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Abstract

Biological sequence analysis is one of the main bioinformatics sub-disciplines,
bringing together several fields, from computer science to probability and statis-
tics. Its purpose is to computationally process and decode the information
stored in biological macromolecules involved in all cell mechanisms of living or-
ganisms – such as DNA and proteins – and provide prediction tools to reveal
their structure, function and complex relationship networks.

This thesis addresses sequence analysis by vector maps, which are functions
that transform sequences onto n-dimensional vectors in Rn. These techniques
do not depend on sequence alignment algorithms, which are ubiquitously used
in bioinformatics applications, such as the BLAST procedure. The vector maps
considered define a category, named “alignment-free”, that although less ex-
plored in the literature, constitutes an important subject with significant con-
tributions in the past years, given their natural formulation, elegant formalism
and low computational cost.

Two types of functions are exploited in this work: the first one maps se-
quences onto their sub-string or L-tuple frequency vectors and the second one,
chaos game representation (CGR), is anchored on iterative function systems
(IFS) and fractal geometry theory, mapping symbols onto points with applica-
ble topological and stochastic properties.

Following a bibliographic review of alignment-free methods, an extensive
quantitative analysis of these word-composition distances is performed, along
with the introduction of a new dissimilarity measure between proteins. The
W-metric bridges alignment metrics and those based solely in L-tuple composi-
tion, by combining, in quadratic forms, aminoacid composition and mutational
information given by substitution matrices. The evaluation of the dissimilarity
measures previously reviewed is applied to the recognition of protein relation-
ships specified by the SCOP database, a benchmark for protein hierarchical
secondary structure classification.

In the study of CGR maps, the method is first extended to accommodate
higher-length alphabets, named Universal Sequence Map (USM), allowing the
representation of proteins and natural languages texts. CGR/USM generalizes
any order Markov chain transition probability tables and is related to binary
representation of numbers. In addition it holds noteworthy context properties,
with suffixes far apart in the original sequence mapped onto contiguous regions
and the ability of recovering all the sequence from just one point. They consti-
tute the foundation of a new entropy measure of DNA sequences here presented.
The Rényi continuous entropy of DNA sequences is based on CGR/USM and in
non-parametric kernel density estimation with Parzen’s window method. This
entropy measure is tested on artificial and real DNA and its asymptotical be-
havior is deduced, along with Monte Carlo simulations performed to estimate
the variability of this quantity. All the computer code described was developed
in MATLABTMlanguage and is made available online.

This work helps systematize alignment-free techniques by presenting an ex-
tensive review of these methods and applications, with a strong emphasis on
uniform nomenclature and formalism that will support future developments in
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this area. Additionally, a full quantitative analysis of dissimilarity measures
obtained through these vector maps showed that although less sensitive and
specific than alignment algorithms, they perform reasonably well which, as-
sociated with their extremely low computational cost, make them potentially
important for data pre-filtering or heuristics improvement. A precise protocol
for classification accuracy assessment was established which might be used to
study other dissimilarity measures in the future. The vector maps (USM) gen-
eralized in this work motivated a novel measure of sequence entropy, which is in
agreement with information theory and simulation studies and allows the study
of uncertainty and predictability of biological sequences. It might be further
applied to the computation of sequence entropic profiles and convey useful local
information for prediction and classification problems.

The thesis, based on published papers, is organized in the following struc-
ture: Chapter 1 – Introduction – presents background information on molecular
biology, sequence analysis and mathematical and computational methods used,
such as information theory, vector maps, iterative function systems (IFS) and
chaos game representation (CGR).

The following Chapter 2 – Alignment-free sequence comparison – a review
– constitutes a bibliographic review of the main techniques for measuring se-
quence dissimilarity not requiring their pre-alignment. Moreover, it provides
additional background information on words in sequences and strengthens the
motivation for all the subsequent work. In Chapter 3 – Universal sequence map
(USM) of arbitrary discrete sequences – a natural extension of CGR maps is
identified, allowing the representation of higher-order alphabet sequences. The
representation for backward sequences is explored and a dissimilarity measure
between symbol mappings is proposed.

The next two chapters are devoted to applications of these methods to bio-
logical sequences. The work presented in Chapter 4 – Comparative evaluation of
word composition distances for the recognition of SCOP relationships – refers to
the quantitative assessment of classification accuracy of the dissimilarity mea-
sures previously reviewed. It also proposes a new word composition measure, the
W-metric, which bridges alignment-free and alignment-based concepts. Chap-
ter 5 – Rényi continuous entropy of DNA sequences – presents a CGR/USM-
driven entropy definition, based on Rényi formalism, which constitutes a novel
application of iterative maps for measure the uncertainty of DNA.

Chapter 6 – Final discussion – finalizes by bringing together the conclusions
of previous chapters and summarizing the main contributions of this work for
the analysis of biological sequences. This closing chapter also describes open
problems and future developments in this area.

This report presents and expands on work described in the following publi-
cations: Vinga, S. & Almeida, J. (2003) Bioinformatics 19, 513–523; Almeida,
J. S. & Vinga, S. (2002) BMC Bioinformatics 3, 6; Vinga, S., Gouveia-Oliveira,
R. & Almeida, J. S. (2004) Bioinformatics 20, 206–215; Vinga, S. & Almeida,
J. S. (2004) J. Theor. Biol. 231, 377–388.



Análise de sequências biológicas por funções vectoriais:

comparação sem alinhamento de ADN e protéınas

Resumo

A análise de sequências biológicas é uma das áreas mais importantes da
bioinformática que combina diversos campos cient́ıficos, desde as ciências da
computação à probabilidade e estat́ıstica. Tem como objectivo o processa-
mento computacional e a descodificação da informação armazenada nas macro-
moléculas biológicas, tais como o ADN e as protéınas, envolvidas nos mecanis-
mos celulares de todos os seres vivos e, também, a criação de ferramentas para a
predição da sua estrutura, função e inferência das complexas redes de interacção
entre essas mesmas moléculas.

