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A lowest-first, branch-and-bound algorithm for the Asymmetric Traveling Salesman Problem is
presented. The method 1s based on the Assignment Problem relaxation and on a subtour
elimination branching scheme. The effectiveness of the algorithm derives from reduction proce-
dures and parametric solution of the relaxed problems associated with the nodes of the branch-
decision tree. Large-size, uniformly, randomly generated instances of complete digraphs with up
to 2000 vertices are solved on a DECstation 5000/240 computer in less than 3 minutes of CPU
time. In addition, we solved on a PC 486 /33 no-wait flow shop problems with up to 1000 jobs in
less than 11 minutes and real-world stacker crane problems with up to 443 movements in less
than 6 seconds.
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1. INTRODUCTION

Consider a complete digraph G = (V, A) with vertex set V = {1,..., n}, arc
set A=1{(i,j):i€V,jeV} anda cost a, , associated with each arc (i,j) &
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A (a,,=» Vie V) We define a new graph G’ = (V’, A') with vertex set
Vi={vy,...,v,} CV and arc set A" = {(v,v,),(vy,03),...,(v,,v,)} CA as a
tour (or Hamiltonian circuit) if p = n and a subtour if p < n. The cost of a
tour is given by the sum of the costs of its arcs. The Asymmetric Traveling
Salesman Problem (ATSP) is to find a tour with minimum cost z*. The
problem is known to be NP-hard and has many important applications
(scheduling, distribution, wiring, FMS,...).
ATSP can be mathematically formulated as:

n n
Z¥=min}), Y a, x, (D
i=1j=1
subject to
n
Yox,,=1, j=1,...n (2)
1=1
n
wa=1, t=1,...,n (3)
j=1
x, , <ISI—1, VS cV,S+U (4)
€8 je8
x, , €{0,1}, i,j=1,...,n (5)
where x, =1, if arc (i, j) belongs to the optimal tour; x, , = 0 otherwise.

Without loss of generality, we will assume that costs are nonnegative inte-
gers. Equations (1), (2), (3), and (5) define the well-known Assignment
Problem (AP). Constraints (4) exclude subtours (loop included).

Many algorithms have been developed for the exact solution of ATSP. The
most-effective ones are the branch-and-bound methods proposed by Smith
et al. [1977], Carpaneto and Toth [1980], Balas and Christofides [1981], and
Pekny et al. [1991]; a survey of enumerative algorithms for the TSP is given
in Balas and Toth [1985]. A parallel algorithm has recently been proposed by
Miller and Pekny [1989] and Pekny et al. [1991]. As for sequential algorithms
the maximum size of uniformly, randomly generated for which many in-
stances have been solved is 5000, although single random instances with as
many as 500,000 vertices (but small cost ranges) have been solved by Miller
and Pekny [1991]. For the undirected graph case (Symmetric Traveling
Salesman Problem), a Euclidean instance with 2392 vertices has been solved
through a sequential branch-and-cut procedure, using facet-inducing linear
inequalities, in more than 27 hours on a CYBER 205 (see Padberg and
Rinaldi [1991]). A similar approach was recently presented by Applegate
et al. at the SIAM Conference, 1993. They solved instances with 3038 and
4461 vertices.

We present a sequential, lowest-first, branch-and-bound algorithm based
on the AP relaxation and a subtour elimination branching scheme. The
Fortran implementation of the algorithm is given in Carpaneto et al. [1995].
The effectiveness of the algorithm derives from reduction procedures and
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parametric solution of the relaxed problems associated with the nodes of the
branch-decision tree. Large-size, uniformly, randomly generated instances of
complete digraphs with up to 2000 vertices are solved on a DECstation
5000,/240 computer (with 16MB of main memory) in less than
3 minutes of CPU time. In addition, we solved on a PC 486 /33 (with 8MB of
main memory) no-wait flow shop problems (see Papadimitriou and Kanel-
lakis [1980]) with up to 1000 jobs in less than 11 minutes and real-world
stacker crane problems with up to 443 movements in less than 6 seconds.
According to our experience the DECstation 5000/240 is about two times
faster than the PC 486 /33.

