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Two Class Problem: Linear Separable Case

Class 1

@ Class 2

* Many decision
boundaries can
separate these two
classes

* Which one should we
choose?



Example of Bad Decision Boundaries
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@ Class 2

Class 1

@ Class 2




Discriminant Functions
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The projection of x on w defined as

, wl . x
ProjwX = ———
fwil
Since for the points on the decision surface ) ol

w!l o x+wy=0

WT X = —UWy

we put it into the distance formula and we get




* y(x) gives the perpendicular signed distance of the point x from the
decision surface. We represent x as
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Optimal Hyperplane for Linear Separable
Patterns

Given a training set {x;,t;}~,, with t; € {—1,+1} of linear separable pat-

terns we have

WT - X; + Wy Z O, fOT’ tz = +1

WT'X¢+UJ()<O, fOT’ tz:—]-
with a hyperplane
wl - x+wy=wl -x+b=0

We want to find the parameters w,,; and b,

szt - X; + bopt Z 1, fOT‘ tz' = +1

T

Wopt )

Xi +bopr < =1, for t;=—1



with a hyperplane

prt - X; + bopt =

Since the patterns are linearly separable we can always rescale w,,, and b,
correspondingly.

The data points{x;,t;} for which

W?);)t - X; + bopt = +1

are called support vectors x'*) | that why the algorithm is called support
vector machine.

All the remaining examples in the training sample are completely irrelevant.

y(x') = wzp, X 4 by = %1, for t¥ = +1






All the remaining examples in the training sample are completely irrelevant.

y(x®) =wl, . x©®) 4 bopt = 1,  for 1) = +1

opt
and
y(x) = 1 W = 1
or
y(x®) el i 1) =41
_m— I . if 1 = 1
Woptl

The optimum value p of the margin of separation between the two classes
that constitute the training sample

2

=2-r
[ Wopt|

||Wopt|| ||Wopt||

Maximising the margin of separation between binary classes is equivalent to
minimising the Euclidean norm of the weight vector w



Good Decision Boundary: Margin Should Be
Large

* The decision boundary should be as far away from the data of
both classes as possible

* We should maximize the margin, p




The optimal hyperplaneis unique in the sense that the optimum weight vec-
tor w,,; provides the maximum possible separation between positive and
negative examples.



Quadratic Optimization for Finding the Optimal
Hyperplane

For a training set {x;,t;}~,, with t; € {—1,+1} of linear separable patterns
we want find the optimum values of the weight vector w and bias b such that
they satisfy the constraints

wl-x;,+b>1, for t;=+1

WT'XZ'+b§—1, fOT tz:—l

expressed in a single line as
and the weight vector w minimizes the cost function

1
W = 2w

with scaling factor % that is introduced for convenience.



This constrained optimisation problem is called the primal problem and it is
described as

e The cost function ®(w) is a convex function of w

e The constraints are linear in w

We may solve the constrained optimisation problem by using the method of
Lagrange multipliers with

N
Tw.b.a) = 5 -wlw =30y (t- (W x +5) — 1)

1=1

where «; are called Lagrange multipliers.



Lagrange multipliers with

Tw.b.a) = 5 -w'w =30 (t- (W x +5) — 1)

where «; are called Lagrange multipliers.

The solution to the constrained optimisation problem is determined by the
saddle point of the Lagrangian function J(w.b, o),
The saddle point has to be minimised with respect to w and b and maximised

with respect to «



We get two conditions
d(w,b,«)

d(w.b,a) b.a)
ow =0, b =0

leading to

N N
W = E a,--t,--x,-, E Qi'ti:O

This solution is unique by virtue of the convexity of the Lagrangian, but no
with respect of the Lagrange multipliers «;.



The constraints
ti'(WT'Xi-f-b)—l;éO

that are not satisfied as equalities, the corresponding multiplier a; must be
zero, the condition must be satisfied

(Karush-Kuhn-Tucker conditions)



* It is possible to construct another problem called the dual problem
that has the same optimal value as the primal problem

* If the primal problem has an optimal solution, the dual problem also

has an optimal solution, and the corresponding optimal values are
equal.

