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Abstract: The dynamic modelling of metabolic networks constitutes a major challenge in
systems biology. The time evolution of metabolite concentration in living cells is usually
modelled by complex systems of non-linear differential equations with a large number of
parameters. The identification of the model structure and the estimation of its parameters
from experimental data is a difficult task, for which there is currently no automatic and
straightforward solution. This paper shows that a prior structural analysis of the model
that addresses parameter sensitivity and identifiability issues can significantly improve the
subsequent reverse engineering step. The application of established model building and
analysis procedures can thus have a positive impact in the development of complex biological
systems models.
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1. INTRODUCTION

1.1 Motivation

The dynamical description and modelling of metabolic
networks constitutes a major challenge in systems bi-
ology. The development of experimental techniques
for data acquisition is producing at growing rate high
quality biochemistry information. From the modeller
point of view, new tools are continuously being pro-
posed to estimate more efficiently and accurately dy-
namic models that can be useful to design new infor-
mative experiments and to propose and validate new
hypotheses. Given the abundance of information, a
major modelling difficulty has become the formula-
tion of complex, structured, biologically meaningful
models for predicting multidimensional observations

1 E-mail: svinga@kdbio.inesc-id.pt
2 Part of this work has been done under project DynaMo
(PTDC/EEA-ACR/69530/2006) from FCT, Portugal.

of biological system variables. Although the increase
in model complexity requires new tools, longstanding
model building methodologies for structural formula-
tion, parameter estimation and validation (Carson et
al., 1983), are still applicable and can effectively sup-
port the identification of complex biological systems.

1.2 The problem

The formulation of structured models of biological
systems is greatly influenced by the wealth of detailed
information available on single biological processes
and on their interactions. A feasible and often pre-
ferred model building strategy is therefore the top-
down approach that starts with gathering prior infor-
mation on the biological system structure, which is
then translated into mathematical model equations to
yield a system of non-linear differential equations.
These latter become useful only if adequate values
can be assigned to a large number of model param-
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eters that are usually either unknown or have been
determined in controlled isolated conditions. To infer
biologically meaningful parameters the model must be
fitted to multidimensional experimental data profiles,
which is typically complicated by practical unidenti-
fiability due to overparameterization. Due to model
complexity it is usually difficult or even unfeasible
to carry out a formal a priori identifiability analysis
(Audoly et al., 2001; Bellu et al., 2007). The problem
becomes then to reduce the model order, either by
assigning fixed values to a subset of the parameters
or, preferably, by simplifying the subjacent differen-
tial equations. To retain the biological meaning of the
model the simplification must be carried out heuristi-
cally, but can be guided using formal analysis tools as
shown in this work.

1.3 State-of-the-art review

1.3.1. Biochemistry One interesting system that
will be used as a case study is the glycolytic path-
way. Glycolysis consists in the degradation of one
molecule of glucose onto two molecules of pyruvate
with the concomitant production of adenosine triphos-
phate (ATP). The topology of this metabolic network
has been known for a long time, including the activa-
tion and inhibitory signals present, which can be rep-
resented as extra edges in the graph. The dynamics of
this system is however still not completely understood.
With Nuclear Magnetic Resonance (NMR) it is nowa-
days possible to obtain in vivo multivariate time series
of metabolite concentrations for several organisms and
different pathways and perturbations, allowing thus
the real-time observation of these processes. This type
of information, in particular the glycolytic pathway in
Lactococcus lactis, will be the basis for this modelling
study (Neves et al., 2002).

1.3.2. Models for metabolic networks The dynamic
evolution of metabolite concentrations is usually mod-
elled with systems of non-linear differential equations.
In particular, a methodology for establishing the for-
mat of these equations was proposed, in (Savageau,
1969), under Biochemical Systems Theory (BST), and
proved to be very useful. In this approach each flux is
approximated by a power law, which corresponds to
a Taylor series expansion in logarithmic space. There-
fore, the flux rate Ẋi of each metabolite concentration
Xi is given as a function of the concentrations of all
metabolites Xj , j = 1, ..., n. Under BST, the fluxes
can be expressed in two different ways, either using
S-systems or the Generalized Mass Action (GMA)
formalism, written respectively as:

Ẋi = αiΠn
j=1X

gij

j − βiΠ
n
j=1X

hij

j

Ẋi = Σmk=1 ± γikΠn
j=1X

fijk

j (1)

In S-systems the production and degradation fluxes are
grouped into two factors with parameters (αi, gij) and

(βi, hij) respectively. In GMA each term is kept sepa-
rately, with parameters γij and fijk. All these parame-
ters have biochemical interpretation: the proportional
parameters are the rate constants and the exponents
are the kinetic orders of the corresponding chemical
reactions. Further details of the advantages of BST are
fully described and explored elsewhere (Voit, 2000).

