tk — Ok) - Tk j-
k=1

Sigmoid Unit versus Logistic Regression

Sigmoid Unit is with target, should be positive (between zero and one):

.2.

Awj=1n-oa- Z(fk — o) o (nety ;) - (1 — o (nety ;)) - zx

k=1

Logistic Regression is with target tx € {0,1}

N
Awj =1n- Z(fk — Ok) * Tk-
k=1

If we assume o = 1 then the difference between sigmoid unit and the logistic
regression that was derived by maximising the negative logarithm of the
likelihood is

o (nety ;) - (1 — o (nety;)) >0

the step size in the direction of gradient. Does it mean that Sigmoid Unit
converge faster?

Linear Unit versus Logistic Regression

Target can be any value and can be solved by closed-form solution, by pseudo

inverse
D

0} = E ll'J' . 'rk._j

j=0
Target #. € {0,1} cannot be solved by closed-form solution

1
1 4+ (,("'(Z_',\-:n W; Tk, ;))

0 =

N
Awj =1n- Z(Ik — Ok) * Th.
k=1

Logistic Regression as well as the sigmoid unit gives a better decision bound-
ary.

For Sigmoid (Logistic) distant points from the decision boundary have the
same impact

10
ost /
st

Figure 1.2: (a) Linear activation function. (b) The function o(net) with
a =25

Distance

Better Decision Boundary of Logistic
Regression LR (sigmoid) to Linear Unit

LR linear LR linear
»
2t - iﬁx}*‘ 1 2

Back-propagation (1980)

* Back-propagation is a learning algorithm for multi-layer neural
networks

* It was invented independently several times
* Bryson an Ho [1969]

* Werbos [1974] R N T
PARALLEL DISTHIBUTED

* Parker [1985] sy a5 R
FARALLEL Dd: B W AT e, ¢

* Rumelhart et al. [1986] PROCESSING €ani

Parallel Distributed Processing - Vol. 1

Foundations
David E. Rumelhart, James L. McClelland and the PDP Research

Group

What makes people smarter than computers? These volumes by
a pioneering neurocomputing.....

* Feed-forward networks with hidden nonlinear units are universal
approximators; they can approximate every bounded continuous
function with an arbitrarily small error

* Each Boolean function can be represented by a network with a single
hidden layer

* However, the representation may require an exponential number of hidden
units.

* The hidden units should be nonlinear because multiple layers of
linear units can only produce linear functions.

Q

S
g

>
2

O
.kv X

Back-propagation

* The algorithm gives a prescription for changing the weights w;; in any
feed-forward network to learn a training set of input output pairs

{Xk/yk}
* We consider a simple two-layer network

0 O O

W, > ‘ Was W

iy i
W ' w W,
- \
\ . \ \.:
S ; v A "
W, | <~ r ’ ‘ Wa: W
v ® S Y »
X, X X X , X .

* The input pattern is represented by the five-dimensional vector x
* nonlinear hidden units compute the output V,, V,, V;

* Two output units compute the output o, and o,.

* The units V;, V,, V3 are referred to as hidden units because we cannot see
their outputs and cannot directly perform error correction

* The output layer of a feed-forward network can be trained by the
perceptron rule (stochastic gradient descent) since it is a Perceptron

Awy =1+ (Ypt — 0kt) - Vi

For continuous activation function ¢()

3
Ot = O E wy; - Vi |-
i—0

we get

OE = ,
==Y)
£ k—1 -

For the nonlinear continuous function ()

N

oFE

)

— = - Z(yk‘ — okt) - o(netiy) - (1 — o(netry)) - Vii

Owu

k=1

and
Af

Awy =1« - Z(yk‘ — 0kt) - o(netgy) - (1 — o(netyy)) - Via.

k=1

O

X
X, X, X, X 4 X o

We can determine the Awy; for the output units, but how can we determine
AW;; for the hidden units? If the hidden units use a continuous non linear
activation function ¢()

5
Vii = ¢ (Z Wi, - xkj) .
=0

Vii =0 (Z Wi, - rk.j) .