* In order for w,,, to be an optimal primal solution and o, to be an op-

timal dual solution, it is necessary and sufficient that w,,, is feasible
for the primal problem, and

DQ(Wopt) = J(Wopt, bopt, Qopt) = min J(w, b, ov)
w

| =

J(w.b.av) =

N

N
-wvlw—Zn,-(t,-(w'l - X; +b) — 1)
1=1



We expand

N N

N
cwliw — Za',f towix;—b- Za',f -t + Zai

J(w.,b,ar) =

DO | =

we have because of



N N N
.](W,b,(l‘) =—b-Za‘i-ti+Za‘i—%-ZZQ‘i-a'j-ti-tj-xi

i=1 i=1 i=1 j=1
Setting
Q(a) = J(w.b,a)
with
N
Z -t =10
i=1
we reformulate the constraint.
N ;| NN
Qla) = Za-i —5° Zzai'a‘fti'tj X! X
i=1 i=1 j=1

with a; being non negative.



Dual Problem

Given the training sample {x;.t;},, with t; € {—1,+1} of linear separable
patterns find the Lagrange multipliers {0:},.\=1 that maximise

>0 1=12---.N

The dual problem is cast entirely in terms of the training data.



The support vectors constitute a subset of the training sample, which means
that the solution vector is sparse

The dual problem is satisfied with the inequality sign for all the support
vectors for which the a’s are nonzero, and with the equality sign for all the
other data points in the training sample, for which the a’s are all zero.



A Geometrical Interpretation

a1p=0 Class 2

K
W =0 Support
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Having determined the optimum Lagrange multipliers

aopt,i

we may recover

N

Wopt = E Qopt i ti- X,

1=1

and
_ T (s) . 4ls) —
bopt =1 —w,,, -x7,  for 7 =1

bopt = 1 — Z Qopti * ti = X; X for t¥ =1

=1



How About Not Linearly Separable

* We allow “error” &; in classification




Optimal Hyperplane for Nonseparable
Patterns

ti-(wh-x,+b)>1-¢&, for i=12---,N

& are called the slack variables; they measure the deviation of a data point
from the ideal condition of pattern separability

For 0 < & < 1 the data point falls inside the region of separation, but
on the correct side of the decision surface.

For & > 1 falls on the wrong side of the separating hyperplane

Our goal is to find a separating hyperplane for which the misclassification

error, averaged over the training sample, is minimized






We minimize
N

B(E) =Y I(E—1)

1=1

with respect to the weight vector w as before. The indicator function I(§) is

defined as
0 iHE<O0
”5)_{1 if ¢ >0

To simplify we approximate the function by

(I’(ﬁ) - Zfz‘

We simplify more by

1

N
<I>(§)=§-WT-w+C-Z§i
1=1



We simplify more by

N
B(6)= 5w w036
1=1

with C' controls the tradeoff between complexity of the machine and the
number of non separable points

C' may be viewed as an inverse regularisation parameter

Large value indicates high confidence in the quality of the training sam-
ple

Small value indicates noisy training set, and less emphasis should therefore
be placed on it.



Given the training sample {x;.t;}~ . with t; € {—1,+1} of linear separable
patterns find find the parameters w and b with the constraint

ti'(WT°Xi+b)Zl—fi, f()r 1 =1.2.---. N
& >0

and such that the weight vector w and the slack variables & minimise the

cost functional

1 N
@(§)=§'WT'W+C'Z&'
1=1

where C'is a user specified positive parameter



Dual Problem

Given the training sample {x;.#;}~,, with #; € {—1,+1} of linear separable
patterns find the Lagrange multipliers {a,},_\=1 that maximise

N
Qla) = Z a; —

subject to constraints

N

=1 j=1

l\)l»—t

Pk
™
&

0<a; <C. i=1.2---.N

where C is a user specified positive parameter



Philosophy of a Support Vector Machine

Bias

This point
belongs to the
positive or

negative class

Input (data) space Feature (hidden) Output
space space

* Nonlinear mapping of an input vector into a high-dimensional feature space

that is hidden from both the input and output

e Construction of an optimal hyperplane for separating the features that were
discovered before



Support Vector Machine as a Kernel Machine

Let x be a vector from the input space of the dimension D

Let {¢;(x)}52, be a set of nonlinear functions, from D dimension to infi-
nite dimension.