Finally, we note that the proposed approach is not useful for instances
where the asymmetric nature of the problem disappears (Symmetric and
Quasi Symmetric TSP). In particular many small (n < 100) instances in
TSPLIB are of this kind, so our code cannot solve them.

A preliminary version of this article has been presented at the 13th
AMASES Congress [Carpaneto et al. 1989].

2. ALGORITHM

The algorithm is derived from the lowest-first branch-and-bound procedure
TSP1 presented in Carpaneto and Toth [1980]. At each node A of the decision
tree TSP1 solves a Modified Assignment Problem (MAP,) defined by Eqs. (1),
(2), (3), (5), and the additional constraints associated with arc subsets E, and
I, where:

E, = {(i,j) €A:x, , is fixed to 0} (excluded arcs);
I, = {(i,j) € A:x, , is fixed to 1} (included arcs).

If the optimal solution to MAP, does not define a Hamiltonian circuit, and its
value LB, (giving the lower bound associated with node 4) is less than the
current optimal solution value, say UB, then m descending nodes are gen-
erated from node h according to the following branching scheme (which
is a modification of the subtour elimination rule proposed by Bellmore and
Malone [1971)]).

Let G4,...,G,; be the subtours defined by the optimal solution to MAP,,
where, for ¢ = 1,...,d, G, = (V, A with V, = {rg 1, ..., rg 0.} Ag = {(r, 1,
re.2)s (rg s, rq,g),...,(rqyeq, re 1)}, and e, = number of vertices (and arcs) of
the gth subtour.

The subtour, say G,, having the minimum number of not-included arcs,
i.e., the subtour such that

m=e, A, 0 Ll=min,_, e, -4, 0L,

is chosen for branching.

Let A ={(sy,¢,),...,(s,,,,)} =A, \ I, be the subset of not-included arcs
of A, (the order of the arcs in A is the same as that of the corresponding arcs
in A,). The subset of the excluded and included arcs associated with the jth
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descending node, say g(j), of node Ais(j = 1,...,m):

E,,=E,u {(SJ’ tj)};

L,=ILU{(s,t):i=1,...,j—1}.

Each subset E, ,» with j > 1, is enlarged by adding arc (¢,_1,8;) so as to
avoid subtours corresponding to paths containing included arcs.
The new approach differs from that presented by Carpaneto and Toth

[1980] mainly in the following respects:

(a) application at the root node of the branch-decision tree of a reduction
procedure so as to remove from G the arcs which cannot belong to an
optimal tour. In this way the original digraph G can be transformed into
a sparse one, say G =(V, A), allowing the use of sparse cost-matrix
procedures for the solution of the MAPs associated with the nodes of the
branch-decision tree;

(b) the utilization of an efficient parametric technique for the solution of the
MAPs, allowing each MAP, to be solved in O(| Allog n) time;

(¢) the introduction of an effective data structure to store the information
associated with the nodes of the decision tree;

(d) the application at each node % of a connecting procedure to decrease the
number of subtours defined by the optimal solution to MAP,.

2.1 Reduction Procedure

At the root node, say node 0, of the branch-decision tree, the AP correspond-
ing to the original complete cost-matrix, (a, ;), is solved through the O(n?)
primal-dual procedure CTCS presented in Carpaneto and Toth [1987]. Let
(u,) and (v,) be the optimal solution of the dual problem associated with AP,
i.e., the dual variables of AP, and LB, the corresponding solution value. It is
well known that for each arc (i, j) € A the reduced cost @, ;= a; ; — u; — v;
> 0 represents a lower bound on the increase of the optlmal solution value of
AP corresponding to the inclusion of arc (7, j) in the solution of AP, hence in
that of ATSP. If a feasible ATSP solution of value UB is known, then each arc

(7, j) € A such that
a, ,=UB — LB,

can be removed from arc set A, since its inclusion in any solution of ATSP
cannot lead to a solution value less than UB. The original complete digraph G
can thus be transformed into the equivalent sparse one, G = (V, A), where

={(Gi,j) €A:@, , < UB — LB,}.