j=0

we can define the training error for a training data set D; of N elements with

We already know

Bu, = — Z Ykt — Okt) - @' (netry) - Vis.
’tt k—

BH

Z OE OVii

(91 V,J Ve OW,;

k=1 t=1 i=0 J=0
IE z‘: IE Vi
oW, — = Wiy OW,
with Y
) (et
oy - (ykt - Okt) ’ ‘f” nety) - wy;.
Vi k=1 t=1
5 ‘ V~i |
V=0 (W,) - Vi _ Y nety) - i,
j=0 a ” ij

OF

8IfV,-]- -

aw,,

N 2
ZZ Ykt _Okt) 45 netkt) "Wt ;-

= ¢'(nety;) - T ;

OE 0Vii

-1 a‘/}d 8W,J .

N 2
X
E E Ykt — Okt) - &' (netyy) - wyi - &' (nety;) - o ;.

k=1 t=1

The algorithm is called back propagation because we can reuse the compu-
tation that was used to determine Awy;,

N
Aw =1 - Z(ykt — Ogt) * ‘ﬁ’(”f«’tk,t) * Vi

k=1
and with
Okt = (ykt - Okt) : (bi(netk,t)
we can write

N
Aw,; =1 - Z Okt * Vii-

k=1

2
Z(ykt — Okt) - Of"(nfftk,t) "Wt (;'b'(netk,,-) " Tk,
1 t=1

[M]=

AW, =1

>
Il

we can simplify (reuse the computation) to S0 = (Yo — One) - &' (ntry)

N
A‘VU = TIZ Z (Skt . u”t,i . é’(netk!i) . .’L'k!j.

=1 t=1 l
With
Oki = ¢ (netri) - Y Ore - wy

t=1

we can simply to

N
AW, = nZ Oki * Tk, j-

k=1

* In general, with an arbitrary number of layers, the back-propagation
update rule has always the form

m
E output mput
d=1

* Where output and input refers to the connection concerned
* V stands for the appropriate input (hidden unit or real input, x;)
* 0 depends on the layer concerned

* This approach can be extended to any numbers of layers

* The coefficient are usual forward, but the errors represented by 6 are
propagated backward

Networks with Hidden Linear Layers

Consider simple linear unit with a linear activation function

3
§ : . ro T
O+ = Wy; - ‘k.i = Wt . V;‘.
1=0
5
- T
‘k.i_ HIJIAJ_WJ - X
j=0
Now W is a matrix
Vk = I" - X

S() we caln \\'l‘it(.‘
T .
Opt — W' . ‘I - X

with
(W) =w/ W

and we get the same discrimination power (linear separable) as a simple
Perceptron

ore = (W) - xi

However with nonlinear activation function, we cannot do the matrix multi-
plication

Vk - G) (I"V . Xk)
So we can write

ort =wi - (W -xp)

but we cannot simplify

 \We have to use a nonlinear differentiable activation
function in hidden units

* Examples: 2 |
08
1 0.6
) =0x)=—=% ol
| " |

1 1 Il 1
-0 8 -6 4 -2 0 2 4 6 8 10

fx)=0x)=a o(x) (1-0(x)

f(x)=tanh(a- x)
fx)=a(1-f(x))

Two kind of Units

* Output Units
* Require Bias
* Preform Linear Separable Problems, means the input to them had to be somehow
linearised
* Does not require non linear activation function,

* We should use sigmoid function or softmax to represent probabilities and to get
better decision boundary.

* Hidden Units

* Nonlinear activation function

* Feature Extraction
Does it require Bias? It is commonly used

* Universal Approximation Theorem uses hidden units with bias.

Output Units are linear (Perceptron)

* The hidden layer applies a nonlinear transformation from the input
space to the hidden space

* In the hidden space a linear discrimination can be performed

Bias?

