
Lecture 7: Multilayer
Perceptrons

Andreas Wichert
Department of Computer Science and Engineering

Técnico Lisboa

Similarity to real neurons...

• The dot product is a linear representation represented by the value
net

• Non linearity can be achieved be a non liner activation (transfer)
function φ() with

Sgn

• Examples of nonlinear transfer functions are the sgn function

Perceptron (1957)

• Linear threshold unit (LTU)

S

x1

x2

xn

...

w1
w2

wn

w0
X0=1

o

McCulloch-Pitts model of a neuron (1943)

The “bias”, a constant term that does
not depend on any input value

Linearly separable patterns

X0=1, bias...

• The goal of a perceptron is to correctly classify the set of pattern
D={x1,x2,..xm} into one of the classes C1 and C2

• The output for class C1 is o=1 and for C2 is o=-1

• For n=2 è

Perceptron learning rule

• Consider linearly separable problems
• How to find appropriate weights

• Initialize each vector w to some small random values

• Look if the output pattern o belongs to the desired class, has the
desired value d

• h is called the learning rate
• 0 < h ≤ 1

Δw =η ⋅ (d −o) ⋅ x

• In supervised learning the network has its output compared with
known correct answers

• Supervised learning
• Learning with a teacher

• (d-o) plays the role of the error signal

• The algorithm converges to the correct classification
• if the training data is linearly separable
• and h is sufficiently small

XOR problem and Perceptron

• By Minsky and Papert in mid 1960

Multi-layer Networks

• The limitations of simple perceptron do not apply to feed-forward
networks with intermediate or „hidden“ nonlinear units
• A network with just one hidden unit can represent any Boolean

function
• The great power of multi-layer networks was realized long ago

• But it was only in the eighties it was shown how to make them learn

XOR-example

• Multiple layers of cascade linear units still produce only linear
functions
• We search for networks capable of representing nonlinear functions

• Units should use nonlinear activation functions
• Examples of nonlinear activation functions

Gradient Descent for one Unit

Linear Unit

Sigmoid Unit

Logistic Regression

Sigmoid Unit versus Logistic Regression

Linear Unit versus Logistic Regression

Distance

Better Decision Boundary of Logistic
Regression LR (sigmoid) to Linear Unit

Back-propagation (1980)

• Back-propagation is a learning algorithm for multi-layer neural
networks
• It was invented independently several times

• Bryson an Ho [1969]
• Werbos [1974]
• Parker [1985]
• Rumelhart et al. [1986]

Parallel Distributed Processing - Vol. 1
Foundations
David E. Rumelhart, James L. McClelland and the PDP Research
Group

What makes people smarter than computers? These volumes by
a pioneering neurocomputing.....

• Feed-forward networks with hidden nonlinear units are universal
approximators; they can approximate every bounded continuous
function with an arbitrarily small error
• Each Boolean function can be represented by a network with a single

hidden layer
• However, the representation may require an exponential number of hidden

units.

• The hidden units should be nonlinear because multiple layers of
linear units can only produce linear functions.

Back-propagation

• The algorithm gives a prescription for changing the weights wij in any
feed-forward network to learn a training set of input output pairs
{xk,yk}
• We consider a simple two-layer network

• The input pattern is represented by the five-dimensional vector x
• nonlinear hidden units compute the output V1, V2, V3

• Two output units compute the output o1 and o2.
• The units V1, V2, V3 are referred to as hidden units because we cannot see

their outputs and cannot directly perform error correction

• The output layer of a feed-forward network can be trained by the
perceptron rule (stochastic gradient descent) since it is a Perceptron

• In general, with an arbitrary number of layers, the back-propagation
update rule has always the form

• Where output and input refers to the connection concerned
• V stands for the appropriate input (hidden unit or real input, xd)
• d depends on the layer concerned

€

Δwij =η δoutput
d=1

m

∑ ⋅Vinput

• This approach can be extended to any numbers of layers
• The coefficient are usual forward, but the errors represented by δ are

propagated backward

Networks with Hidden Linear Layers

• We have to use a nonlinear differentiable activation
function in hidden units

• Examples:

€

f (x) =σ (x) =
1

1+ e(−α⋅x)

€

f ' (x) =σ ' (x) =α ⋅σ(x) ⋅ (1−σ(x))

Two kind of Units

• Output Units
• Require Bias
• Preform Linear Separable Problems, means the input to them had to be somehow

linearised
• Does not require non linear activation function,
• We should use sigmoid function or softmax to represent probabilities and to get

better decision boundary.

