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* Under what conditions is successful learning possible?

e Under what conditions is a particular learning algorithm assured of
learning successfully?



Generalization
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* As the sample size N grows v BIN

approaches value of u
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e Can we overcome the problem of large sample by regularisation?

* The use of least squares, can lead to severe over-fitting if complex
models are trained using data sets of limited size.

* However, limiting the number of parameters in order to avoid over-
fitting has the side effect of limiting the flexibility of the model.

* Although the introduction of regularization terms can control over-
fitting for models with many parameters, this raises the question of
how to determine a suitable value for the regularization coefficient A



Expectations

* One of the most important operations involving probabilities is that of
finding weighted averages of functions.

* The average value of some function f(x) under a probability
distribution p(x) is called the expectation of f(x)

]E(f) — Zp(:]?)f(;]?)



For a finite number N of points the expectation can be approximated (similar

or equal) as a
N

E(f) ~ v £

A conditional expectation with respect to a conditional distribution is given

by
E(fly) = Zp (zly) f
The variance of f(z) is defined by
var(f] = E [(f(z) - E[f(2)])]

and provides a measure of how much variability there is in f(z) around its

mean value E|[f(z)]



Finite Sample-Size Consideration

Generic regressive model h
t = h(x,w)+ €

h(x,w) function of the regressor
€ is the error

h() is a mathematical regression model (theoretical) if we had unlimited
supply to data and unlimited computational resources



Empirical knowledge represented by training sample D (real world)
D —w

with
y(x, W)

is an approximation of the regression model.



Given the training sample D the estimator w is the minimizer of the cost

function
N
1 N2
E(w 5 E y(x,, W))
n=1
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=D (ty = y(xy, W))’

n=1



N

BE(W) =Y (ty — y(x,, W)’

n—1

Ep denotes the average operator taken over the entire training sample D
The variables or their functions that come under the average operator Ep
are denoted by x and ¢

The pair (x,t) represents an example in the training sample D

[E acts on the whole ensemble of x and ¢ (population) of which D is a subset.

A

Because of D — w we may write y(x, D) instead of y(x, w)

E(w) =Ep [(t - y(x, D)’]



Next we write
t—y(x,D) =(t—h(x,w))+ (h(x,w) — y(x, D))

because of
t = h(x,w) + €
t— y(x, D) = ¢ + (h(x, W) — y(x, D))

and
E(w) =Ep [(e + (h(x,w) — y(x, D)))’]



E(w) =Ep [(e + (h(x,w) — y(x, D)))?]

we multiply out
E(w)=Ep [62] +Ep [(h(xj w) — y(x, D))Q] +2-Ep [e- h(x,w) —e-y(x,D))]
Now the last expectation term is zero

2-Eple-h(x,w) —€-y(x,D))] =0



Now the last expectation term is zero
2-Eple-h(x,w)—¢€-y(x,D))] =0

because

e The expectational error € is uncorrelated with the regression function
h(x, w)

Ep[e-h(x,w)] =0

This is the principle of orthogonality which states that all the in-
formation about D available to us through input x has been encoded
into the regression function h(x, w) the mean value of the exceptional
error € given any realisation x is zero

IED [€|X] =0
Ep[e- h(x,w)] = Ep [Ep [e - h(x,w)|x]] = Ep [h(x, W) - Ep [e]x]]

e The expectational error e pertains to the regression model h(x,w)
whereas the approximation function pertains to the physical model

y(x, D))



E(w)=Ep [62] +Ep [(h(x,w) — y(x, D))2]

Ep [€?] is the variance of the expectational error evaluated over the training
sample D

It is the constant noise error because it is independent of the weight vector w

The natural measure of effectiveness of y(x, w) as a predictor of the desired
response t is defined as the average loss is defined as

Loo(h(x,w),y(x,w)) =Ep [(h(x, w) — y(x, D))2]



The natural measure of effectiveness of y(x, w) as a predictor of the desired
response t is defined as the average loss is defined as

Loo(h(x,w),y(x,w)) =Ep [(h(x, w) — y(x, D))2]

This natural measure is fundamentally important because it provides the
mathematical basis for the tradeoff between the bias and variance that results
from the use of y(x,w) as the approximation to h(x, w)