More on Back-Propagation

* Gradient descent over entire network weight vector

* Easily generalized to arbitrary directed graphs

* Will find a local, not necessarily global error minimum
* In practice, often works well (can run multiple times)

* Gradient descent can be very slow if 77is to small, and can oscillate
widely if 77is to large

e Often include weight momentum o

oE

Aw, (t+1D)=-n +a-Aw, (1)

pq

* Momentum parameter o is chosen between 0 and 1, 0.9 is a good
value

* Minimizes error over training examples
e Will it generalize well

* Training can take thousands of iterations, it is slow!

* Using network after training is very fast

Convergence of Back-propagation

* Gradient descent to some local minimum
e Perhaps not global minimum...
* Add momentum
 Stochastic gradient descent
* Train multiple nets with different initial weights

* Nature of convergence
* Initialize weights near zero
* Therefore, initial networks near-linear
* Increasingly non-linear functions possible as training progresses

f(x)

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

Ideally, we would like
to arnive at the global
minimum, but this

might not be possible.

This local minimum performs
poorly and should be avoided.

Expressive Capabilities of ANNs

* Boolean functions:
* Every boolean function can be represented by network with single hidden
layer
* but might require exponential (in number of inputs) hidden units

* Continuous functions:

* Every bounded continuous function can be approximated with arbitrarily
small error, by network with one hidden layer [Cybenko 1989; Hornik et al.
1989]

* See: https://en.wikipedia.org/wiki/Universal_approximation_theorem

* Any function can be approximated to arbitrary accuracy by a network with
two hidden layers [Cybenko 1988].

Output

Output

—'x\ X Training data points

x\ ® Generalization point
X
\x
X—
®
\x
Nonlinear mapping
learned through
X\ training
0 Input
()
X X Training data points

/ ® Generalization point
X
X
X
X
X
Nonlinear mapping / \/x
@

learned through training

0 Input

Early-Stopping Rule

Mean-
square
error

Validation-sample
error

Early- Training-sample
stopping error
point l

Number of epochs

Error

Underfitting zone| Overfitting zone

= - Training error

- (Generalization error

I Generalization gap

-P——————————————-——

0

Optimal Capacity
Capacity

Underfitting zone Overfitting zone

Generalization

——"

Variance

Optimal Capacity

capacity

Cross Validation to determine Parameters

Trial 1

Trial 2

Trial 3

Trial 4

Example

(different notation)

e Consider a network with M layers m=1,2,..,M

* V. from the output of the ith unit of the mth layer
* VY. is a synonym for x; of the ith input

e Subscript m layers m’s layers, not patterns

* W™, mean connection from V™! to V/"

 We have same form with a different definition of o
 d is the pattern identificator

2
* By the equation 5;1 = f‘(net?)zwij(sid
i=1

* allows us to determine for a given hidden unit V; in terms of the J's
of the unit o;

* The coefficient are usual forward, but the errors 0 are propagated
backward
* back-propagation

Stochastic Back-Propagation Algorithm

(mostly used)
1.
2.
3.

Initialize the weights to small random values
Choose a pattern x4, and apply is to the input layer V9,= x4, for all k
Propagate the signal through the network

= f(net™) = f(EwU v

Compute the deltas for the output layer

6" = f (net!")(t} - V")

Compute the deltas for the preceding layer for m=M,M-1,..2
o "= f (net;"” 1)2 whio7

Update all connectlons

Awy =y Wit =i+ Awy

Goto 2 and repeat for the next pattern

Example

w;={w;;=0.1,w;,=0.1,w;3=0.1,w;,=0.1,w;5=0.1}
w,={w,;=0.1,w,,=0.1,w,3=0.1,w,,=0.1,w,5=0.1}
ws={w3;=0.1,w3,=0.1,w33=0.1,w3,=0.1,w35=0.1}
w,={W;,=0.1,W,=0.1,W3=0.1}
W,={W,,=0.1,W,,=0.1,W,5=0.1}

X1={1/ 1/ 0/ O/ O}/ t1={1/ O}
X2={0/ 0/ 0/ 1/ 1}/ tlz{ol 1}

1
l+e

f(x)=0(x)=

(-x)

f(x)=0(x)=0(x) (1-0(x))

