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Receptive Fields of Lateral Geniculate
and Primary Visual Cortex

Examples of receptive fields of brain cells:

Stimulus e———Respons¢ ———#]
Period of stimulation
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(a) Lateral geniculate cell
with concentric field;
on-center foff-surround.

1. Response to light in
center of cell's field

2. Response to light in
periphery of cell’s feld

Microelectrodes (i Cortical cell sensitive
to orientation, This cell
responds strongly

only when the stimulus
is & vertical stripe,

<

David Hubel

Cortical cell sensitive to
the direction of motion
This cell responds strongly
only when the stimulus
moves down, It responds
weakly to upward motion
and does not respend at all
to sideways mobtion,
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Torsten Wiesel
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» Simple cell (left) and complex Cell (right) illustrative responses in
primary visual cortex (from: [Hubel et al., 1988])



-1 The visual cortex is composed essentially as an
hierarchy of cells

Layers of simple and complex cells are arranged in a
hierachical way

The input of a layer is the output of the previous layer

IT = inferior temporal cortex

Fig. = Visual pathway [nips.ac.jp]



o1 Throughout the visual cortex there is a graduai
increase in the complexity of the preferred stimulus

-1 The receptive field sizes and invariance properties

also increase gradually
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Fig. = Increasing Complexity in prefered stimulus
[Kobatake et al. 94]
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Fig. — Receptive fields from a region including V4
and IT [Kobatake et al. 94]



Face Cells in Monkey

= NﬂCﬂL')R
’A?:‘,\ }/%} g “f}f g ‘3\ SR, '-g*‘ ;
0 30° 60° 80° 100 “80° NO EVES

ERUSH
L roiey



recognized
pattern

stage 3
b ‘ ‘ stage 4

/
\ /
\ /
N\ /
N\ 7/
\, /
: ~
"~

feafu re

* Image passed through layers of units with progressively more complex features at progressively less
specific locations.

* Hierarchical in that features at one stage are built from features at earlier stages



Hierarchical Template Matching:

Fukushima & Miyake (1982)’s Neocognitron




# [Hubel & Wiesel 1962]:
» simple cells detect local features

» complex cells “pool” the outputs of simple
cells within a retinotopic neighborhood.
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Cognitron & Neocognitron [Fukushima 1974-1982]




S-cells
represent simple cells in the visual cortex
m Extract features
Learn to form a template of particular feature in particular position
Share a weight-vector with all cells in their cell-plane

» In a cell-plane all cells extract the same feature in different positions

C-cells

Represent complex cells in the visual cortex

m Allow positional shifts in features

It's output is a blurred version of their input



* C-cells resemble complex cells in the visual cortex

* Their purpose is to allow positional changes and distortions of the
features

* They do this by blurring the stimulus they receive



First S-layer after learning
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Second S-layer

AAAR
PR
FJRIRJR]
EEEE

[EEm

A

i

M

IARnAn

L]
EEE

@

CE

CFEIR)

[EEEE
EEEE
T
FEr

SRS
b k]
ped =AY
kR
HEE]
HIRE]
IR
G
[HAHH
A
LA
Rilllalli
[EEH
S
[@E@
el Eall
[E
.

EAEEEE Ll



Third S-layer

=1

Sl R

[Jorin

AMEEE
=
=

AL
FEES

5
518

4115 B

ZOTED @

KNI
m )
-]

.-".'. k)

-

nmn I.-*-.II '.._*_..I




Fourth S-cell layer
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Map Transformation Cascade (MTC)

* A less complex description of the the Neocognitron is the hierarchical
neural network called map transformation cascade (Wichert 1992, 1993)

* Wichert, A.: MTCn-Nets. Proceeding World Congres on Neural Networks 1993,
Vol.lV, pp.59-62, Lawrence Erlbaum, 1993

* The information is processed sequentially, each layer only processes
information after the previous layer is finished.

* The input is tiled with a squared mask, where each sub-pattern is replaced
by a number indicating a corresponding class. By doing so, we get a
representation of the pattern in the class space.

* The mask has the same behavior in all different positions, resembling the
weight-sharing mechanism in Neocognitron.






learn preferred stimuli
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Figure 4.1: A set of 16 preferences learned using K-means on ETL1 for 1000
patches of size 8 x 8. On the left, the preferences using binary versions of th

Angelo Cardoso

h

patterns. On the right, the preferences using grayscale versions. We can se
that the grayscale versions of the patterns produce low-contrast preferences
Several of the preferences are simply different shades of gray.