1.3.3. Parameter estimation A major bottleneck of
modeling metabolic networks is the estimation of pa-
rameters from measured variables. This step consists
on finding the parameters that minimize an objec-
tive function, usually the weighted sum of squares of
the residuals between the simulated and experimental
data points. This procedure leads to a non-linear least
squares problem (Seber and Wild, 1989). Additional
constraints on the parameters can be introduced that
reflect biochemical restrictions on the rate and kinetic
values. Since the systems are usually non-linear, there
are no current automatic methods that guarantee con-
vergence to a global optimum. However, some tech-
niques specifically developed for metabolic networks
can find local solutions by performing the simulation
of differential equations combined with convenient
non-linear numerical optimization methods (Mendes
and Kell, 1998).

1.3.4. Structural Analysis Global identifiability is
a structural property of models and is related with
the possibility of separately and uniquely recover the
unknown parameters from complete error-free input-
output data (Audoly et al., 2001; Bellu et al., 2007).
This is still a difficult problem for non-linear systems,
where no general algorithms exist that can determine
a priori if the parameter optimization procedure has
an unique solution.

Local identifiability regards systems that have a finite
number of distinguishable parameter values, i.e., for
almost every solution there is a neighborhood where
no other solutions exist. This type of identifiability is
related to sensitivity analysis, in particular with the
properties of the sensitivity matrix of the linearized
system (Jacquez and Perry, 1990). In fact, the param-
eters or their linear combinations that do not influence
the measured state variables are unidentifiable.

1.4 Paper contribution

This paper presents a case study of application of
the traditional stability analysis based on the Jaco-
bian matrix of the model equation, combined with the
approach of singular value decomposition of model
output sensitivities to show how a preliminary struc-
tural model can be reformulated in simplified form to
substantiality improve the parameter estimation task.
In fact, by performing the preliminary analysis of the
structural model the paper shows that it is possible
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Fig. 1. Metabolic pathway of glycolysis in L. lactis.
This figure represents a simplified model of gly-
colysis, from glucose uptake to the production
of lactate. Also shown (in grey) activation and
inhibitory signals. In (Voit et al., 2006b).

to identify a cluster of state variables with fast equi-
libration dynamics that can be lumped into a single
state variable. This procedure eliminates practically
unidentifiable fast modes and allows to estimate a re-
duced parameter set that accurately reproduces, upon
simulation, the original experimental time series.

1.5 Paper structure

Section 2 presents the dynamical model of glycolysis
that served as a starting point to this work. In Section
3 a structural stability and sensitivity analysis of this
model is performed and a new, reduced model is
proposed. In Section 4 the parameter estimation is
carried out and the new model is validated against the
original experimental data. Finally Section 5 discusses
the improvements obtained with this procedure and
some possible future adjustments.

2. DYNAMIC MODELING OF THE METABOLIC
NETWORK

The starting point of the present work was a pre-
vious glycolysis model proposed recently (Voit et
al., 2006b). A simplified network of the biochemical
reactions was used, reproduced in Figure 1. The corre-
sponding differential equations for this pathway were
defined using the BST approach and read as follows:

Ẋ1 =−β1X
h11
1 Xh12

2 Xh25
5

Ẋ2 = β1X
h11
1 Xh12

2 Xh25
5 − β2X

h22
2 ATPh2ATP

Ẋ3 = β2X
h22
2 ATPh2ATP − β3X

h33
3 P

h3Pi
i NADh3NAD

Ẋ4 = 2β3X
h33
3 P

h3Pi
i NADh3NAD + α4X

g45
5 − β4X

h44
4

Ẋ5 = β4X
h44
4 − β1X

h11
1 Xh12

2 Xh25
5 − α4X

g45
5

−β51X
h513
3 Xh515

5 P
h51Pi
i − β52X

h525
5

Ẋ6 = β1X
h11
1 Xh12

2 Xh25
5 + β51X

h513
3 Xh515

5 P
h51Pi
i

−β61X
h616
6 Xh613

3 NADh61NAD − β62X
h626
6

Ẋ7 = β61X
h616
6 Xh613

3 NADh61NAD (2)

Due to several problems found during the estima-
tion procedure, several metabolites were considered
as input signals. This was the case for glucose, where
it was very difficult to reproduce the sigmoid type
decay with this type of formalism. Other metabolites,
such as Pi, NAD+/NADH and ATP, also constitute a
major problem since they participate in many other
reactions within the cells. Therefore it is extremely
hard to isolate the fluxes only due to glycolysis from
other production and consumption rates resulting from
other pathways. Nevertheless the fitting of this model,
although far from being fully accomplished, provides
important insights regarding the design of the pathway
(Voit et al., 2006a).