5
net, = E w,x, V!'= f(net))=
k=1

-net|

1+e

net!;=1*0.1+1*0.1+0*0.1+0*0.1+0*0.1
Vi=f(net';)=1/(1+exp(-0.2))=0.54983

5
1
net, = Ew%xllc V, = f(net)) = ———
p 1+ e—net2

Vi,=f(net!,)=1/(1+exp(-0.2))=0.54983

5
1
net; = Ew3k'xll< V; = f(net;) = 1—1

—net
k=1 +e

Vis=f(net';)=1/(1+exp(-0.2))=0.54983

—net,

3
1
net, = YW,.V: o = f(net;)=——+
1 Z 1j7 j 1 1 1+e

net!;=0.54983*0.1+ 0.54983*0.1+ 0.54983*0.1= 0.16495

ol;= f(netl1)=1/(1+exp(- 0.16495))= 0.54114

3
1
1 1 1 1
net, = EWZJ.VJ. 0, = f(net,) = —
0 I+e "7

net!,=0.54983*0.1+ 0.54983*0.1+ 0.54983*0.1= 0.16495

ol,= f(netll)=1/(1+exp(- 0.16495))= 0.54114

For hidden-to-output

AW, =) (1! - 0!) f (net!)- V!
d=1
* We will use stochastic gradient descent with 7=1

AW, =(t, - ol.)f'(netl.)Vj
f(x)=0(x)=0(x)1-0(x))

AW, = (1, —0,)0(net,)(1 - o(net,))V,

0, =(t, - o0,)o(net,)(1 - o(net,))
AW, =06V,

0, = (t, —0,)o(net,)(1 - o(net,))
AW, . = (51Vj

o 8=(1- 0.54114)*(1/(1+exp(- 0.16495)))*(1-(1/(1+exp(- 0.16495))))= 0.11394

0, = (t, —0,)0(net,)(1 - o(net,))
AW, = 52Vj

o 5=(0- 0.54114)*(1/(1+exp(- 0.16495)))*(1-(1/(1+exp(- 0.16495))))= -0.13437

Input-to hidden connection

2
Aw ;= Eéi W, f (net)) x,
i=1
2
Aw , = ¥ 8, Wo(net)(1-o(net)" x,
=1

2
8; = o(net)(1-o(net) Y W9,
i=1

Aw ;=0 x,

2
8 = o(net,)(1 - o(net,)) Y W0,
i=1

o1= 1/(1+exp(- 0.2))*(1- 1/(1+exp(- 0.2)))*(0.1* 0.11394+0.1%(-0.13437))

o= -5.0568e-04 ,
8, = o(net,)(1 - O(netz))z W6,
i=1

0= -5.0568e-04

2
8, = o(net,)(1 - o(nety)) Y W39,
i=1

3= -5.0568e-04

First Adaptation for x,

(one epoch, adaptation over all training patterns, in
our case X; X,)

ijk = 6]. "X, AW, =6V,
0,= -5.0568e-04 o= 0.11394
0,= -5.0568e-04 0,= -0.13437

9= -5.0568¢e-04

Xl =1 V1 =0.54983
X7 =1 V>, =0.54983
X3 =0 V3=054983
X4 =0

X5 =0

Learning consists of minimizing the error (loss) function [Bishop, 2006,

N
- Z Yk log ok
k=1

in which y, € {0,1} and o, corresponds to probabilities (D, yx = 1). The
error surface is more steeply as the error surface defined by the squared error

) (ke — oke)?

k=1 t=1

E(w) =

[\Dlr—‘

and the gradient converges faster. The cross entropy error function can be
alternatively written as loss (cost) function with § = w

N
L(x,y,0) = =) (yxlogp(ci|x))
or as the loss function
J(0) = Z(yk log (ck[x)) = —Ez ypara l0g P(cK[X)

in which 6 indicates the adaptive parameters of the model and E indicates
the expectation. This notation is usually common in statistics.

iy i
W ' w W,
- \
\ . \ \.:
S ; v A "
W, | <~ r ’ ‘ Wa: W
v ® S Y »
X, X X X , X .