Esta tese propõe uma abordagem à análise de sequências por funções vec-
toriais que transformam o espaço das sequências em vectores n-dimensionais
de Rn. Estas técnicas não dependem de algoritmos de alinhamento, usados
extensivamente em aplicações bioinformáticas, e.g. no programa BLAST. Estas
funções definem uma categoria, denominada ‘sem alinhamento’ (alignment-free)
que, embora menos explorada na literatura, constitui uma área com inúmeras
aplicações importantes nos últimos anos, pela sua formulação natural, formalis-
mo elegante e custo computacional reduzido.

Neste trabalho são explorados dois tipos de funções: a primeira transforma
sequências nos seus vectores de composição, ou seja, nas frequências de ocor-
rência das palavras de tamanho L (L-tuples); a segunda função, representação
por jogos de caos (chaos game representation – CGR), baseia-se em sistemas
de funções iterativas (iterated function systems – IFS) e em geometria fractal,
transformando śımbolos em pontos com propriedades topológicas e estocásticas
relevantes aplicáveis ao estudo da sequência original.

Após uma revisão bibliográfica de métodos sem alinhamento, é apresentada
uma análise quantitativa dessas métricas – baseadas em composição de palavras
– com a introdução de uma nova medida de dissemelhança entre protéınas.
A métrica-W (W-metric) combina métodos com e sem alinhamento através
da utilização de formas quadráticas de frequência de aminoácidos associadas
a matrizes de substituição com informação evolutiva. A avaliação das medi-
das de dissemelhança anteriormente revistas é aplicada para o reconhecimento
de relações entre protéınas especificadas pela SCOP, uma base de dados de
referência para a classificação hierárquica da estrutura secundária de protéınas.

No estudo de mapas CGR, este método é inicialmente generalizado de forma
a acomodar alfabetos com maior cardinalidade através de mapas de sequências
universais (universal sequence maps – USM), permitindo, deste modo, a re-
presentação de protéınas e de textos em linguagem natural. CGR/USM ge-
neralizam tabelas de transição de cadeias de Markov de qualquer ordem, estão
relacionadas com a representação binária de números e possuem propriedades de
contexto importantes; por exemplo, os sufixos, mesmo se separados na sequência
original, são aplicados em regiões cont́ıguas, sendo também posśıvel recuperar
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toda a sequência a partir de apenas uma única coordenada. Este método con-
stitui os fundamentos de uma nova medida de entropia de sequências, também
apresentada. A entropia cont́ınua de Rényi de sequências ADN é baseada em
mapas CGR/USM e na estimação não paramétrica de densidades pelo método
das janelas de Parzen. Esta medida de entropia é testada em sequências de
ADN artificiais e reais e é deduzido o seu comportamento assimptótico. São
efectuadas, também, simulações Monte Carlo, com o intuito de estimar a vari-
abilidade desta medida. Todos os algoritmos descritos foram implementados em
MATLABTMe estão dispońıveis online.

Este trabalho permite sistematizar o estudo de técnicas sem alinhamento, ao
apresentar uma revisão extensiva destes métodos e da sua respectiva aplicação,
com especial ênfase dado às uniformizações da nomenclatura e formalismo que
irão auxiliar o desenvolvimento futuro desta área. Adicionalmente, a análise
quantitativa exaustiva desses mesmos métodos e respectivas medidas de disseme-
lhança obtidas através das funções vectoriais a eles associadas, comprovam que,
embora com menos sensibilidade e especificidade do que algoritmos baseados
em alinhamento, se obtêm resultados com custo computacional reduzido, o que
os torna potencialmente importantes para pré-processamento ou filtragem de
sequências e melhoria de heuŕısticas existentes. Foi, também, estabelecido um
protocolo para avaliação dos classificadores que poderá ser aplicado facilmente
no futuro ao estudo de outras medidas de dissemelhança. A representação USM,
generalizada neste trabalho, motivou a criação de uma nova medida de entropia
de sequências que revelou estar concordante quer com a teoria de informação,
quer com estudos de simulação, permitindo o estudo da incerteza e previsi-
bilidade de sequências biológicas. Poderá ser aplicada, no futuro, ao cálculo
de perfis entrópicos e fornecer informação local para problemas de previsão e
classificação.

Esta tese é baseada em artigos publicados e tem a seguinte estrutura: o
Caṕıtulo 1 – Introduction – apresenta uma breve introdução à biologia molecu-
lar, análise de sequências e a diversos métodos matemáticos e computacionais,
tais como teoria da informação, funções vectoriais, sistemas de funções iterativas
(IFS) e jogos de caos (CGR).

O Caṕıtulo 2 – Alignment-free sequence comparison – a review – é uma
revisão bibliográfica das principais medidas de dissemelhança que não requerem
técnicas de alinhamento. Adicionalmente, apresenta material suplementar teó-
rico em sequências, fortalecendo, também, a motivação geral deste trabalho.
No Caṕıtulo 3 – Universal sequence map (USM) of arbitrary discrete sequences
– é proposta uma extensão natural dos mapas CGR permitindo, assim, a re-
presentação de sequências com alfabetos de maior dimensão. É desenvolvida
a representação da sequência invertida e propõe-se, também, uma medida de
distância entre as imagens de śımbolos.

Os caṕıtulos seguintes apresentam aplicações destes métodos ao estudo de
sequências biológicas. O trabalho apresentado no Caṕıtulo 4 – Comparative
evaluation of word composition distances for the recognition of SCOP relation-
ships – refere-se à avaliação quantitativa da precisão dos classificadores basea-
dos nas mediadas de dissemelhança revistas anteriormente. Também é proposta
uma nova medida, a métrica-W (W-metric), que combina conceitos de algorit-
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mos com e sem alinhamento. O Caṕıtulo 5 – Rényi continuous entropy of DNA
sequences – apresenta uma medida de entropia baseada em mapas CGR/USM
e no formalismo de Rényi, constituindo uma nova aplicação de mapas iterativos
para o estudo da incerteza de sequências de ADN.

