©
Travelling Salesman Problem
Solves the TSP using Carpaneto et al.'s program.
2024.Nov.25 05:16:01
Cost Optional header / Cost matrix: integers,
separated by blank(s) or tab(s)*

Supply:  −1 for infinity
 (Diagonal values: given but ignored.) •
Show values ? Shows the coordinates of the graph. •

Solves the Travelling Salesman Problem (TSP) by a branch-and-bound algorithm by Carpaneto, Dell'Amico and Toth [1995].

The header is optional. If given, the number of words must match the problem "size".

The base problem is from Little et al. [1963], giving z* = 63, and circuit 1-4-3-5-6-2-1. Excel "all different".xlsx (Portuguese districts)


Other suggested data: data at right; TSP_data.xlsx ("holes"); and Eiselt & Sandblom, p 324.txt .

*Tabs permit, namely, to enter data by copy-paste from Excel.

z* = 668 (1-3-4-2-5-1)
  -1 132 217 164  58 
 132  -1 290 201  79 
 217 290  -1 113 303 
 164 201 113  -1 196 
  58  79 303 196  -1 
References: Plate: Carpaneto2

• Carpaneto, G., M. Dell'Amico, P. Toth, 1995, "Exact solution of large-scale, asymmetric Traveling Salesman Problems", ACM Transactions on Mathematical Software, 21:4, December, pp 394–409. (Reserved access paper.pdf, =)  Giorgio Carpaneto, Univ. di Modena; Mauro Dell'Amico, Politecnico di Milano; Paolo Toth, Univ. di Bologna.

• Little, John D. C., Katta G. Murty, Dura W. Sweeney and Caroline Karel, 1963, "An algorithm for the Traveling Salesman Problems", Operations Research, 11:6, pp 972–989 (paper.Pdf, 570 kb).

• Search "traveling salesman problem"...

• Eiselt, H. A., C.-L. Sandblom, 2000, "Integer programming and network models", Springer-Verlag, Berlin. ISBN: 3-540-67191-9, 504 pp. IST Civil Library T57.74 EIS*INT EX. 1 SUTVS. (Explanation unclear, pp 323–325.)

• Google possessive with et al.

• 1815-11-02: Boole, George (1864-12-08).

 
 
Valid HTML 4.01! IST http://web.ist.utl.pt/~mcasquilho/compute/or/Fx-tsp2Carpaneto.php
Created: 2018-11-02 — Last modified: 2019-05-01