
Lecture 8: Learning theory, Bias-
Variance

Andreas Wichert
Department of Computer Science and Engineering

Técnico Lisboa



• Under what conditions is successful learning possible? 
• Under what conditions is a particular learning algorithm assured of 

learning successfully? 



Generaliza)on 

• We pick a random sample of N
independent marbles (with 
replacement) from this bin, and 
observe the frac>on ν of red 
marbles 

• What does the value of ν tell us 
about the value of μ?



• As the sample size N grows ν
approaches value of μ





• Can we overcome the problem of large sample by regularisation? 
• The use of least squares, can lead to severe over-fitting if complex 

models are trained using data sets of limited size. 
• However, limiting the number of parameters in order to avoid over-

fitting has the side effect of limiting the flexibility of the model. 
• Although the introduction of regularization terms can control over-

fitting for models with many parameters, this raises the question of 
how to determine a suitable value for the regularization coefficient λ



Expectations 

• One of the most important operations involving probabilities is that of 
finding weighted averages of functions.
• The average value of some function f(x) under a probability 

distribution p(x) is called the expectation of f(x)





Finite Sample-Size Considera)on 



















Bias-Variance





• we rewrite with a minus sign





Bias-Variance Dilemma 



Bias



Variance 



Interpretation 

• In a complex physical model that learns by example and does so with 
a training sample of limited size, the price for achieving a small bias is 
a large variance
• For any physical model, it is only when the size of the training sample 

becomes infinitely large that we can hope to eliminate both bias and 
variance at the same time 
• Our goal is to minimize the expected loss, which we have 

decomposed into the sum of a (squared) bias, a variance, and a 
constant noise term



• There is a trade-off between bias and variance, with very flexible 
models having low bias and high variance 
• Rigid models having high bias and low variance
• The model with the optimal predictive capability is the one that leads 

to the best balance between bias and variance 



Example

• There are L = 100 data sets, each having N = 25 data points, and there 
are 24 Gaussian basis func>ons in the model so that the total number 
of parameters is M = 25 including the “bias” (not sta:s:cal, 
remember?) parameter 



• A large value of the 
regularisa>on coefficient λ 
that gives low variance (be-
cause the red curves in the 
leP plot look similar) but high 
bias (because the two curves 
in the right plot are very 
different)



• A small value of the 
regularisation coefficient λ 
that gives large variance 
(shown by the high variability 
between the red curves in 
the left plot) but low bias 
(shown by the good fit 
between the average model 
fit and the original sinusoidal 
function)



• The model with the op>mal predic>ve capability is the one that leads 
to the best balance between bias and variance 





The VC Dimension 

• The Vapnik-Chervonenkis dimension, or VC dimension.
The VC dimension measures the capacity of a binary classifier. 
• A dichotomy is a partition of a whole (or a set) into two parts 

(subsets). From Ancient Greek: equally divided, cut in half
• A set of instances S is shattered by hypothesis space H if and only if 

for EVERY dichotomy of S there exists SOME hypothesis in H
consistent with this dichotomy 



• A set of instances S is shattered by hypothesis space H if and only if 
for EVERY dichotomy of S there exists SOME hypothesis in H
consistent with this dichotomy 



Sha>ering of three Points



Shattering on a Line

• Yes

• No



Cannot be Shattered

• Four points on a plane, two examples
• i)                                                      ii)



On a plane four points cannot be shattered





VC-dimension

• The VC-dimension of a hypothesis space H is the cardinality of the largest 
set S that can be shattered by H

• It can be shown that the VC dimension of linear decision surfaces in an d
dimensional space (i.e., the VC dimension of a perceptron with d inputs) is 
d + 1 

• Perceptron in d dimensions has d+1 parameter (bias) Through d+1 linear 
independent chosen points we can learn all dichotomies
• For d+2 points in a perceptron in d dimension some vectors (at least two) 

are represented as a linear combination, we cannot learn all dichotomies









• Neural Network: For acyclic layered network G containing s
perceptrons [Kearns and Vazirani, 1994], [Mitchell, 1997] each with d 
inputs we have





Es<ma<on of the number N of training examples for d = 2 to d = 10 and s 
= 1 (units) to s = 10 for a neural network with ε= 0.1 and δ = 0.1. In 
backpropaga<on algorithm the VC dimension is usually lower, and due to
regulariza<on we can reduce the number considerably. 
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