O Caṕıtulo 6 – Final discussion – conjuga as conclusões dos caṕıtulos an-
teriores e recapitula as principais realizações deste trabalho para o estudo de
sequências biológicas. Este caṕıtulo final também descreve alguns problemas
em aberto nesta área e algumas previsões acerca do seu desenvolvimento futuro.

Esta tese apresenta e desenvolve trabalho descrito nas seguintes publicações:
Vinga, S. & Almeida, J. (2003) Bioinformatics 19, 513–523; Almeida, J. S. &
Vinga, S. (2002) BMC Bioinformatics 3, 6; Vinga, S., Gouveia-Oliveira, R. &
Almeida, J. S. (2004) Bioinformatics 20, 206–215; Vinga, S. & Almeida, J. S.
(2004) J. Theor. Biol. 231, 377–388.





Preface

The present thesis describes work developed in bioinformatics – a recently
emerging discipline at the interface of biology, informatics and statistics – pre-
sented at Instituto de Tecnologia Qúımica e Biológica (ITQB) to obtain a PhD
degree in biology.

A brief preliminary note is warranted regarding the format of this report.
This thesis is a compilation of articles already published in peer-reviewed sci-
entific journals, which is a mandatory condition to every ITQB PhD candidate.
Therefore two options could have been followed related to the structure and
presentation of the published material; either integrally transcribe the papers,
excluding any additional data, or, alternatively, provide a more general con-
textualization of the work, with the inclusion of supplementary material, e.g.
annexes, appendixes and an extended introduction. The first option would
fulfill the minimum requirements for ITQB PhD candidates but would make
for a compilation of multidisciplinary work without the benefit of an extended
and less specialized presentation of its context. We have decided to follow the
second solution, even at the risk of misrepresenting original material as the re-
contextualization itself did not enjoy the advantages of peer-review. Moreover,
we think this format has the additional advantage of exploring and broadening
issues not covered in the original papers due to editorial restrictions. Therefore,
this preface serves to note that the original reports are always referred to as the
sources for any material presented in this report.

The rationale for the approach followed is that, being of multidisciplinary
nature, this thesis risked including elements that pose to experts in either area
the inconvenience of frequently seeking external introductory material. Accord-
ingly, we have included a general introduction contextualizing the main topics
covered in an attempt to produce a self contained report, instead of simply pre-
senting the collection of papers that in fact make the substance of the thesis. We
are also aware that we may be incurring on the obvious drawback of boring the
biologists with the biology and the mathematicians with mathematics. There-
fore, experts in either field are well advised to skip the introductory material to
their own fields, included with a didactic intent for non specialists and serve, in
the future, as consultation material to new scientists in the area.

Susana Vinga Martins
December 2004
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5.2 Rényi toolbox MATLAB files . . . . . . . . . . . . . . . . . . . . 117

xxi





List of Figures

1.1 Growth of GenBank DNA database . . . . . . . . . . . . . . . . . 2
1.2 DNA structure and composition . . . . . . . . . . . . . . . . . . . 5
1.3 Protein hierarchical structure . . . . . . . . . . . . . . . . . . . . 7
1.4 Macromolecule synthesis in eukaryote cells . . . . . . . . . . . . . 8
1.5 Protein synthesis and RNA roles in translation . . . . . . . . . . 10
1.6 Pairwise alignment example . . . . . . . . . . . . . . . . . . . . . 13
1.7 The Sierpinski triangle or gasket . . . . . . . . . . . . . . . . . . 16
1.8 CGR of human beta globin region (HUMHBB) . . . . . . . . . . 19
1.9 CGR and Markov chains . . . . . . . . . . . . . . . . . . . . . . . 22
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Chapter 1

Introduction

Biological sequence analysis is at the core of bioinformatics, being its oldest
sub-discipline. Although some of the initial paradigms are changing and new
integrative techniques are being developed, it is thought to be true that sequence
determines structure that in turn determines molecular function and the overall
biological role of the cell’s molecules. Interestingly, this discipline is also posing
new problems and challenges to statisticians and computer scientists, with the
development of new algorithms and conjectures that are directly inspired by
open questions in biology.

This thesis addresses the field of biological sequence analysis by vector maps
of DNA and proteins onto Rn. These ‘alignment-free’ techniques were far less
explored in the literature than alignment methods, but constitute an important
subject with significant applications. Their natural formulation and elegant
formalism, along with a wide range of potential applications and low computa-
tional cost make them suitable in many circumstances, such as to optimize other
methods and to uncover different structural levels and properties of biological
sequences.

This introductory chapter describes the thesis general motivation and over-
views background information to contextualize and interconnect the remaining
chapters. Its main goal is to make the reader acquainted with the major prob-
lems in biological sequence analysis and serve as a consultation guide for basic
definitions and nomenclature issues.

The first section introduces the emerging field of bioinformatics, followed by
a primer on biological sequences and their crucial importance in all living or-
ganisms processes, which fully justifies their study. Afterwards an introduction
to sequence analysis is presented, along with the comparison between align-
ment methods and vector mappings proposed in this thesis. The alignment-free
category will explore iterative functions systems and entropy measures, also
reviewed. Finally, the last section of this chapter presents the thesis outline,
describing its overall structure and suggested reading lines.

A note should be made about the thesis format, which is based on indepen-
dent papers. Each of the subsequent chapters transcribes the material published
in scientific peer-reviewed journals thus having a specific rigorous structure. Due
to this reason, the overlapping of information throughout this work is inevitable

1



2 1. INTRODUCTION

and several topics will be covered in more than one section. For this reason this
background section will refer to those specific sections when those repetitions
would be more evident and will be limited to the presentation of the information
not addressed afterwards.

1.1 Bioinformatics in the post-genomic era

Bioinformatics has emerged as a new scientific field due to the great increase of
biological data generation, particularly of genetic datasets. The recent genome
sequencing projects created an enormous quantity of data and gave rise to an
urgent need of new techniques and algorithms for analyzing the massive amounts
of information thus produced. As an example, Fig. 1.1 shows the exponential
growth of GenBank1 nucleotide sequence database (Benson et al., 2004), an
annotated collection of all publicly available DNA sequences maintained by the
National Institutes of Health (NIH).
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Figure 1.1: Growth of GenBank DNA sequence database.

