
Lecture 14: Convolutional 
Neural Networks

Andreas Wichert
Department of Computer Science and Engineering

Técnico Lisboa



Receptive Fields of Lateral Geniculate 
and Primary Visual Cortex



• Simple cell (left) and complex Cell (right) illustrative responses in 
primary visual cortex (from: [Hubel et al., 1988]) 







Face Cells in Monkey



• Image passed through layers of units with progressively more complex features at progressively less 
specific locations.

• Hierarchical in that features at one stage are built from features at earlier stages



Hierarchical Template Matching:
Fukushima & Miyake (1982)’s Neocognitron







• C-cells resemble complex cells in the visual cortex
• Their purpose is to allow positional changes and distortions of the 

features
• They do this by blurring the stimulus they receive



First S-layer after learning



Second S-layer



Third S-layer



Fourth S-cell layer





Map Transformation Cascade (MTC)

• A less complex description of the the Neocognitron is the hierarchical 
neural network called map transformation cascade (Wichert 1992, 1993)
• Wichert, A.: MTCn-Nets. Proceeding World Congres on Neural Networks 1993, 

Vol.IV, pp.59-62, Lawrence Erlbaum, 1993

• The information is processed sequentially, each layer only processes 
information after the previous layer is finished. 
• The input is tiled with a squared mask, where each sub-pattern is replaced 

by a number indicating a corresponding class. By doing so, we get a 
representation of the pattern in the class space. 
• The mask has the same behavior in all different positions, resembling the 

weight-sharing mechanism in Neocognitron. 







• The S-layer learning is performed by a clustering algorithm like k-Means

Ângelo Cardoso









• The C-layer, which corresponds to a layer of complex cells in the visual 
cortex, transforms the input it receives from the S-layer. The 
transformation performed by the C-layer is fixed and can be not 
modified. Its purpose is to allow positional shifts, thus giving the 
model shift invariance. 











• The layers of a Map Transformation Cascade can be seen as filters, 
since they have a clear and interpretable output, which is a 
modification of the input information. 

• Several filters transform and map the input pattern into a space 
where pat- terns of the same class are close. The output of the filters 
is then passed to a simple classifier, which produces a classification 
for the input pattern. 



Computational Model of Object Recognition
(Riesenhuber and Poggio, 1999)









• Convolutional Neural Networks



MNIST Data Set

• The MNIST database contains 60, 000 training im- ages and 10, 000 testing
images. The images of the digits contain grey levels represented by a 28 × 28 
matrix resulting in 784 dimensional input vector













Convolution Layer







Edge Detection by Convolution 



Kernel in Image Processing 

• In a convolutional network an adaptive kernel corresponding to n unit
with an activation function that learns or a fixed kernel can be a part
of convolution in a layer that acts as a filter. 
• Input:

• Convolution Kernel:

• The value of the filter mask at the position (x, y)



Fixed Kernels

• In digital image
processing, a kernel, 
convolution matrix, or
mask is a small matrix. 
It is used for blurring, 
sharpening, 
embossing, edge
detection, and more. 
This is accomplished
by doing a convolution
between a kernel and
an image. 



Convolution Layer 



Sparse Connectivity 



Growing Receptive Field 



Parameter Sharing 



Convolutional Network Components 



Pooling with Downsampling



Pooling



Cross-Channel Pooling and Invariance 



Pooling

• makes the representations smaller and more manageable 
• operates over each activation map independently: 



MAX POOLING 



Example Classification of Architectures 





Architectures

• Spatial Transducer Net: input size scales with output size, all layers are 
convolutional 

• All Convolutional Net: no pooling layers, just use strided convolution 
to shrink representation size 



ConvNet is a sequence of Convolution Layers, 
interspersed with activation functions 





Fast-forward to today: ConvNets are 
everywhere



Data Augmentation

• Horizontal Flips to the original image



Data Augmentation

• Training: sample random crops / scales 

• ResNet: 
• Pick random L in range [256, 480] 
• Resize training image, short side = L 
• Sample random 224 x 224 patch 



Data Augmentation

• Color Jitter 
• Simple: Randomize contrast and brightness 

• Apply PCA to all [R, G, B] 
• pixels in training set 
• Sample a “color offset” along principal component directions 
• Add offset to all pixels of a training image 



Transfer Learning

• You need a lot of a data if you want to train 
• Transfer learning and domain adaptation refer to the situation where 

what has been learned in one setting (i.e., distribution P1) is exploited 
to improve generalization in another setting (say distribution P2). 
• We assume that many of the factors that explain the variations in P1

are relevant to the variations that need to be captured for learning P2. 



Transfer Learning with CNNs 



Transfer Learning with CNNs 



Transfer learning with CNNs is common

Word vectors pretrained 



TensorFlow: Pretrained Models 

tf.keras: 
https://www.tensorflow.org/api_docs/python/tf/keras/applications

TF-Slim: 
https://github.com/tensorflow/models/tree/master/slim/nets

https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://github.com/tensorflow/models/tree/master/slim/nets


Tensorflow

• Ships with Tensorflow

• tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras)
• tf.layers (https://www.tensorflow.org/api_docs/python/tf/layers)
• tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)
• tf.contrib.estimator (https://www.tensorflow.org/api_docs/python/tf/contrib/estimator)
• tf.contrib.layers (https://www.tensorflow.org/api_docs/python/tf/contrib/layers)
• tf.contrib.slim (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim)

• Third Party
• TFLearn (http://tflearn.org/)
• TensorLayer (http://tensorlayer.readthedocs.io/en/latest/)

https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/layers
https://www.tensorflow.org/api_docs/python/tf/contrib/estimator
https://www.tensorflow.org/api_docs/python/tf/contrib/layers
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/




Details/Retrospectives: 
- first use of ReLU
- used Norm layers (not common anymore) - heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy 
plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4% 





Interception Module













• This has nothing to do with Brain or Visual Cortex



Cortex



• Next: Recurrent Neural Networks



Literature

• Deep Learning, I. Goodfellow, Y. Bengio, A. Courville
MIT Press 2016
• Chapter 9

• Christopher M. Bishop, Pattern Recognition and Machine 
Learning (Information Science and Statistics), Springer 
2006
• Section 5.5.6



Literature

• Machine Learning - A Journey to Deep Learning, A. 
Wichert, Luis Sa-Couto, World Scientific, 2021
• Chapter 13