The hyperplane is defined as

Z wj - ¢i(x) =0

J=1
Using matrix noation
wl - ®(x) =0
We can represent now the weights vector as
N,
W = ;- f,' . (I)(X,')
i=1

wit N being the number of support vectors with the feature vector



We get the decision surface as
Za,- T (x;)®(x) =0

We see that ®7(x;)®(x) represents an inner product (®(x;)|®(x))
Fx.x,) = 97 (x,)B(x) = (B(x,)|B(x))
k(x. %) = (@(x)|®(x)) = ) o(x

with k(x,x;) being the inner-product kernel



Property 1: The function k(x,x;) is symmetric about the center point x;
that is.
k(x.x;) = k(x;,x)

and it attains its maximum value at the point x = x;

Property 2: The total volume under the surface of the function k(x,x;)
is a constant.



Kernel Trick

Specifying the kernel k(x,x;) is sufficient, we need never explicitly compute
the weight vector w,,,

oo .-\"5
Z w; - ¢;(x) = Z ;- t; - k(x.x;) =0
j=1 i=1

Even though we assumed that the feature space could be of infinite dimen-
sionality, t, defining the optimal hyperplane, consists of a finite number of
terms that is equal to the number of training patterns used in the classifier.

The support vector machine is also referred to as a kernel machine.



For pattern classification, the machine is parameterised by an N-dimensional
vector whose ith term is defined by the product

; - ti

We may view k(x;,x;) as the ij-th element of the N x N matrix

/ k(x.x1) k(x1,X9) k(x3,x3) -+  k(x,xy) \
K — k(x2.%;)  k(x2,X2) k(xp,x3) -+ k(X Xn)
\ k(v %) k(xa,Xs) k(xoxs) - k(xnxy)

The matrix K is a nonnegative definite matrix called the kernel matrix; it is
also referred to simply as the Gram.

al Ka >0



Mercer’s theorem

James Mercer (1883-1932)

* Kernel k(x,x;) needs to satisfy a technical condition, Mercer condition
specified by Mercer’s theorem

* Mercer’s theorem tells us only whether a candidate kernel is actually
an inner-product kernel in some space and therefore admissible for

use in a support vector machine.
* It says nothing about how to construct the functions



Design of Support Vector Machine
Given the training sample {x;.t;},, with t; € {—1,+1} of linear separable
patterns find the Lagrange multipliers {a;} ; that maximise

N

. N N
Qla) = Zn,- - % - ZZQ,- o -t -t k(X X;5)

i=1 i=1 j=1

subject to constraints

0<a; <C, i=12,--- N

where C' is a user specified positive parameter



In order to classify data points, we evaluate the sign of w’ - ®(x) + b
o= sgn(w' - ®(x)+b)

by substituting for w

and the kernel function

N, N
0= sgn (Z a; -t - k(x,x;) + b) = sgn (Z a; -t k(x,x;) +b
i—1

with the bias



Classify Data Points

with the bias



Polynomial learning machine
k(x,x;) = (x'x; + 1)P = ((x|x;) + 1)

Radial-basis-function network support vector machine

x — x;|?
k(x,x;) = exp (— | 5 02” )

Two-layer perceptron

k(x,x;) = tanh (5o (x|x;) + 51)



Polynomial kernel with degree 2

Data projected to R~ 2 (hyperplane projection shown)
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Data in R™ 3 (separable w/ hyperplane)
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Gaussian Kernel




* Two-layer perceptron type of support vector machine is somewhat
restricted, this is due to the fact that the determination of whether a
given kernel satisfies Mercer’s theorem can indeed be a difficult
matter.

* For all three machine types, the dimensionality of the feature space is
determined by the number of support vectors extracted from the
training data by the solution to the constrained-optimization
problem.