* The S-layer learning is performed by a clustering algorithm like k-Means









mask size

pattern size




* The C-layer, which corresponds to a layer of complex cells in the visual
cortex, transforms the input it receives from the S-layer. The
transformation performed by the C-layer is fixed and can be not

modified. Its purpose is to allow positional shifts, thus giving the
model shift invariance.
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Fig. 8. C-Layer mask input in a given position when scanning Fig. 7, its output is

(1, 6, 3). It indicates the presence of these classes.



* The layers of a Map Transformation Cascade can be seen as filters,
since they have a clear and interpretable output, which is a
modification of the input information.

 Several filters transform and map the input pattern into a space
where pat- terns of the same class are close. The output of the filters
is then passed to a simple classifier, which produces a classification
for the input pattern.



Computational Model of Object Recognition
(Riesenhuber and Poggio, 1999)
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Fig. = HMAX Schematic
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(a) Sum (b) Winner-take-all

MNIST no noise white salt & pepper
this work 0.71%" 1.17% 1.98%
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Convolutional Neural Networks
(LeCun et al., 1989)

Weight
sharing

Local Receptive
Fields

Pooling

Sub-sampling

Input image Convolutional layer
P e Y layer




e Convolutional Neural Networks

Image Maps

Fully Connected

Input

Convolutions
Subsampling



MNIST Data Set
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* The MNIST database contains 60, 000 training im- ages and 10, 000 testing
images. The images of the digits contain grey levels represented by a 28 x 28
matrix resulting in 784 dimensional input vector



Convolutions w/ Pooling: Convs: Pooling:
filter bank: 20xdx4 100x7x7 20x4x4
20x7x7 kemels kermels kemels kemels

# Training is supervised

# With stochastic gradient
descent

Multiple "~ subsamplin§/‘ [LeCun et al. 89]

convolutions

Retinotopic Feature Maps [LeCun et al. 98]




Layer 3
256@6x6 Layer 4

256@1x1  Output
101

Layer 1

, 64x75x75 ~ Layer2
mnput 64@14x14
83x83

9x9

9x9 - 10x10 pooling,  convolution 6x6 pooling
convolution 545 yhsampling (4096 kernels) —I
(64 kernels) 4x4 subsamp

# Non-Linearity: half-wave rectification, shrinkage function, sigmoid
# Pooling: average, L1, L2, max
# Training: Supervised (1988-2006), Unsupervised+Supervised (2006-now)



Low-Level| |Mid-Level| |[High-Level| | Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]



frequency

Convolutional DBN for audio
(Lee et al., 2009)

<—— Max pooling node

O
.‘.‘.. <«—— Detection nodes

Spectrogram time



Convolutional DBN for audio
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Convolution Layer

__— 32x32x3 image

5x5x3 filter w
= —
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image

32 (i.,e. 5*5*3 = 75-dimensional dot product + bias)

wlz+b

™~ 1 number:
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Fdee Detection bv Convolution

-1 Output

Kernel



Kernel in Image Processing

* In a convolutional network an adaptive kernel corresponding to n unit
with an activation function that learns or a fixed kernel can be a part
of convolution in a layer that acts as a filter.

* Input: ( flz-Ly-1) flz-1Ly) ﬂrLy+1))

flz,y—1) f(z,y) flz,y+1)

w(0,-1)  w(0,0) w(0,-1)

* Convolution Kernel: w(=1,-1) w(=1,0) w(-1,—1)
( w(l,-1)  w(1,0) w(l,-1) )

* The value of the filter mask at the position (x, y)

g(zy) =3 S wis,t)- fz+s,y+1)

s=—1t=-1



Fixed Kernels

* In digital image
processing, a kernel,
convolution matrix, or
mask is a small matrix.
It is used for blurring,
sharpening,
embossing, edge
detection, and more.
This is accomplished
by doing a convolution
between a kernel and
an image.

sharpen kernel = | -1

Gaussian blur kernel =

[ro
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Convolution Layer

—

V
——0

T

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps



Sparse Connectivity
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connections

due to small

convolution
kernel @ @ Q @ °

Dense

connections




Growing Receptive Field



Parameter Sharing

Convolution
shares the same

= 00000
F e NototoRo

locations

Traditional @ @ @ @
matrix
multiplication

does not share @ @ @ @
any parameters



Complex layer terminology

Convolutional Network Components

Simple layer terminology

Next layer

Next layer

Convolutional Layer

Pooling stage

Pooling layer

A

A

Detector stage:
Nonlinearity
e.g., rectified linear

Detector layer: Nonlinearity

e.g., rectified linear

A

A

Convolution stage:

Affine transform

Convolution layer:

Affine transform

A

?