Given the incessant discoveries and development of new techniques and algo-
rithms, the definition of bioinformatics and computational biology is still evolv-
ing. This fact confirms its novelty and shows that bioinformatics has been
widening its scope and aims, developing continuously. Nevertheless, it contin-
ues to be rooted and overlap with computer science and information technology,
probability and statistics and biology. According to the definition of the NIH2:

Bioinformatics – Research, development, or application of computa-
tional tools and approaches for expanding the use of biological, med-
ical, behavioral or health data, including those to acquire, store, or-
ganize, archive, analyze, or visualize such data.

1http://www.ncbi.nlm.nih.gov/Genbank/
2NIH Bioinformatics Web Site - http://www.bisti.nih.gov/
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Computational biology – the development and application of data-
analytical and theoretical methods, mathematical modeling and com-
putational simulation techniques to the study of biological, behav-
ioral, and social systems.

The main subdisciplines and goals of bioinformatics proposed by the Na-
tional Center for Biotechnology Information3 include: 1) the development of
new algorithms and statistics with which to assess relationships among mem-
bers of large data sets; 2) the analysis and interpretation of various types of
data including nucleotide and aminoacid sequences, protein domains, and pro-
tein structures; 3) the development and implementation of tools that enable
efficient access and management of different types of information.

Although it still difficult to present an unbiased historical perspective, some
authors have offered a personal view of this field, for example Trifonov (2000)
and Ouzounis and Valencia (2003).

1.2 Molecular biology and genetics

This section describes some molecular cell biology basic notions useful as a
background to the next chapters and provides a general biological motivation
for the present work on sequence analysis. A brief introduction to biological
sequences – DNA, RNA and proteins – is included, along with major cell genetic-
related mechanisms explanation, such as protein synthesis and information flow,
illustrated by the central dogma.

The focus is given to the eukaryote cell (characteristic of Animals, Plants,
Protists and Fungi – or Eukarya), whose distinctive characteristic is a membrane
enclosing the nucleus and organelles. Some of its features are shared by the
prokaryote cell (Bacteria), although some processes are absent, for example
RNA splicing.

1.2.1 Biological sequences

The fact of biological sequences – DNA, RNA and Proteins – being involved in
the most important cell processes4 has led to a growing interest in their analysis,
with different approaches arising from various scientific fields.

These molecules have a fundamental role, defining almost all cell’s activities.
To present just an example, in multicellular organisms all cells have the same
genetic material nonetheless they can express completely different proteins and
perform distinct tasks, exhibiting an extremely diverse behavior. The key to
understand these phenomena lies in comprehending the way these sequences
interact with each other and with the environment that surrounds them.

3NCBI primer - http://www.ncbi.nlm.nih.gov/About/primer/bioinformatics.html
4We abusively use sequences and the molecules they represent interchangeably, although

the difference should be clear.
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DNA and RNA

Deoxyribonucleic acid (DNA) is the basic information macromolecule of cells. It
is constituted by two chains of nucleotides, which are composed by deoxyribose,
a pentose or five-carbon sugar molecule, linked to a phosphate group and to a
nitrogen organic base of one of four types: adenine (A), guanine (G), cytosine
(C) and thymine (T).

Ribonucleic acid (RNA) is a single nucleotide strand exhibiting a similar
composition, but with a different constituent sugar – the ribose – and uracil (U)
instead of the thymine base.

In Table 1.1 DNA and RNA symbols are summarized, along with the cor-
responding abbreviations in the extended IUPAC (International Union Of Pure
And Applied Chemistry) alphabet, commonly used in main applications.

Nucleic Acid Symbol Meaning

Adenosine A
Cytosine C
Guanine G
Thymine T
Uracil U
puRine R A or G
pYrimidine Y C or T
Weak interaction W A or T
Strong interaction S C or G
Keto K G or T
aMino M A or C
not-T V A or C or G
not-G H A or C or T
not-C D A or G or T
not-A B C or G or T
aNy N (X) G or A or T or C

Table 1.1: IUPAC extended DNA/RNA alphabet. Bases name, symbols and mean-

ing. The X symbol usually refers to an unknown and N to an unspecified nucleotide.

Nucleotides in each DNA chain are connected by a chemical bond between
the sugar of one nucleotide and the phosphate group of the adjacent one. When
two DNA strands establish hydrogen bonds between their bases, with standard
Watson-Crick pairing A—T and C—G, the classic double-helix is formed, a
stable 3-dimensional structure – see Fig. 1.2.

A linear double-stranded DNA molecule and associated proteins constitute a
chromosome and the total DNA in the chromosomes of an organism is referred
to as its genome. The human genome has about 3 · 109 base pairs distributed
along 46 chromosomes. The majority of human DNA has unknown function,
the so-called “junk” DNA. The other part is constituted by genes, which are the
units of hereditary information and specify the synthesis of a single polypeptide
chain. Human genome is though to have around 30 000–40 000 genes. Genes are
organized in exons and introns (see following sections for more details).
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�

Figure 1.2: DNA structure and composition, formed by two complementary antipar-

allel chains of nucleotides. In Tortora et al. (2004) – used with permission c© Pearson

Education, Inc.

DNA sequences are often represented using a 4-symbol alphabet that tran-
scribes the coding or sense strand, from the 5’ to the 3’ end (referring to the
free carbon in the terminal sugar).

Different types of RNA are involved in distinct cell processes, namely mes-
senger (mRNA), transfer RNA (tRNA) and ribosomal RNA (rRNA), described
below.

Protein structure and function

Proteins are macromolecules made of tri-dimensional polypeptide5 chains of
aminoacids (aa). All 20 aminoacids share a general structure – they are con-
stituted by one carbon atom bonded to four different chemical groups: amino
(NH2), carboxyl (COOH), hydrogen (H) and a side chain (R) group that de-
fines their name and distinct biochemical properties. Table 1.2 summarizes the
aminoacids names and abbreviated symbols, referred to the side chain group R.