* The input pattern is represented by the five-dimensional vector x
* nonlinear hidden units compute the output V,, V,, V;

* Two output units compute the output o, and o,.

* The units V;, V,, V3 are referred to as hidden units because we cannot see
their outputs and cannot directly perform error correction

For simplicity we define ¢ as a sigmoid function.

For output layer it is the softmax function with

exp(net;.)
K
> j—1 exp(net;)

¢(net) =

For the hidden units it is

¢(net) = o(net) = T oned

We can use different activation function, using the sigmoid function we can
reuse the results which we developed when we introduced the logistic regres-
sion

We assume the target values y, € {0, 1}

We assume the target values yi, € {0, 1}

Output unit
3

Okt = ¢ E Wi * Vi

i=0
and
2 N 3
Z Z Ykt 1og 0y = Z Z Uit log ¢ Z Wy - sz
t=1 k=1 t=1 k=1 i=0

we get (logistic regression)

N
E , UM _Okt Vki~
au*t, 1

O

X
X, X, X, X 4 X o

We can determine the Awy; for the output units, but how can we determine
AW;; for the hidden units? If the hidden units use a continuous non linear
activation function ¢()

5
Vii = ¢ (Z Wi, - xkj) .
=0

)
Vii = ¢ (Z W, - ;z,-k,j) .

§=0

we can define the training error for a training data set D, of N elements with

N
E(w,W) = E(w) =~ (yu-logog)
k=1 t=1
N 3
E(w, W) = —ZZ (ym -log ¢ (Zuh Vm))
k=1 t=1 1=0
\ 2 3 5
E(wW)=-> %" (u“ log ¢ (Z we; - ¢ (Z Wi m)))
k=1 t=1 i=0 7=0

We already know

N
E yu—okt Vlz

we can use the chain rule and we obtain

For

)W,,

OE _Z OE 0V,
OVM 6‘/‘/”

OF Z OE 0V,

OV} .
) oW, = ¢'(netr;) - Ty

with
and
it follows
OF
oW, i j

OE <~ OE 0V
oW, = Vi Wy

N 2
[y ! ? O R .
81/1/” Z Z(ykt — Ot) - Wy - @ (nety;) - T .

k=1 t=1 A

For the quadratic error it was

v

N 2
Z Z Ykt — Okt) - @' (netyy) - wy; - @' (nety ;) - oy ;.

k=1 t=1

aw,]

You notice he difference that makes the convergence faster?

The algorithm is called back propagation because we can reuse the com-
putation that was used to determine Awy;,

N
Awy; = U Z(ykt - Okt) ' Vk,i-
k=1

and with

5kt — (ykt - Okt)

we can write

N
Awy =1 - Z(Skt ‘ Vk,i-
k—1

N 2
AW;; = T]Z Z Ykt — Okt) * Wi+ @ (nety;) - Ty

k=1 t=1

we can simplify (reuse the computation) to

AW;j =n ZZ(SM wy; - @ (nety;) - x. ;.

k=1 t=1
With
2
/
Opi = @ (netk,i) ' E Okt - Wy 4
t=1
we can simply to

N
A‘/Vij = T]Z(Ski * Lk, je

L.—1

Literature

WHEN - Simon O. Haykin, Neural Networks and Learning

and

- s Machine, (3rd Edition), Pearson 2008
‘ e Chapter 4

; * Christopher M. Bishop, Pattern Recognition and Machine
=== Learning (Information Science and Statistics), Springer
2006

e Chapter 5

Literature (Additional)

T * Introduction To The Theory Of Neural Computation
i (Santa Fe Institute Series Book 1), John A.
Hertz, Anders S. Krogh, Richard G. Palmer, Addison-
Wesley Pub. Co, Redwood City, CA; 1 edition
(January 1, 1991)
* Chapter 6

Literature

* Machine Learning - A Journey to Deep Learning, A.
Wichert, Luis Sa-Couto, World Scientific, 2021
e Chapter 6

Machine Learning
A Journey to Deep Learning
with Exercises and Answers

