Finds the roots of a monic polynomial, p(x),
with real coefficients,
c, such that p(x) = Σ ci
xn−i =
c0 xn +
c1 xn−1 + ... +
cn−1 x +
cn, c0 = 1,
by the method of Durand and Kerner (no multiple or pure imaginary roots).
(Not implemented) If the roots are given,
the coefficients of the polynomial are calculated beforehand,
to permit checking.
The basis data lead to x = (2.587, 0.206±1.375i).
Suggested alternative data, with results:
c = ( -3 3 -5 -1 3), x = (2.58, 0.75, -0.655,
0.163±1.532i) |
• Durand,
Émile, 1960,
"Solutions numériques des équations algébriques", Masson
(1961, tome II).
• Kerner,
I. O., 1966, Numer. Math., 18, pp 290–294.
• 1877-02-14: Landau, Edmund Georg Hermann
(1938-02-19). |