Aminoacids in a protein chain are connected by peptide bonds, formed by a
chemical reaction between the amino group of one amino acid and the carboxyl
group of another.

Proteins carry out most of the cell biological activities and are encoded by
genes. Their role is of vital importance in all processes, from all regulatory
functions, acting as biological switches, to signaling and intermembranar trans-
port between the interior and exterior of the cell. It is noteworthy that all the
biochemical reactions are catalyzed by enzymes, that constitute a large protein
category.

5A peptide is a chain with less than 50 aa.
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Aminoacid name Symbol Abbreviation

Alanine A Ala
Arginine R Arg
Asparagine N Asn
Aspartic Acid D Asp
Cysteine C Cys
Glutamine Q Gln
Glutamic acid E Glu
Glycine G Gly
Histidine* H His
Isoleucine* I Ile
Leucine* L Leu
Lysine* K Lys
Methionine* M Met
Phenylalanine* F Phe
Proline P Pro
Serine S Ser
Threonine* T Thr
Tryptophan* W Trp
Tyrosine Y Tyr
Valine* V Val

Table 1.2: Aminoacid alphabet – names and symbols. The star symbol * represents

essential aminoacids, which cannot be synthesized by human cells.
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Protein structure is of fundamental importance to define its function, since
all processes occur in a 3-dimensional space and require a specific configuration
for attaining a precise aim. Therefore the development of methods to predict
their spatial arrangement is of major importance and has become recently a
strong research topic in bioinformatics, yet with not a definitive answer, with
accuracies far from 100%.

Proteins have four hierarchical levels of structure. The protein primary
structure is the linear arrangements or sequence of its aminoacids. The sec-
ondary structure corresponds to local organization. When hydrogen bonds are
created between residues, two structures become apparent: the α-helix, a spi-
ral conformation, and the β-sheet, a planar structure. The tertiary structure
is the full tri-dimensional folded arrangement or overall conformation of the
polypeptide chain. Finally, the quaternary structure appears when more than
one protein polypeptide chains are held together, creating complex interconnec-
tions. Figure 1.3 presents an example of the four hierarchical levels described,
showing the hemoglobin structure. This example will resume later in this work.

�

Figure 1.3: Protein hierarchical structure of hemoglobin . a) Primary structure

– aminoacid sequence; b) Secondary structure – local folding; c) Tertiary structure

– long-range folding; d) Quaternary structure – multi-chain organization. In Nester

et al. (2004) – used with permission c© McGraw-Hill.



8 1. INTRODUCTION

1.2.2 Synthesis of macromolecules and the central dogma

The main molecules involved in cell mechanisms have been described previously;
this section is devoted to the explanation of how the information is passed from
genes to genes and from genes to proteins. Figure 1.4 depicts some of the mech-
anisms that occur in an eukaryotic cell and that will be briefly reviewed. The

�

Figure 1.4: Macromolecule synthesis and other eukaryote cell mechanisms. Protein

synthesis (steps 1–3) and DNA replication (step 4) described in the text. In Lodish

et al. (2004) – used with permission c© W.H. Freeman and Company.

central dogma states that information flow is from DNA → RNA → proteins,
according to the processes described below.

DNA replication

When cells divide, all genetic information stored in genes is duplicated. This is
accomplished by the synthesis of a new DNA molecule using the older one as a
template, from the 5’ to the 3’ end. In this process both strands are duplicated
and eventually will belong to two new different DNA chains. The replication
– see Fig. 1.4 – is done with high accuracy, with very precise error correction
mechanisms due to the repair effect of the enzyme DNA polymerase, at a rate
that varies from 500 to one million base pairs per minute in bacteria.

Protein synthesis

Protein synthesis is a fundamental process in which the information encoded
in DNA is expressed and effectively pass and influence the cell structure and
metabolism. It involves several steps, also mediated by enzymes, and where
different types of RNA perform an important role (see Fig. 1.4).
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2nd

1st

U C A G
U U

Phe F Tyr Y Cys C
C

Ser S
stop stop A

Leu L
stop trp W G

C U
His H

C
Leu L Pro P Arg R

A
Gln G

G
A U

Ile I
Asn N Ser S

C
Thr T

A
Met M

Lys K Arg R
G

G U
Asp D

C
Val V Ala A Gly G

A
Glu E

G

3rd

Table 1.3: The genetic code, written by convention in the form in which the codons

appear in mRNAs. Equivalence of DNA codons and aminoacids during translation.

Each codon corresponds to 3 bases in positions (1st, 2nd, 3rd). The first symbol in

the codon corresponds to the left column. Example: the codon AGU corresponds to

Ser (S). The codon AUG corresponds to Met (M) and also to the start or initiator

codon, i.e., it signals the beginning of transcription – this aminoacid might be removed

afterwards

The first step is the transcription where a precursor-mRNA (pre-mRNA)
molecule is synthesized using DNA as a template and forming a complementary
strand: A–U, T–A, C–G, G–C. In eucaryote DNA this molecule is further pro-
cessed by splicing , where the introns (intervening sequences) are excised and
the exons (expressed sequences) are maintained and linked, forming a mRNA
chain containing the filtered information for protein synthesis. Only this com-
pleted and mature mRNA is selectively transported from the nucleus to the
cytoplasm. Alternative splicing increases coding potential of genomes since it
produces, from the same DNA sequences, different mRNA chains.

This mRNA further attaches to the ribosome, which consists of ribosomal
RNA (rRNA) and proteins, and the translation process begins. In this step the
information contained in the mRNA is decoded into proteins, i.e., aminoacids are
added one at a time, from the amino (NH2) to the carboxyl (COOH) terminus,
following the mRNA template. The key step of translation is the rule code
associated, in which each group of 3 nucleotides – so-called codon – specifies
one aminoacid. Table 1.3 represents the genetic code, i.e., the correspondence
between each possible codon – defined by 3 symbols (1st, 2nd, 3rd) – and each
aminoacid.