The feasible solution of value UB can be obtained through any heuristic
procedure for ATSP. In our implementation we used the patching algorithm
proposed by Karp [1979].
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An alternative way to compute UB is to introduce an “artificial” upper
bound [ aLB,] (with « > 1) and to set

UB = [ «LB,] + 1. (6)

If, at the end of the branch-and-bound algorithm, no feasible solution of value
less than UB is found, this means that [ «LB,] is not a valid upper bound; so
a must be increased, and a new run, starting with the reduction procedure,
must be performed.

2.2 Parametric Solution of MAPs

Since at each node of the decision tree a MAP is solved, the effectiveness of
the ATSP algorithm depends greatly on the efficiency of the algorithm used
to solve the MAPs. At each node % of the decision tree, instead of solving
MAP, from scratch, a parametric technique is adopted which finds only one
shortest augmenting path. In fact, to generate a descending node 4 from its
parent node %k, we exclude only one arc, say (s, t), from the solution of MAP,
(with (s,t) = E, \ E,). So, to obtain the optimal solution of MAP, from that
of MAP,, it is only necessary to satisfy constraint (2) for j = ¢ and constraint
(8) for i = s, i.e., to find a new, shortest augmenting path from vertex s to
vertex t in the bipartite graph corresponding to MAP, by considering the
current reduced cost-matrix (@, ). Addition of the new included arcs (con-
tained in subset I, \ I,) does not affect the assignment, they being in the
optimal solution of MAP, (the details of the technique used to impose the
new constraints (arcs exclusion or inclusion) are discussed in the next subsec-
tion). As graph G is sparse, the shortest augmenting path is found through a
procedure derived from the labeling algorithm proposed by Johnson [1977]
for the computation of shortest paths in sparse graphs, which utilizes a
heap queue. Hence, the resulting time complexity for solving each MAP is
O(| Allog n).

The computation of the shortest augmenting path at node 4 is stopped as
soon as its current reduced cost (i.e., the value of the label of the next vertex
to be included in the shortest path) is greater than or equal to the gap
between the value UB of the best solution so far and the value of the MAP
associated with the parent node of A.

2.3 The Decision Tree

There are two kinds of nodes in the decision tree: active nodes (i.e., nodes not
yet branched) and passive nodes (i.e., nodes branched or fathomed). The
active nodes are ordered according to nondecreasing values of the correspond-
ing lower bounds; in case of a tie the ordering is based on the following rule:
first the node with the maximum number of included arcs and, in case of a
new tie, first the node with the maximum number of excluded arcs. To store
the information associated with the nodes of the decision tree, a vector V and
two matrices MF and MV are used; vector V contains the scalar informa-
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tion, the matrices the vectorial information. For each node % the following
scalar information is stored:

(a) the pointer to the active node preceding % in the ordered list;
(b) the pointer to the active node following 4 in the ordered list;
(c) the pointer to the parent node of A;

(d) the lower bound LB, associated with A;

(e) the generation number of h between the nodes descending from the
parent node k&;

(f) the number m of not-included arcs of the subtour chosen for branching at
node A;

(g) the pointer to the column of matrices MF and MV containing the
vectorial information of node 4;

(h) the m not-included arcs of the chosen subtour.

The vectorial information stored for each active node 4 is the vector (£,), with
f, =Jj if row i is assigned to column j, corresponding to the primal solution of
MAP, (in matrix MF) and the vector of the dual variables (v,) associated
with MAP, (in matrix MV ). The vectorial information of node # is used for
the parametric solution of the MAPs corresponding to the nodes descending
from h. (Note that the dual variables (u,) associated with MAP, are not
stored, since they can easily be computed through the above information.)

Problem MAP, corresponding to node % of the decision tree is defined
through subsets E; and I,. The constraints associated with E, and I, are
implicitly imposed by updating, with respect to the parent node %, cost-
matrix (a; ;), and dual variables (v,) as follows:

(1) replace a, ; with a; , + A for each arc (i, j) € E, \ E,,
(2) replace v, with v, — A for each vertex j € V, \ V,,

where A is a sufficiently large positive value and v, = {j € V :there exists an
arc (i, /) € I,}.