• Hidden Units
• Nonlinear activation function
• Feature Extraction

Does it require Bias? It is commonly used
• Universal Approximation Theorem uses hidden units with bias.

Output Units are linear (Perceptron)

• The hidden layer applies a nonlinear transformation from the input
space to the hidden space
• In the hidden space a linear discrimination can be performed

f()

f()

f()
f()f()

f()

f()f()

f()

f()

f()
f()
f()

f()

f()
f()

Bias?

More on Back-Propagation

• Gradient descent over entire network weight vector
• Easily generalized to arbitrary directed graphs
• Will find a local, not necessarily global error minimum

• In practice, often works well (can run multiple times)

• Gradient descent can be very slow if h is to small, and can oscillate
widely if h is to large
• Often include weight momentum a

• Momentum parameter a is chosen between 0 and 1, 0.9 is a good
value

€

Δwpq (t +1) = −η
∂E
∂wpq

+α ⋅ Δwpq (t)

• Minimizes error over training examples
• Will it generalize well

• Training can take thousands of iterations, it is slow!

• Using network after training is very fast

Convergence of Back-propagation

• Gradient descent to some local minimum
• Perhaps not global minimum...
• Add momentum
• Stochastic gradient descent
• Train multiple nets with different initial weights

• Nature of convergence
• Initialize weights near zero
• Therefore, initial networks near-linear
• Increasingly non-linear functions possible as training progresses

Expressive Capabilities of ANNs

• Boolean functions:
• Every boolean function can be represented by network with single hidden

layer
• but might require exponential (in number of inputs) hidden units

• Continuous functions:
• Every bounded continuous function can be approximated with arbitrarily

small error, by network with one hidden layer [Cybenko 1989; Hornik et al.
1989]
• See: https://en.wikipedia.org/wiki/Universal_approximation_theorem

• Any function can be approximated to arbitrary accuracy by a network with
two hidden layers [Cybenko 1988].

Early-Stopping Rule

Cross Validation to determine Parameters

Example
(different notation)

• Consider a network with M layers m=1,2,..,M
• Vm

i from the output of the ith unit of the mth layer
• V0

i is a synonym for xi of the ith input
• Subscript m layers m’s layers, not patterns
• Wm

ij mean connection from Vj
m-1 to Vi

m

€

Δw jk =η δ j
d

d=1

m

∑ ⋅ xk
d

€

ΔWij =η δi
d

d=1

m

∑ V j
d

• We have same form with a different definition of d
• d is the pattern identificator

• By the equation

• allows us to determine for a given hidden unit Vj in terms of the d‘s
of the unit oi

• The coefficient are usual forward, but the errors d are propagated
backward

• back-propagation

€

δ j
d = f ' (net j

d) Wij
i=1

2

∑ δi
d

Stochastic Back-Propagation Algorithm
(mostly used)

1. Initialize the weights to small random values
2. Choose a pattern xd

k and apply is to the input layer V0
k= xd

k for all k
3. Propagate the signal through the network

4. Compute the deltas for the output layer

5. Compute the deltas for the preceding layer for m=M,M-1,..2

6. Update all connections

7. Goto 2 and repeat for the next pattern

€

Vi
m = f (neti

m) = f (wij
m

j
∑ V j

m−1)

€

δi
M = f ' (neti

M)(ti
d −Vi

M)

€

δi
m−1 = f ' (neti

m−1) w ji
m

j
∑ δ j

m

€

Δwij
m =ηδi

mV j
m−1

€

wij
new = wij

old + Δwij

Example

w1={w11=0.1,w12=0.1,w13=0.1,w14=0.1,w15=0.1}

w2={w21=0.1,w22=0.1,w23=0.1,w24=0.1,w25=0.1}

w3={w31=0.1,w32=0.1,w33=0.1,w34=0.1,w35=0.1}

W1={W11=0.1,W12=0.1,W13=0.1}

W2={W21=0.1,W22=0.1,W23=0.1}

X1={1,1,0,0,0}; t1={1,0}

X2={0,0,0,1,1}; t1={0,1}

€

f (x) =σ (x) =
1

1+ e(−x)

€

f ' (x) =σ ' (x) =σ(x) ⋅ (1−σ(x))