Input to layer

Input to layers




Pooling with Downsamplin

O O



Pooling




Cross-Channel Pooling and Invariance

Large response Large response

in pooling unit in pooling unit

Large Large
response response

in detector in detector

unit 1 unit 3

LilE|ls| | b||&]|ls




Pooling

* makes the representations smaller and more manageable

e operates over each activation map independently:
224x224x64
112x112x64

: [ﬁi}—:j
~ o 112
224 downsampling

112
224




MAX POOLING

Single depth slice

Jl1]1]2]4
max pool with 2x2 filters
5|6 |7 | 8 and stride 2
312|110
112 (3| 4




Example Classification of Architectures

Output of softmax:
1.000 class

probabilities

Output of softmax:
1.000 class

probabilities

Output of softmax:
1,000 class

probabilities

t

¢

¢

Output of matrix
multiply: 1,000 units

Output of matrix
multiply: 1,000 units

Output of average
pooling: 1x1x1.000

Output of reshape to
vector:
16.384 units

Output of reshape to
vector:

576 units

Output of
convolution:
16x16x1,000

¢

Output of pooling
with stride 4:
16x16x64

Output of pooling to
3x3 grid: 3x3x64

Output of pooling
with stride 4:
16x16x64

Output of
convolution +

ReLU: 64x64x64

Output of
convolution +
ReLU: 64x64x64

Output of
convolution 4

ReLU: 64x64x64

Output of pooling
with stride 4:
64x64x64

Output of pooling
with stride 4:
64x64x64

Output of pooling
with stride 4:
64x64x64

Output of
convolution +
ReLU: 256x256x64

Output of
convolution +
ReLU: 256x256x64

Output of
convolution +4
ReLU: 256x256x64

t

¢

¢

Input image:

256x256x3

Input image:

256x256x3

Input image:

256x256x3




|
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Architectures

 Spatial Transducer Net: input size scales with output size, all layers are
convolutional

 All Convolutional Net: no pooling layers, just use strided convolution
to shrink representation size



ConvNet is a sequence of Convolution Layers,
interspersed with activation functions

32 28 24
CONV, CONV, CONV,
RelU RelLU RelLU
2-95- 63 e.g. 10
XOX 5x5x6

32 filters 28 filters 24




Linearly
separable
classifier

Mid-level
features

High-level
features

S'\ Low-level
\ features
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VGG-16 Conv1_1 VGG-16 Conv3 2



Fast-forward to today: ConvNets are
everywhere

Malignant Malignant

olepls]
28 3 &2 E3 &1

[Levy et al. 2016] Figue copyigh Low

R eproduced with permission.

[Sermanet et al. 2011] camncszsinzn

From leftto gh public domain by NASA, usage permitted by
[Dieleman et al. 2014] EsAMubve, sl o b s s e conan. CI1€S@N €t al ]



Data Augmentation

* Horizontal Flips to the original image




Data Augmentation

* Training: sample random crops / scales

* ResNet:
* Pick random L in range [256, 480]
* Resize training image, short side = L
e Sample random 224 x 224 patch




Data Augmentation

 Color Jitter
* Simple: Randomize contrast and brightness

* Apply PCA to all [R, G, B]
* pixels in training set
» Sample a “color offset” along principal component directions

* Add offset to all pixels of a training image



Transfer Learning

* You need a lot of a data if you want to train

* Transfer learning and domain adaptation refer to the situation where
what has been learned in one setting (i.e., distribution P;) is exploited
to improve generalization in another setting (say distribution P,).

* We assume that many of the factors that explain the variations in P,
are relevant to the variations that need to be captured for learning P,.



Transfer Learning with CNNs

1. Train on Imagenet

FC-4096
FC-4096

MaxPool

MaxPool

MaxPool

MaxPool

MaxPool

FC-4096
FC-4096

MaxPool
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool

Conv-256

MaxPool

MaxPool

s

2. Small Dataset (C classes)

V\\

Reinitialize
this and train

> Freeze these

3. Bigger dataset

FC-C
FC-4096
FC-4096

*— Train these

MaxPool

MaxPool

MaxPool

MaxPool

MaxPool

I

\

With bigger
dataset, train
more layers

> Freeze these

Lower learning rate
when finetuning;
1/10 of original LR
is good starting

j point




Transfer Learning with CNNs

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

More specific

More generic

/

very similar

very different

dataset dataset
very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
from different
stages
quite a lot of Finetune a Finetune a
data few layers larger number
of layers




Transfer learning with CNNs is common

Object Detection
(Fast R-CNN)