Since there are 43 = 64 codons and only 20 aminoacids there is some re-
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dundancy in the translation and often only the first two symbols of a codon
are needed to univocally specify an aminoacid – the code is said to be degener-
ate. Moreover, there are special codons that define the beginning and the end
of translation: the start codon (AUG) and the stop codons (UAA, UAG and
UGA). Depending on the starting point – 1st, 2nd or 3rd symbol – there are
three different reading frames associated with one DNA chain, that will built
different proteins.

The translation process, as previously seen, begins with the recognition of
the start codon by the ribosome and its subsequent attachment to the mRNA.
The transfer RNA (tRNA) is the key molecule that will perform the connection
between bases and aminoacids. The tRNA is a type of RNA that has a 3-
base sequence, or anti-codon, that can pair with its complementary code in the
mRNA and also can bind and carry a specific aminoacid, following the rules of
the genetic code on Tab. 1.3. The translation process is shown in the Fig. 1.5
and recalled below.

�

Figure 1.5: Protein synthesis and RNA roles in translation. This figure shows the

translation step of protein synthesis, in which the ribosome (rRNA + proteins) binds

to the start codon of mRNA, which in turn binds to the complementary triplet of

tRNA, that sequentially carries a new aminoacid to the polypeptide chain. In Lodish

et al. (2004) – used with permission c© W.H. Freeman and Company.

The tRNA carrying a specific aminoacid binds to the complementary mRNA
codon. The next mRNA codon in the sequence defines another complementary
tRNA that brings the corresponding aminoacid, that will form a peptide bond
with the first one. The elongation processes continues, with new aminoacids
forming bonds with the growing polypeptide chain, the tRNA is released and
the ribosome shifts to the next codon available. The process ends when the
ribosome reaches a stop codon, releasing the mRNA and the new protein just
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synthesized.
After this step the protein folds onto a 3-dimensional conformation and might

also undergo some post-translational modifications that alter its structure and
function.

1.3 Sequence analysis and comparison

Sequence analysis, the main subject of this thesis, is in the core of almost all
bioinformatics applications (Durbin et al., 1998). Even with the recent explo-
rations of higher-level integrative data, such as microarrays and genetic regu-
latory networks, sequence analysis and comparison is still a vital subject since
almost all tasks depend on algorithms that process and investigate strings, from
searching for similar sequences in databases to classification problems.

Although the present work is centered in vector mappings of biological se-
quences – alignment-free methods – a brief introduction to alignment algorithms
is warranted to fully recognize the different approaches to sequence analysis and
how they are related to each other.

Biological sequences are usually represented as strings whose symbols belong
to the alphabets described in the last section – bases for DNA (Tab. 1.1) and
aminoacids for proteins (Tab. 1.2). An introduction to words in sequences is
given in section 2.2.1 on page 36 (Vinga and Almeida, 2003) and Gusfield (1997)
describes algorithms on strings typically used in bioinformatics.

1.3.1 Alignment methods for sequence comparison

Since the beginning of bioinformatics alignment methods have been used ex-
tensively, based on the premise that if two sequences share some substrings,
accepting some degree of mutations or ‘errors’, they might also have a common
ancestor and similar function. This simple approach is in the origin of several
algorithms whose objective is to ‘optimally’ align two sequences, to uncover
their presumed common root.

Motivation

As DNA is duplicated and passed to the next generations, some permanent
changes can occur that might lead to structure modifications of the resultant
encoded protein and subsequent alteration of its function, a process called mu-
tation. These mutations can occur for several reasons, from errors in the dupli-
cation to the exposure to environmental factors, such as virus, chemical agents
or radiation. There are several types of mutations; the simplest one is a single
point mutation when one single base is substituted by another. One example
of a point mutation with serious impact in human health is the substitution
of a nucleotide in the β-globin gene, which codifies for hemoglobin, further ex-
plained in section 2.4.3 on page 49. Other possible alterations are insertions,
where one or more bases are added in the original DNA and deletions, in which
a piece of DNA is excised. As these mutations get passed along descendants,
the original sequences will diverge, at different rates. Sequences that have a
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common ancestor are called homologous. These variations are the key to evo-
lutionary processes and natural selection, since they amplify the possible range
of individuals and phenotypes and the more favorable ones tend to accumulate,
leading to the survival of the best fit.

A pairwise alignment is simply an arrangement of two sequences, one on top
of the other, highlighting their common symbols and sub-strings, represented as
vertical matches “|”. The alignment can also have mismatches, i.e., a symbol
in one of the sequences is different from the other, which corresponds to a
single point mutation; if the residues are ‘similar’ in some sense, the symbol “:”
is used. Gapped alignments also permit insertions or deletions – or indels –
while n consecutive indels constitute a gap of length n, represented as “−”. In
theory, alignments allow to trace back the mutations, given putative homologous
sequences.

The fundamental idea of alignment is that sequences that share the same
substrings might have the same function or be related by homology. To some
extent, this naive procedure was applied for deciphering the hieroglyphs, from
the Rosetta stone information. This stone had the same text written in three
different scripts: in hieroglyphic (ancient Egyptian) demotic (cursive and more
recent Egyptian) and Greek. Assuming that the information (function) was the
same along these three sequences, i.e., once known that the message was the
same across the texts, it was possible for Jean-François Champollion to deduce
all the code encrypted in the hieroglyphs and to establish the foundation of
modern Egyptology.

Algorithms and scoring schemes

Alignment algorithms are anchored in specific scoring schemes. These include
substitution or scoring matrices6, which assign a value for aligning each two
symbols in the alphabet and reflects how conservative is the substitution be-
tween them, and gap score penalties γ(n), a negative quantity that penalizes
for n consecutive indels. The total score of an alignment will be the sum of
terms for each aligned pair of residues – extracted from the scoring matrix –
plus terms for each gap.

The global alignment computational problem can now be stated as follows:
what is the optimal alignment of two sequences, i.e., the one that has the highest
score, for a particular scoring scheme. A naive procedure would be to perform
all possible alignments between the two sequences and choose the one that
maximizes the score. Of course this would be computationally unfeasible, even
for short sequences.