€

net1
1 = w1k

k=1

5

∑ xk
1 V1

1 = f (net1
1) =

1
1+ e−net1

1

€

net2
1 = w2k

k=1

5

∑ xk
1 V2

1 = f (net1
1) =

1
1+ e−net2

1

€

net3
1 = w3k

k=1

5

∑ xk
1 V3

1 = f (net3
1) =

1
1+ e−net3

1

net1
1=1*0.1+1*0.1+0*0.1+0*0.1+0*0.1

V1
1=f(net1

1)=1/(1+exp(-0.2))=0.54983

V1
2=f(net1

2)=1/(1+exp(-0.2))=0.54983

V1
3=f(net1

3)=1/(1+exp(-0.2))=0.54983

€

net1
1 = W1 j

j=1

3

∑ V j
1 o1

1 = f (net1
1) =

1
1+ e−net1

1

€

net2
1 = W2 j

j=1

3

∑ V j
1 o2

1 = f (net2
1) =

1
1+ e−net2

1

net11=0.54983*0.1+ 0.54983*0.1+ 0.54983*0.1= 0.16495

o1
1= f(net11)=1/(1+exp(- 0.16495))= 0.54114

net12=0.54983*0.1+ 0.54983*0.1+ 0.54983*0.1= 0.16495

o1
2= f(net11)=1/(1+exp(- 0.16495))= 0.54114

For hidden-to-output

• We will use stochastic gradient descent with h=1

€

ΔWij =η (ti
d − oi

d) f '
d=1

m

∑ (neti
d) ⋅V j

d

€

ΔWij = (ti − oi) f
' (neti)V j

€

f ' (x) =σ ' (x) =σ(x) ⋅ (1−σ(x))

€

ΔWij = (ti − oi)σ(neti)(1−σ(neti))V j

€

δi = (ti − oi)σ(neti)(1−σ(neti))
ΔWij = δiV j

• d1=(1- 0.54114)*(1/(1+exp(- 0.16495)))*(1-(1/(1+exp(- 0.16495))))= 0.11394

• d2=(0- 0.54114)*(1/(1+exp(- 0.16495)))*(1-(1/(1+exp(- 0.16495))))= -0.13437

€

δ1 = (t1 − o1)σ(net1)(1−σ(net1))
ΔW1 j = δ1V j

€

δ2 = (t2 − o2)σ(net2)(1−σ(net2))
ΔW2 j = δ2V j

Input-to hidden connection

€

Δw jk = δi
i=1

2

∑ ⋅Wij f
' (net j) ⋅ xk

€

Δw jk = δi
i=1

2

∑ ⋅Wijσ(net j)(1−σ(net j)) ⋅ xk

€

δ j =σ (net j)(1−σ (net j)) Wij
i=1

2

∑ δi

€

Δw jk = δ j ⋅ xk

d1= 1/(1+exp(- 0.2))*(1- 1/(1+exp(- 0.2)))*(0.1* 0.11394+0.1*(-0.13437))

d1= -5.0568e-04

d2= -5.0568e-04

d3= -5.0568e-04

€

δ1 =σ (net1)(1−σ (net1)) Wi1
i=1

2

∑ δi

€

δ2 =σ (net2)(1−σ (net2)) Wi2
i=1

2

∑ δi

€

δ3 =σ (net3)(1−σ (net3)) Wi3
i=1

2

∑ δi

First Adaptation for x1
(one epoch, adaptation over all training patterns, in
our case x1 x2)

d1= -5.0568e-04 d1= 0.11394

d2= -5.0568e-04 d2= -0.13437

d3= -5.0568e-04

x1 =1 v1 =0.54983

x2 =1 v2 =0.54983

x3 =0 v3=0.54983

x4 =0
x5 =0

€

ΔWij = δiV j

€

Δw jk = δ j ⋅ xk

• The input pattern is represented by the five-dimensional vector x
• nonlinear hidden units compute the output V1, V2, V3

• Two output units compute the output o1 and o2.
• The units V1, V2, V3 are referred to as hidden units because we cannot see

their outputs and cannot directly perform error correction

Literature

• Simon O. Haykin, Neural Networks and Learning
Machine, (3rd Edition), Pearson 2008

• Chapter 4

• Christopher M. Bishop, Pattern Recognition and Machine
Learning (Information Science and Statistics), Springer
2006

• Chapter 5

Literature (Additional)

• Introduction To The Theory Of Neural Computation
(Santa Fe Institute Series Book 1), John A.
Hertz, Anders S. Krogh, Richard G. Palmer, Addison-
Wesley Pub. Co, Redwood City, CA; 1 edition
(January 1, 1991)

• Chapter 6

Literature

• Machine Learning - A Journey to Deep Learning, A.
Wichert, Luis Sa-Couto, World Scientific, 2021

• Chapter 6