Proposal
classifier

External proposal

algorithm
e.g. selective search

| Y " on ImageNet
|:] Bounding box
regressors

ConvNet
(applied to entire
image)

CNN pretrained

Image Captioning: CNN + RNN

“straw” “hat” END

Wha
Tt

START straw" “hat”

Word vectors pretrained




TensorFlow: Pretrained Models

tf.keras:
https://www.tensorflow.org/api docs/python/tf/keras/applications

Transfer Learning

H

FC-4096
MaxPool

Conwv-512

Conw-512

TF-Slim:

https://github.com/tensorflow/models/tree/master/slim/nets

MaxPool
Conwvw-512
Conwv-512

__MaxPool
Conv-256
__Conv-25% |
__MaxPool |
__Conw128 |
__Conw128 |
__MaxPool |
__Conv-64 |
“comst | )

[ image ]

Treme T \™

Reinitialize
this and train

> Freeze these



https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://github.com/tensorflow/models/tree/master/slim/nets

Tensorflow

Ships with Tensorflow

tf.keras (https://www.tensorflow.org/api docs/python/tf/keras)

tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers)

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)
tf.contrib.estimator (https://www.tensorflow.org/api docs/python/tf/contrib/estimator)
tf.contrib.layers (https://www.tensorflow.org/api _docs/python/tf/contrib/layers)

tf.contrib.slim (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim)

Third Party
TFLearn (http://tflearn.org/)
TensorLayer (http://tensorlayer.readthedocs.io/en/latest/)



https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/layers
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/layers
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/
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Case Study: AlexNet \ \ =
[Krizhevsky et al. 2012] . - e\ fle
224 - - j
R — EJ

Full (simplified) AlexNet architecture: b, - —
[227x227x3] INPUT o v .
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 /‘/V
[27x27x96] MAX POOL1: 3x3 filters at stride 2 \
[27x27x96] NORM1: Normalization layer CONV1, CONV2, CONV4, CONVS5:
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 Connections only with feature maps
[13x13x256] MAX POOL2: 3x3 filters at stride 2 on same GPU

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONVS5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] - C5: 4096 neurons

[4096] ~C7: 4096 neurons

[1000] ~C&: 1000 neurons (class scores) Figure copyright Alex Krizhevsky, liya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission



Details/Retrospectives:

- first use of RelLU

- used Norm layers (not common anymore) - heavy data augmentation
- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate le-2, reduced by 10 manually when val accuracy
plateaus

- L2 weight decay 5e-4

-7 CNN ensemble: 18.2% -> 15.4%



Case Study: GooglLeNet

[Szegedy et al., 2014] 7S

Deeper networks, with computational =
efficiency -

- 22 layers

- Efficient “Inception” module

- No FC layers

- Only 5 million parameters!
12x less than AlexNet

Inception module < xir
- |ILSVRC'14 classification winner =

(6.7% top 5 error)



Interception Module

28x28x480
28x28x(128+192+96+256) = 529k Filter
. AL L
28x28x128 28x28x192 28x28x96  28x28x256 28x28x128 _ 28x28x192 28x28x96 28x28x64
-~ N i 7 \ .
1x1 conv, Fﬁ conv, | 5x5conv, 3x3 pool 1x1 ﬁ 3x3 conv, 5x5 conv, 1x1 conv,
1 1 ' 1 64
1 P % ;
. 28x28x64 28x28x64 28x28x256
Module input: Input 1 ‘ | 1
28x28x256 1x1 conv, 1x1 conv,

Naive Inception module

Module input:
28x28x256

Previous Layer

64 ?‘ 3x3 pool

Inception module with dimension reduction



Case Study: GooglLeNet

[Szegedy et al., 2014]

Stack Inception modules
with dimension reduction
on top of each other

W/ W/

Inception module




Case Study: GooglLeNet

[Szegedy et al., 2014]
ol
i W

>f

B mjij

|

Stem Network:

Conv-Pool-
2x Conv-Pool

Full GoogLeNet
architecture




Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

Uil BY 5P 1S

Stacked Inception
Modules



Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

¢ ¥ ¥ (gl
~—

Auxiliary classification outputs to inject additional gradient at lower layers
(AvgPool-1x1Conv-FC-FC-Softmax)



Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

Classifier output
(removed expensive FC layers!)



ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
“Revolution of Depth”

30 282
25.8 152 layers| (152 layers| (152 layers
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* This has nothing to do with Brain or Visual Cortex



Cortex

(a) Six layers of cortex

(b) A single pyramidal neuron
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 Next: Recurrent Neural Networks
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