Bias-Variance

h(x,w) is equal to the conditional expectation E[¢|x]
Lo (h(x, W), y(x, W)) = Ep [E[(t|x] — y(x, D))’]

The average value of the estimation error between the regression function
h(x,w) = E[t|x| and the approximating function y(x, w) evaluated over the
entire training sample D



We rewrite
Elt|x] —y(x,D)) = (E[t|x] — Ep [y(x, D)]) + (Ep [y(x, D)|] — y(x, D))
and
Lo (h(x, W), y(x,W)) = Ep [(E[t|x] — Ep [y(x, D)] + Ep [y(x, D)] — y(x, D))’]

with
B(w) = Ep [y(x, D)] — E[t|x]

we simplify to

Lao(h(x, W), y(x,W)) = Ep [(=B(W) — y(x, D) + Ep [y(x, D)])]



e we rewrite with a minus sign
La.v(h‘(xa W)a y(X, W)) =Ep [(_B(W) o (y(xa D) —Ep [y(xa D)]))Q]
Lay(h(x, W), y(x, W)) = Ep [B(W)*]| +2-Ep [B(W) - (y(x, D) — Ep [y(x,D)])]

+Ep [(y(x, D) = Ep [y(x, D)])’]

The expectation is zero

Ep [B(w) - (y(x,D) — Ep [y(x, D)])] =0



The expectation is zero

Ep [B(wW) - (y(x,D) = Ep [y(x,D)])] =0

Ep [(Ep [y(x, D)] — E[t]x]) - (y(x, D) — Ep [y(x, D)])] =
]ED [y(x’ D) ' IE:D [y(x’ D)]] - IE‘:D [(ED [y(x’ D)])z]
—Ep [E[t)x] - (y(x, D)] + Ep [E[t|x] - Ep [y(x, D)]] = 0
Because

Ep [y(x, D) Ep [y(X, D)]] - y(X, D) Ep [y(x’ D)]
Ep [(Ep [y(x, D)))*] = (Ep [y(x, D)))*
Ep []E[tlx] ' (y(x, D)] - y(X, D) Ep [y(X, D)]

Ep [E[t|x] - Ep [y(x, D)]] = (Ep [y(x, D)])"



Bias-Variance Dilemma

Lm!(”‘(xv W), ?/(xa W)) = (ED [?/(xa D)] - ]E[tlx])2+ED [(y(x’ D) —Ep [y(x’ D)])z]

with
bias : B(w)=Ep y(x,D)| — E[t|x]

variance : V(w) =Ep [(LI/(X, D) —Ep [y(x, D)])z]

Lao(h(x, W), y(x,W)) = (B(W))* + V(W) = (bias)* + variance



Bias

The first term, B(w) is the bias of the average value of the approximation

function y(x, D) measured with respect to the regression function h(x, w) =
E[t|x]

B(w) represents the inability of the physical model defined by the function
y(x, D) to accurately approximate the regression function h(x,w) = E[¢|x]

The bias B(W) can be viewed as an approximation error.



Variance

V(W) is the variance of the approximating function y(x, D) measured over
the entire training sample D

It represents the inadequacy of the empirical knowledge contained in the
training sample D about the regression function h(x,w)

Variance V(w) can be viewed as an estimation error.



Interpretation

* In a complex physical model that learns by example and does so with
a training sample of limited size, the price for achieving a small bias is
a large variance

* For any physical model, it is only when the size of the training sample
becomes infinitely large that we can hope to eliminate both bias and
variance at the same time

* Our goal is to minimize the expected loss, which we have
decomposed into the sum of a (squared) bias, a variance, and a
constant noise term



* There is a trade-off between bias and variance, with very flexible
models having low bias and high variance

* Rigid models having high bias and low variance

* The model with the optimal predictive capability is the one that leads
to the best balance between bias and variance



Example

* There are L = 100 data sets, each having N = 25 data points, and there
are 24 Gaussian basis functions in the model so that the total number
of parameters is M = 25 including the “bias” (not statistical,
remember?) parameter

24 25
y(z, w) = wy + E w; - x) = E ¢i(x)
j=1 §=0
We will minimizing the regularized error function to give a prediction function