The data used was obtained through NMR, as referred
in the Introduction. In particular, multivariate time
series of metabolite concentrations of glucose (X1),
G6P (X2), FBP (X3), 3-PGA (X4), PEP (X5), pyru-
vate (X6), lactate (X7), Pi, NAD+, NADH and ATP
were obtained when the system was perturbed with
glucose pulses of different concentrations and under
several experimental conditions. In the present work,
a bolus of 40 mM of glucose is applied in aerobic
and anaerobic conditions (Neves et al., 2002). It is
noteworthy that it is not always possible to measure all
metabolite concentrations during the procedure due to
intrinsic detection limits of the experimental method.

3. STRUCTURAL ANALYSIS

Structural analysis is an essential preliminary step
for parameter identification in metabolic networks.
It is useful to recognize the presence of redundant
structural information, due to practically unobservable
modes, or of non-influential parameters, due to linear
dependency, that will both lead to difficulties dur-
ing parameter estimation, so-called practical uniden-
tifiability. For this purpose some prior information
on model parameters is required around which the
model equations are linearized. This analysis suffers
from self-reference, which limits the validity of the re-
sults. This apparently circular paradox must be solved
heuristically by assigning reasoned numerical parame-
ter values and by adjusting them as good as possible to
adapt model predictions to actual measurements. The
more general global a priori identifiability analysis
would not require this prior information, but would
be hardly applicable because the models considered
do not fall into yet solvable model categories (Bellu et
al., 2007).

568



3.1 Local stability and identifiability of dynamics

To analyze local stability of dynamic modes con-
sider a generic system of non-linear differential equa-
tions: ẋ(t) = f(x(t),u(t),p), x(0) = x0, where
x(t) is the nominal trajectory associated with nom-
inal model inputs, u(t), and parameter values, p. A
small perturbation in the initial condition, δx0, deter-
mines a perturbation in the state trajectory that obeys:
δẋ(t) = A δx(t); δx(0) = δx0, with Jacobian matrix
A = ∇xf(x(t),u(t),p). For simplicity it is assumed
that A is time-invariant, such that δx(t) can be ex-
pressed analytically as a function of the eigenvalues
{λ1, . . . , λn} and eigenvectors V = {v1, . . . ,vn} of
A, that is Avi = λi vi, or in matrix notation AV =
V Λ, with Λ = diag{λ1, . . . , λn}. In particular,

δx(t) = eA tδx0 = V eΛ tV−1δx0

=
∑
i

ci vi eλi t (3)

It follows that δx(t) vanishes only if all the eigen-
values have negative real part, i.e. if the system is
asymptotically stable.

From a model identification perspective, fast modes
associated to a real eigenvalue λ become unobserv-
able if they vanish with much shorter time constant
τ = 1/λ than the temporal resolution of measure-
ments determined by the sampling schedule {tk, k =
1, . . . , N}. The model output equations are described,
in general, by non-linear functions, such as: y(t) =
g(x(t),p, t). In the present study, g is the identity
because all metabolites (state variables) are measur-
able with NMR. Therefore, the whole state trajectories
spanned by the eigenvectors of the fast modes can be
considered unmeasurable and the model parameters
associated with these trajectories become in practice
very difficult to estimate. In this analysis the Jacobian
matrix is actually time-varying and must be calcu-
lated for some nominal parameter values. These latter
were taken from the preliminary solution of (Voit et
al., 2006b) and results in Table 1 have been calculated
in quasi steady state conditions by running the simula-
tion sufficiently long to exclude the initial perturbation
dynamics.

Table 1. Eigenvalues (1st row) and eigen-
vectors of the linearized system.