The first updating avoids the choice of any arc (i, j) € E, in the optimal
solution to MAP,. The second updating prevents, in the shortest-
augmenting-path computation performed at node ki, the labeling of any
column j associated with a vertex j € V,; in this way the assignment of
column j in the optimal solution to MAP, is not changed with respect to that
corresponding to node k.

Note that at the end of the computation of the optimal solution to MAP,,
dual variables v,, with j € V,, are not changed, while the remaining dual
variables are generally updated.

In order to save main memory only one copy of the cost-matrix (that
corresponding to the last node considered) is used, and, for each node #,
subsets E, and I, are not explicitly stored. Hence the problem of implicitly
updating the subsets of the excluded and included arcs corresponding to the
nodes arises. Let r be the last node considered and % the next node to be
explored. The current cost-matrix (a, ,) (corresponding to node r) is given by
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the original elements with a, , replaced by a, ; + A for each arc (i, j) € E,. In
order to obtain the cost-matrix associated with node £ we find the lowest
common ancestor, say q, of nodes r and k; then we remove, level by level, all
constraints corresponding to arcs in E, \ E, and impose, level by level, all
constraints corresponding to arcs in E, \ E,. The current dual variables (v )
associated with node £ (which implicitly define the set of included arcs I,)
are directly obtained from the column of matrix MV corresponding to node k.

2.4 Connecting Procedure

Consider a node & of the decision tree for which several optimal solutions to
MAP, exist. In this case the optimal solution which generally leads to the
smallest number of nodes in the subtree descending from £ is that having the
minimum number of subtours. A heuristic procedure which tries to decrease
the number of subtours defined by the current optimal solution to MAP, is
obtained by iteratively applying the following rule.

Rule 2.4.1. Given two subtours G, = (V,, A,) and G, = (V,, A,), if there
exists an arc pair (i, j,) € A, and (i,, j,) € A, such that arcs (i, j,) and
(i4,7,) have zero-reduced costs (ie., @, , =d,, 6B =0), then an equivalent
optimal solution to MAP, can be obtained by connecting subtours (, and
G, to form a unique subtour G, = (V, UV, A, UA, \ ((i,,j,) U, ) U
((Gys Jp) U Gy, )

If at the end of the connecting procedure a Hamiltonian circuit is found, it
corresponds to the optimal solution to the ATSP associated with node 4, and
no descending nodes are generated.

The connecting procedure is always applied at the root node of the decision
tree. For the other nodes it is applied only if the total number of zero-
reduced-cost arcs at the root node is greater than a given threshold g.
Indeed, the procedure is effective only if the reduced graph contains a
sufficiently large number of zero-cost arcs. Computational experiments have
shown that an adaptive strategy, which counts the number of zero-cost arcs
at each node and then decides on the opportunity to apply the procedure,
gives worse results than the simple threshold method. In the computational
analysis presented in Section 3, we set 8 = 2.5n.