The solution was established by Needleman and Wunsch (1970) and com-
putationally improved afterwards. The algorithm uses dynamic programming ,
which is a technique based on breaking up the main problem in simpler sub-
problems, that in turn can be further divided. The optimization of the smaller
problems, recursively, will eventually lead to the optimal solution of the main
problem.

In this case, finding the best alignment between two sequences x1 · · ·xn

6PAM and BLOSUM matrices are used for protein alignment – see page 86.
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and y1 · · · ym, with total score F (n, m) uses the solution of smaller alignment
problems, namely the best alignment between prefixes of x1 · · ·xi and y1 · · · yj ,
with score F (i, j), i = 1, . . . , n and j = 1, . . . ,m.

As an example, Fig. 1.6 shows the alignment of two sequences
S1 = ATCGCCAAT and S2 = ATGCCGCCT. The scoring matrix chosen as-
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Figure 1.6: Pairwise alignment example

signs the value s(xi, yj) = +5 to a match xi = yj and s(xi, yj) = −4 to a
mismatch xi 6= yj . The scoring function for gaps used was a linear gap penalty
γ(n) = d · n = −8n, i.e., a cost of 8 units per gap character.7 The recur-
sion procedure is also explicit in the figure: the initialization step calculates
all the values in the first row F (0, j) and the first column F (i, 0) of the ma-
trix, as if the alignment would be only constituted by a gap. In each of the
following steps three quantities are calculated that are equivalent to three dif-
ferent options for the alignment: align the two following symbols has a cost of
F (i− 1, j − 1) + s(xi, yj), open a gap in the first sequence or open a gap in the
second, with scores F (i, j − 1) + d and F (i− 1, j) + d respectively.

The key is to solve the sub-problem in this step, by choosing the option that
maximizes the partial score F (i, j), i.e., the optimal solution for those prefixes,
also keeping track of that solution. After filling all the matrix F following
this procedure, one can traceback the path, from F (n, m) to the beginning
of the sequences F (0, 0), following the indexes that originated the maxima –
represented with arrows in the figure. Finally, the optimal global alignment is
extracted – shown below the matrix. It is guaranteed that with this stepwise
procedure the optimal alignment, i.e., the one with the highest score, will be

7Alternatively, affine gap penalties have the form γ(n) = d · (n − 1) + a, introducing a
gap-open cost a and a gap-extension penalty d.
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obtained, in this case F (9, 9) = 6.
The local alignment of the two sequences, also presented in Fig. 1.6, identifies

the best sub-string alignment, ignoring low-scoring parts in the sequences. It
was obtained with the algorithm developed by Smith and Waterman (1981),
which assigns different boundary conditions and slightly modifies the recursion
to avoid negative numbers in the matrix. This algorithm was used to compare
alignment-based dissimilarities with word composition distances in Vinga et al.
(2004), transcribed in Chapter 4.

Statistical significance

The correct evaluation of the statistical significance of alignment scores has been
the subject of several studies. The goal is to determine if the value obtained with
an optimal alignment does in fact translate onto biological similarity or might
have occurred just by chance. One possible approach uses Bayesian statistics,
and calculates a posteriori probabilities of the sequences being related. The
other approach uses asymptotic theory and extreme value distribution to model
the cumulative probability function of obtaining a particular score. For more
complex models and algorithms using heuristics this is still an open problem.

Applications and software

Among the applications of these methods are the ubiquitous search of sequences
in databases, that allow for heuristic procedures to speed the process. Other
applications include the construction of phylogenetic trees from dissimilari-
ties obtained from alignment scores, modelled with evolutionary assumptions.
Specially known procedures are BLAST – Basic Local Alignment Search Tool
(Altschul et al., 1990, 1997) and FASTA (Pearson and Lipman, 1988; Pearson,
1990). For multiple alignments, CLUSTAL (Thompson et al., 1994) is the most
commonly used software – for an example of the output, see Fig. 2.6 on page 54.
Nowadays, several resources provide downloadable versions of these toolboxes
and/or make them available online.8

1.3.2 Vector maps for sequence comparison

This work is centered on alternative representations of biological sequences that
do not rely on alignment methods but in vector maps. A vector map or mapping
is a vector-valued function, i.e., a function that assumes values on the vector
space Rn. Given any sequence S = s1s2 · · · si · · · , from an alphabet si ∈ A, we
are interested in functions f(S) ∈ Rn:

f : S → Rn (1.1)

In this thesis two types of functions will be studied. Both transform symbols
and sequences into vectors in Rn. These two methods, along with several others
not exploited in this work, were reviewed by Vinga and Almeida (2003) and are
presented in Chapter 2.

8For example http://www.ebi.ac.uk/Tools/
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The first type is based on mapping a full sequence onto its substring fre-
quency vectors, thus obtaining its word composition. By comparing these vec-
tors it is possible to define several dissimilarity measures suitable for specific
applications, such as proteins classification (Vinga et al., 2004).

The second type of function is based on a different approach in which, in-
stead of mapping all the sequence, a function is applied to each of its symbols
iteratively. The algorithm beneath – chaos game representation (CGR) – has
its roots in fractal theory. The full description of this technique is presented in
section 1.4.2 (p. 17) and its generalization – Universal Sequence Maps (USM) –
is fully exploited in Chapter 3 (Almeida and Vinga, 2002). One application of
this representation is the estimation of DNA entropy, presented in Chapter 5,
where the work by Vinga and Almeida (2004) is transcribed.

1.4 Iterative Function Systems

This section presents an introduction to iterative function systems (IFS) and
fractal geometry9, from which chaos game representation (CGR) and Universal
Sequence Maps (USM) are derived. CGR/USM algorithms are explored in
this work as alternative methods to represent and analyze biological sequences.
In particular, the new measure of DNA uncertainty (or entropy) presented in
Chapter 5 is anchored in this mapping (Vinga and Almeida, 2004).

The most part of this introduction is fully extended in (Barnsley, 1998) and
(Edgar, 1990).