-1506 -0.877 -0.394 -0.305 -0.0383 -8.84·10−6 0
1 0 0 0.362 0 0 0 0
2 0 0 -0.401 0 0.843 0 0
3 0 0.245 -0.032 0 0.038 0 0
4 -0.707 0.117 0.269 0 0.42 0.982 0
5 0.707 0.022 0.052 0 0.082 0.191 0
6 0 -0.962 -0.795 1 0.325 0 0
7 0 -0.002 0.001 -0.001 -0.009 -0.001 1

The eigenvalue with largest absolute value (-1506)
differs three orders of magnitude from the one ranked
next. The corresponding eigenvector: v1 = [0, 0, 0, -
0.707, 0.707, 0, 0] indicates that the fast mode consists
in a fast convergence to equilibrium of X4 (3-PGA)

and X5 (PEP). Since the transformation X4 + X5

belongs to the null space of v1, the model can be
simplified by lumping X4 and X5 into a single state
variable. By canceling out the fast mode, some model
parameters are also eliminated, i.e. α4, β4, g45 and
h44 are replaced by k45 (see Section 3.3), although the
eliminated parameters do not seem the most critical as
regards practical identifiability as discussed next.

3.2 Local parameter identifiability analysis

The classic local identifiability analysis is based on the
evaluation of linear dependency among parameter sen-
sitivities of model outputs (Jacquez and Perry, 1990).
In short, a small parameter perturbation, δp, around
a nominal value p produces a perturbation in model
outputs: δy(t) ≈ ∇py(t,p) δp. By organizing the
matrix of multi-output observations with discrete-time
sampling, {yi(tj)}i,j , into a single column vector Y,
one can express measured output variations due to
parameter perturbations as: δY = S δp, where S is
the sensitivity matrix {∂Yi/∂pj}i,j . To eliminate the
effect of parameter scaling, relative variations can be
considered computing: δp/p , diag(p)−1 δp im-
plies scaling of sensitivities such that δY = S̄ (δp/p),
with S̄ = S diag(p). Absolute (relative) parameter
variations from nominal values are locally identifi-
able if S (S̄) has full rank. By using singular value
decomposition (SVD) one obtains the factorization
S = ŪΣV̄T , with Ū and V̄ eigenvector matrices of
SST and STS, respectively, and Σ diagonal with non-
negative decreasing elements (singular values, SV)
equal to the square root of the eigenvalues of STS.
The rank, the number of non-zero SV, is in practice
determined by normalizing all SV with respect to the
largest one and by setting a cutoff, e.g. the square root
of machine precision. The practically unidentifiable
parameter subspace is spanned by the last columns of
V̄with (nearly) zero SV.

Figure 2 shows the SV for the scaled sensitivities cal-
culated for the glycolysis model. SVD was applied to
model sensitivities simulated up to 13 min, where the
initial transient dynamics vanishes, using the solution
proposed previously. The last SV appears to be in
practice negligible when compared to the first one.
According to the last column of V̄, it corresponds to
parameter h525, which is the exponent of the loss rate
of PEP (Ẋ5) in equation 2. Also the two preceding SV
(23 and 24) indicate a possible lack of identifiability
for a subspace of parameters. From the correspond-
ing columns of V̄ this involves parameters β61, β62,
h51Pi, h616, h626 that intervene in the transformation
from pyruvate to lactate, suggesting that the model
may be overparametrized in the description of this
final transformation.

3.3 Model reduction

A first modification to the initial model was to tenta-
tively describe extracellular glucose decay. This was
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Fig. 2. Singular values of the scaled sensitivity matrix
of the glycolysis model.

achieved by changing the equation for that flux (Ẋ1)
to include a time-dependency to correctly describe a
sigmoid type consumption.

According to the previously described structural anal-
ysis, showing that the reversible reaction between 3-
PGA (X4) and PEP (X5) is extremely fast, both pools
were merged into a unique state variable,X45 = X4+
X5. This is also justified by the data that support
the hypothesis of an invariant ratio between the con-
centrations of these two metabolites. By defining this
ratio as k45, i.e. X4 = k45X5, the equations to com-
pute the individual concentrations from X45 become:
X4 = k45X45/(1 + k45) and X5 = X45/(1 + k45),
respectively.

The results from the practical identifiability analysis,
suggesting an over-parameterization of some parts of
the model, were not yet taken into account because
the fitting to experimental data of the above modified
model evidenced some limitations that will require a
more extensive revision.