* The underlying theory of a support vector machine avoids the need
for heuristics often used in the design of conventional radial-basis-
function networks and multilayer Perceptron.

* In RBF networks the number of basis functions and their centers are
determined automatically by the number of support vectors and their
values, respectively.



Example: XOR Problem
The XOR Problem is described by four vectors, instead of 0 we will use (-1)

am () (1) e () (1)

and the corresponding target of the two classes is indicated as

tl =—1,t2= 1,t3= 1,t4=—1.

We will use a polynomial kernel

k(xi,x;) = (1+x] x;)°
with

2 2 2 .2
k(xi,x;) = 1+ 25 25 +2-Ziy - Tz - Tjn - Tja + Ty - Tjp + 2+ Tt - Tjn + 2 Tin - Tjo



k(x:,x;) = 1+ - J1-+-2 Lit -+ Tiz- Tj1 - :z:,2+x,2 T 2+2 Ti1 *Tj1+ 2+ Tia - Tj2

with the feature vectors (not required, indeed for certain kernels the vector
can have an infinite dimension)

(5 ) (&)

Ty Zj1
@(xz) — ﬁ * x.;l * Ii2 : @(XJ) — ﬁ : x_%l ’ :EJZ

233:1 \/ﬁ'le
K V22 ] \ \/5'112 )

We obtain the Gram

k(x1,%x1) k(xi,%2) k(x1,x3) k(xq,%4) 9111
K — k(x2,X1) k(x2,X2) k(x2,x3) k(x2,X4) _ 1 911
k(xs,x1) k(xs,x3) k(xs,x3) k(x4,x3) 1191
k(x4,%1) k(xq4,%4) k(xq,x3) k(x4 X4) 1119



The objective function for the dual form of optimization is
4
Qa) =) ai-

1
-Zzai'aj'ti'tj'k(xi’xj)

4
1=1 i=1 j3=1

B | =

1 2
Qa) = a1 + s+ asz + ag — 5" (9a7 — 201000 — 201003 + 2001014

903 + 20203 — 2002004 + 90 — 203004 + 90})



We maximize the objective function Q(«) by determining the partial deriva-

tives P
Q(a) =1—9.al+a2+a3—ad =0
Bal
9Q(e) =l—-+4al-9-a2—-a3+ad=0
3&2
9Q () =14+al—a2—-9-a3+a4 =0
603
9Q () =l—al+a2+a3—-9-ad4=0
6a4

that lead to four equation that can be solve by

9 —-1 -1 1 a1 1
-1 9 1 -1 a, | |1
-1 1 9 —-1| |a | |1
1 -1 -1 9 o 1



9 -1 -1 1 o

-1 9 1 1| | a|_
-1 1 9 -1 as |~
1 -1 -1 9 o

with the optimum values of the Lagrange multipliers

Qopt,1 = Qopt,2 = Qigpt, 3 = Qppt 4 =

with all input vectors being support vectors.

00| =

[ S T T—



To compute the output

1. we compute the bias

4

b= iz (t,- - Zaj b k(x,-,xj)) , (10.58)

=1 =1

b=%(-(—1—%-(—9+1+1—1))+(1—%-(—1+9+1—1))+

(1—%-(—1+1+9—1))+(—1—§-(—1+1+1—9)))=0.

In this case we had an optimum Lagrange multipliers «,,, ;, se we could
as well use the form

bopt =1 — Zaopt.i ot - -k(x,-,x(s)), for t8) — 1.
i=1
2. then the output

0 = sgn (zd: a; -t - k(x, %) + b) : (10.59)

=1



For the query vector

we get

o= sgn (%.(—9+1+1—1)) — sgn(—1) = —1



Since the feature vector ®(x;) has a finite dimension, we can determine the

hyperplane (line) by
4

W=Zai-ti-<l>(xi)

1=1

Wope = < (—9(001) + 6(x2) + 6(x5) — $(x.)

B

and

oo Osl._‘



With bias zero
W ®(x)+0=0

we get the hyperplane (line)

Ty
1 2
(01 0, —_,0,0,0) ' \/— 2321 e = —x1 23 = 0.
V2 5
\/§'$1
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