2.5 Comparison with the Algorithms of Miller and Pekny

The most-effective procedures for the solution of the ATSP are those proposed
by Miller and Pekny [Miller and Pekny 1989; 1991; Pekny and Miller 1992;
Pekny et al. 1991}, In the same period we independently developed the code
described in this article. All these procedures are based on the general
approach presented in Carpaneto and Toth [1980]. Here we discuss the main
differences and similitudes between these approaches. Miller and Pekny
[1989] presented a preliminary algorithm which is a parallelization of the
approach of Carpaneto and Toth, improved with the application of the
patching heuristic [Karp 1979] at the root node. Randomly generated in-
stances with up to 3000 vertices were solved on a Butterfly Plus computer
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with 14 processors in 1263.9 seconds. The entries of the cost-matrix were
uniformly generated in the range [0, 103]. The algorithm presented by Pekny
and Miller [1992] represents a substantial improvement of the original
parallel procedure. The MAPs at the nodes are solved through an O(n?)
procedure which computes a single augmenting path. This procedure was
implemented using a d-heap. Moreover the patching algorithm was applied
at the root node and to the other nodes “with decreasing frequency as search
progresses.” In addition the branch-and-bound phase was preceded by a
sparsification of the cost-matrix obtained by removing all the entries with
cost greater than a given threshold A. A sufficient condition is given to check
if the optimal solution obtained from the sparse matrix is optimal for the
original matrix. Random instances with up to 10,000 vertices and with costs
uniformly, randomly generated in [0, n] were solved on a Butterfly Plus
multiprocessor in less than 1300 seconds (on average). The algorithm pre-
sented by Pekny et al. [1991] is a modification of that presented by Pekny and
Miller [1992], obtained with the application, at each node, of an exact
procedure to find a Hamiltonian circuit on the subgraph defined by the arcs
with zero-reduced cost. Instances with 3000 vertices and costs randomly,
uniformly generated in [0,10%] were solved in 102.38 seconds on a SUN
4,280 while for the instances with costs generated in [0, 10*] the average
running time was of 1434.82 seconds. The initial cost-matrix sparsification
was not applied for these computations. The most-sophisticated version of the
Miller and Pekny code appears to be that presented by Miller and Pekny
[1991], which includes all the improvements previously proposed by the
authors. Many instances with 5000 vertices and costs uniformly, randomly
generated in [0, n] were solved on a SUN 4,/330 in 38.1 seconds (this time
does not include the construction of the sparse matrix). One instance with
500,000 vertices and costs randomly, uniformly generated in [0, n] was solved
on a CRAY 2 in 12,623 seconds.

The similarities among our approach and the algorithms of Miller and
Pekny are the following: (a) the branching rule is that proposed in Carpaneto
and Toth [1980], (b) the MAPs at the nodes are solved through an O(n?)
procedure, (¢) the patching algorithm is applied at the root node. The two
approaches differ in the following aspects: (a) for the sparsification phase we
propose a criterion based on the comparison between the reduced costs given
by the initial linear assignment procedure and the gap between lower and
upper bound (see Section 2.1). (If a true upper bound is used, we only
eliminate arcs which cannot belong to the optimal solution; therefore a single
run of the algorithm is required. On the contrary, using an artificial upper
bound or the technique described by Miller and Pekny it can be necessary to
run the algorithm more than one time.) (b) we propose an efficient technique
to store and retrieve the subproblems so that the exploration of the branch-
decision-tree is accelerated; (¢c) we apply a fast heuristic algorithm to find a
Hamiltonian circuit on the subgraph defined by the arcs with zero-reduced
cost.

Comparing the computational results obtained by Miller and Pekny with
those presented in Section 3 of this article it appears that our code is slower
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than the algorithm presented by Miller and Pekny [1991], for small cost
ranges (and random instances), but it seems to be faster for large cost ranges.
Using our code, D. S. Johnson solved random instances with 4000 vertices
and costs in [0, 10°], in only 14 minutes on an SGI Challenge (239 subprob-
lems were solved).

3. COMPUTATIONAL RESULTS

The algorithm has been coded as a Fortran subroutine called CDT [Carpaneto
et al. 1995]. Subroutine CDT has been tested on randomly generated test
problems with up to 2000 vertices. We considered both instances with random
costs and instances derived from real-like scheduling problems. In particular,
we solved no-wait flow shop problems which can be stated as follows: n jobs
and a set {1.2,..., m} of m machines are given. Each job must be scheduled
on machines 1,2, ..., m in such a way that: (a) no machine processes two jobs
at the same time; (b) the processing of a job on machine j starts exactly when
the processing of the same job on machine j — 1 is completed. Let p, , be the
processing time of job i on machine j: the problem consists in finding a
sequence of the n jobs which minimizes the completion time of the last job
processed on machine m.

Papadimitriou and Kanellakis [1980] have shown that an instance of the
no-wait flow shop problem can be transformed into an equivalent instance of
ATSP with n + 1 vertices.