N

Y
' Z(tu —w' - (f)(x'r}))u + 5

n=1

2




* A large value of the
regularisation coefficient A
that gives low variance (be-
cause the red curves in the
left plot look similar) but high
bias (because the two curves
in the right plot are very
different)

In\ =26

|

InA = -0.31

InA=-24




* A small value of the
regularisation coefficient A
that gives large variance
(shown by the high variability
between the red curves in
the left plot) but low bias
(shown by the good fit
between the average model
fit and the original sinusoidal
function)

|
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* The model with the optimal predictive capability is the one that leads
to the best balance between bias and variance
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The VC Dimension

* The Vapnik-Chervonenkis dimension, or VC dimension.
The VC dimension measures the capacity of a binary classifier.

» A dichotomy is a partition of a whole (or a set) into two parts
(subsets). From Ancient Greek: equally divided, cut in half

* A set of instances S is shattered by hypothesis space H if and only if
for EVERY dichotomy of S there exists SOME hypothesis in H
consistent with this dichotomy



* A set of instances S is shattered by hypothesis space H if and only if
for EVERY dichotomy of S there exists SOME hypothesis in H
consistent with this dichotomy

A set of points S is shattered by H if there are SOME hypotheses in H that
split S in ALL of the 2/°! possible ways

For example for 3 points there are 2° possible dichotomies in a plane. As
long as the points are not colinear, we will be able to find 2° linear surfaces
that shatter them.

Three points on the real line cannot not be shattered



Shattering of three Points




Shattering on a Line

* Yes
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Cannot be Shattered

* Four points on a plane, two examples

. i) N i)



On a plane four points cannot be shattered
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VC-dimension

* The VC-dimension of a hypothesis space H is the cardinality of the largest
set S that can be shattered by H

* |t can be shown that the VC dimension of linear decision surfaces in an d

dimensional space (i.e., the VC dimension of a perceptron with d inputs) is
d+1

* Perceptron in d dimensions has d+1 parameter (bias) Through d+1 linear
independent chosen points we can learn all dichotomies

* For d+2 points in a perceptron in d dimension some vectors (at least two)
are represented as a linear combination, we cannot learn all dichotomies



out-of-sample error

model complexity

Error

in-sample error

dye VC dimension, dye

When we use a more complex learning model, one that has higher VC di-
mension d,., we are likely to fit the training data better resulting in a lower
in sample error, but we pay a higher penalty for model complexity. A com-

bination of the two, which estimates the out of sample error, thus attains a
minimum at some intermediate d,.



m > (4 1ogy(2/8) + VO (H) - logs(12/¢))

¢
This number m of training examples is sufficient to assure that any consistent
hypothesis will be probably (with probability (1 —4)) approximately (within
error €) correct.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. (1989). Learn-
ability and the Vapnik- Chemonenkis dimension. Journal of the ACM, 36(4)
(October), 929-965.

https://scholar.google.pt/citations7user=4esyQS4AAAAJ&h]l=pt-PT
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Figure 7.15: Estimation of the number N of training examples for d = 2 to
d = 10 for a perceptron with € = 0.1 and § = 0.1.

Perceptron: For a perceptron [Mitchell, 1997

N> % (4-1ogy(2/8) +8 - (d + 1) - loga(13/€))

since

VC(Hpcrccptron) — d+ 1



* Neural Network: For acyclic layered network G containing s
perceptrons [Kearns and Vazirani, 1994], [Mitchell, 1997] each with d
inputs we have

VC(HETP"™™) < 2-(d+1)-s-log(e-s) =2-(d+1)-s-(log(s) + 1)

1 -
N > - (4-log,(2/0) +16-(d+ 1) - s-log(e - s) - loga(13/€))



Example: For example for a network of seven units, each with an input of
five, and € = 0.01 and § = 0.01

N = 2051800

which is a huge number. If we reduce the accuracy to e = 0.1 and § = 0.1
N > 139191

which is still a huge number. In backpropagation algorithm the VC dimen-
sion is usually lower, and due to regularization we can reduce the number
considerably.
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Estimation of the number N of training examplesford=2tod=10and s
=1 (units) to s = 10 for a neural network with e=0.1and 6 =0.1. In
backpropagation algorithm the VC dimension is usually lower, and due to
regularization we can reduce the number considerably.
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