For the Pi, ATP and NAD+/NADH the previous de-
cision of keeping these time series as input signals
to the model was maintained. In fact, given the ex-
treme difficulty of expressing the variation of these
ubiquitous metabolites, it is better to use them as ex-
ternal signals of the system. Since they present some
irregularities and need to be extrapolated beyond the
defined interval, cubic splines and interpolation were
used to infer the parameters and correctly simulate the
obtained solution. The equations of this new proposed
model are:

Ẋ1 =−k(1 + αtβ)X1

Ẋ2 = β1X
h11
1 Xh12

2 Xh25
5 − β2X

h22
2 ATPh2ATP

Ẋ3 = β2X
h22
2 ATPh2ATP − β3X

h33
3 P

h3Pi
i NADh3NAD

Ẋ45 = 2β3X
h33
3 P

h3Pi
i NADh3NAD − β1X

h11
1 Xh12

2 Xh25
5

−β51X
h513
3 Xh515

5 P
h51Pi
i − β52X

h525
5

Ẋ6 = β1X
h11
1 Xh12

2 Xh25
5 + β51X

h513
3 Xh515

5 P
h51Pi
i

−β61X
h616
6 Xh613

3 NADh61NAD − β62X
h626
6

Ẋ7 = β61X
h616
6 Xh613

3 NADh61NAD (4)

4. PARAMETER ESTIMATION AND
VALIDATION

4.1 Estimation procedure

The model equations were implemented using the
modelling software tool Pansym (Thomaseth, 2003),
which takes as input a structural description of a sys-
tem and generates symbolically the model’s differen-
tial and output equations by means of algorithmic pro-
cedures pertaining to Bond Graph theory. The equa-
tions are further manipulated symbolically to deter-
mine, analytically, derivatives necessary to assemble
the model Jacobian matrix as well as the sensitivity
differential equations of model dynamics necessary
to calculate the output sensitivities with respect to
estimated parameters. The software produces Fortran
source code for the numerical simulation by means
of standard ordinary differential equation solvers for
non-stiff (4th/5th order Runge Kutta) or stiff systems
(LSODA). The simulation routines are interfaced with
the non-linear parameter estimation routines made
available by the open-source statistical programming
environment R (http://www.r-project.org/).

The solutions obtained with this procedure for both
experiments (anaerobic and aerobic conditions) are
represented in Table 2.

Table 2. Solution obtained for the parame-
ters. Glucose pulse of 40 mM under aerobic

and anaerobic conditions (see Eq. 4).

Parameter Aerobic Anaerobic
k 0.0530251 0.124738
α 0.0419958 0.134194
β 2.68092 2.6674
β1 7.20321 5.86735
h11 0.997546 1.25193
h12 -1.48643 -1.06961
h25 0.38576 0.288687
β2 0.345889 0.379794
h22 1.54399 2.83465
h2ATP 1.51599 0.26203
β3 0.338423 0.181082
h33 1.09298 1.02783
h3Pi 0.258372 -0.137778
h3NAD -0.0966562 0.174484
β52 0.134164 0.000447956
h525 0.0940446 0.103001
β51 0.862421 0.683548
h513 0.7663 0.854603
h515 0.0382342 0.0921911
h51Pi 0.211149 -0.279396
β61 0.0324743 0.0306174
h616 0.675486 0.84484
h613 1.03221 0.958361
h61NAD -0.0519436 0.38804
β62 1.74742 1.915812
h626 1.40312 1.08493
k45 2.04035 1.54695

4.2 Validation against experimental data

After performing the optimization procedure described
above it is possible to assess the accuracy of the model
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obtained by comparing the simulated with the original
data. Figure 3 represents the original experimental
points and the corresponding simulations generated
with the estimated parameters (Table 2).
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Fig. 3. Simulation of obtained solutions. a) Aerobic
conditions. b) Anaerobic conditions.

The analysis of the curves shows a good fitting of
the original experimental data in both aerobic and
anaerobic conditions.

5. DISCUSSION AND POSSIBLE FURTHER
ADJUSTMENTS

The analysis of the results shows that previous prob-
lems found in parameter estimation might have been
partially due to overmodelling of the reversible reac-
tion 3-PGA/PEP. In fact, this reaction occurs almost
instantaneously, and therefore these two pools can be
considered at equilibrium, with constant K=1.5-3, as
estimated from data obtained by in vivo NMR.

Another interesting point is the longer tail of FBP. This
might be the result of an incomplete model with some
missing equation and not a parameter estimation prob-
lem. The analysis of these simulation results provides
important clues about missing factors and induce the
modeller to rethink the original equations to cope with
incomplete information.

6. CONCLUSION

The structural analysis of metabolic networks signif-
icantly improves model identification and parameter
inference. This case study shows that the elimination
of a fast reaction solves the problem of optimizing the
remaining parameters. In fact, the pooling of the two
state variables allowed the convergence of a standard
non-linear least squares algorithm used for fitting the
modified model to experimental data. This provided a
more accurate picture on the model’s capability to fit
experimental data and on its limitations. The analysis
of the metabolic model structure and the subsequent
careful choice of metabolites to be included can thus
constitute a key step to overcome some of the prob-
lems previously encountered during the estimation
procedure.
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