Eight classes of test problems were considered by generating the coeffi-
cients of the integer cost-matrix (e, ) as follows:

(al) o, uniformly random in [1, 10°];
(a2) a, , uniformly random in [1,10*];
(a3) a, , uniformly random in [1, 10°8];
(t1) a, , uniformly, randomly generated in [1, 10%] and then triangularized;
(t2) a, , uniformly, randomly generated in [1, 10%] and then triangularized;

(t3) a, , uniformly, randomly generated in [1, 108} and then triangularized;

(f1) no-wait flow shop problems with 10 machines and p, , uniformly ran-
dom in [1, 100];

(f2) no-wait flow shop problems with 20 machines and p, , uniformly ran-
dom in [1, 100].

For each value of n and each class of problems, 50 different instances have
been solved. Tables I to XI give the following information (the times are
expressed in seconds):

—average, median, and maximum running times for CDT;
—average running time at the root node;
—average number of MAPs completely solved;

—average and (in brackets) maximum number of explored nodes (i.e., nodes
which generated son nodes);
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—average and (in brackets) maximum level of the decision tree at which the
optimal solution was found,;

—average number of son nodes generated by an explored node;
—average density of the sparse cost matrix (i.e., | Al/n?);
—average (AP solution value at the root node)/z* ratio.

Tables I to VI give the results obtained on a PC 486 /33 for values of n
from 100 to 10® for problems of classes al, a2, and a3 and from 100 to 500
for problems of classes ¢1, t2, t3 (larger values of n for problems of classes
t1, £2, and £3 have not been considered because the excessive computing time
required for the triangularization of the cost-matrices). The value of upper
bound UB has been obtained using the patching algorithm proposed by Karp
[1979].

Tables I-IIT (uniform problems) show that the ratio between the lower
bound at the root node (LB;) and the optimal solution value (2*) is always
very close to 1 and increases with the value of n. The performances of the
algorithm do not change very much when the cost ranges increase from
(1,103) to (1,10%); however, one can observe a tendency to an increment of
the difficulty of the instances with the increment of the cost ranges. This is
mainly due to the larger absolute gap between z* and LB,, which leads to a
greater number of nodes in the decision tree.

Tables IV-VI (triangular problems) show that the running time required
for solution of the MAPs is much greater than that corresponding to uniform
problems. In fact, procedure CTCS [Carpaneto and Toth 1987], which is used
for the solution of the AP at the root node, performs worse for these
instances, and the computation of the shortest augmenting paths at the
nodes of the decision tree is slower because of the higher density of the sparse
cost-matrix. However, the average running time of CDT is less than that in
Tables I-II1 because of the much smaller number of nodes generated by the
branch-and-bound algorithm.

To consider large-size problems (n > 10?) we ran subroutine CDT on a
DECstation 5000 /240 computer. Tables VII-IX give the results for problems
of classes al, a2, and a3, values of n from 500 to 2000. The algorithm has a
behavior similar to that shown in Tables I-IIL

Tables X and X1 give the results for the problems of classes f1 and f2. The
value of UB used by the reduction procedure was artificially obtained through
(6) with o = 1.005. For only three instances with 20 machines and less than
300 jobs it was necessary to increase the value of « to 1.01.

Finally, we considered some real-world stacker crane problems with up to
443 movements. The stacker crane problem arises in the reorganization of an
inventory system which consists of a series of shelves where products are
positioned and of an automatic crane which moves the products from the
operator position (I/0 area) to the shelves and vice versa. During the night,
the crane reorganizes the system by moving products from a shelf to another.
The shelves are positioned in a vertical rack and are identified by two
coordinates. In order to perform the reorganization of the system, two prob-
lems have to be solved: (a) identify the movements of products from a shelf to
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Large-Scale, Asymmetric Traveling Salesman Problems
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another and (b) decide the sequence of movements of the crane in order to
minimize the total distance covered by the crane. Problem (b) determines an
asymmetric traveling salesman problem. We solved real-world problems with
up to 443 movements, derived from a Siemens factor in Augsburg. The
corresponding results are given in Table XII. All the problems were easily
solved with a maximum computing time of 5.7 seconds, on a PC 486/33. In
many cases the problem was solved at the root node.
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