1.4.1 Definitions

A metric space (X, d) is a set X together with a function d : X × X → R+
0

satisfying:

d(x, y) = 0 ⇔ x = y

d(x, y) = d(y, x) (1.2)

d(x, y) ≤ d(x, z) + d(z, y)

Such a function d is called a metric and measures the distance between pairs
of points x and y in X.

For example the function dEU (x, y) =
√

(x1 − y1)2 + (x2 − y2)2 is a metric
in the set X = R2. This means that (R2, dEU ) is a metric space.

A transformation f : X → X on a metric space (X, d) is called a similarity
if and only if there is a positive number r such that

d (f(x), f(y)) = r · d(x, y), ∀x, y ∈ X (1.3)

The number r is called the ratio of f .

9Fractals are geometric objects that can be generated by different methods, from recurrence
relations to stochastic processes, but in this introduction they will be exclusively described as
attractors of IFS.
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When 0 ≤ r < 1 the function f is also called contractive or a contraction
mapping, since in this case the distances decrease by a factor r that is less than
1.

An iterated function system (IFS) consists of a complete metric space10

(X, d) together with a finite set of contraction mappings fi : X → X, with
respective ratios ri, for i = 1, 2, . . . , n.

The dimension associated with {ri}i=1,...,n is the positive number s such
that rs

1 + rs
2 + · · ·+ rs

n = 1. It can be shown that s always exists.
A nonempty compact set A ⊆ X is an invariant set or attractor of an IFS

(f1, . . . , fn) if and only if A = f1(A) ∪ · · · ∪ fn(A) =
⋃n

i=1 fi(A). This means
that A is mapped onto itself by the IFS. It can be proven that there is a unique
nonempty compact invariant set A for one particular IFS (Edgar, 1990, chap. 4).
Another important corollary is that, given any nonempty compact set B0 in X

and Bk+1 =
⋃n

i=1 fi(Bk) for k ≥ 0, the sequence {Bk} converges to the invariant
set A of the IFS. This fundamental result will be used for the construction of
attractors of specific IFS. If we take any B0 and iteratively apply all functions
{fi}i=1,...,n, keeping the union of all the sets obtained, we will obtain a series
of sets that will converge to the IFS attractor A, i.e., limk→∞ Bk = A. The set
thus obtained is a fractal .

As an example to illustrate the previous definitions, one derived IFS attrac-
tor, the Sierpinski11 triangle or gasket, is shown in Fig. 1.7. There are several

�
B0 B1 B2

B3 B4 B5

B0 B1 B2

B3 B4 B5

Figure 1.7: The Sierpinski triangle or gasket. This fractal is an invariant set or

attractor of the IFS defined in Eq. 1.4

ways to construct this set. A deterministic construction algorithm starts with
an equilateral triangle (and its boundary) in the plane, with side length 1 — B0

in the figure. In each step, one triangle with half the side-length of the original
one is removed from each of the remaining triangles, leaving the rest of the set
and its boundary. For example the set B1 corresponds to set B0 where the mid-
dle triangle of side length 1/2 was removed, B2 takes the 3 remaining triangles
in B1 and removes the middle triangles with side length 1/4 and so forth, always

10A metric space X is called complete if and only if every Cauchy sequence in X converges
(in X).

11After Waclaw Sierpinski (Warsaw, 1882-1969).
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obtaining a subset of the previous Bi, i ∈ N. The Sierpinski triangle B is the
limit of this decreasing sequence of sets, i.e., B = ∩n∈NBn.

It can be proven that the Sierpinski triangle is the attractor of the IFS
defined below (Eq. 1.4) consisting of 3 contraction mappings (f1, f2, f3) in the
plane. Each of the functions fi : R2 → R2, i = 1, 2, 3, have ratio or contractivity
factor 1/2 and ‘contraction’ centers in each of the vertices of the triangle, whose
coordinates are (0, 0), (1, 0) and (1/2,

√
3/2):

f1(x, y) = 1
2 (x, y)

f2(x, y) = 1
2 (x, y) + 1

2 (1, 0)

f3(x, y) = 1
2 (x, y) + 1

2

(
1
2 ,

√
3

2

) (1.4)

This result also gives other alternatives for the construction of this set.
By picking any point in B0 and by iteratively applying the three functions
(f1, f2, f3) the exact same attractor will eventually be obtained. In fact, in
several examples in literature the Sierpinski triangle is constructed through a
process named chaos game, in which, starting from any point in B0, we apply
one of fi depending on the output of a random experience, like the tossing of a
3-side (virtually) dice. This iterative process will also converge to the attractor.
Intuitively, this procedure corresponds to starting in a random point in the tri-
angle and going, in each step, half the distance towards the vertex representing
the random output. This method of obtaining the attractor in which a prob-
ability pi, with

∑n
i=1 pi = 1, is assigned to each of the functions fi is called

random iteration algorithm.
There are some interesting remarks concerning the notions of measure and

dimension associated with this type of objects. In each iteration n the set Bn

consists of 3n triangles with side 2−n. So the total area of the Sierpinski set is
3n · 2−2n

√
3/4 which converges to 0 as n → ∞. The total length is 3n · 2−n · 3

that goes to ∞ when n → ∞. This example shows that neither length or
area are useful in the description of B measure. On the other hand, the above
defined dimension s of the Sierpinski triangle can be obtained from the ratios of
the contraction mappings, as the solution of

∑3
i=1 rs

i = 1. Since the ratio list is
(1/2, 1/2, 1/2) the dimension is 3 ·(1/2)s = 1, thus s = log 3/ log 2 ≈ 1.585. This
number is between 1 and 2, what is in agreement with the previous perception
of its dimension being between ‘length’ and ‘area’.

Along with the above presented features (its non-integer dimension and the
iterative procedure taken to obtain this set), the Sierpinski triangle also illus-
trates other properties of fractals such as self-similarity, which means that it
appears identical at different scales. When magnifying this set, for example the
upper triangle in B1, we get an exact replica of the whole Sierpinski triangle.

1.4.2 Chaos game representation (CGR)

Chaos game representation (CGR) was first presented in 1990 (Jeffrey, 1990) as
a method for representing DNA sequences on vectorial spaces. It is derived from
IFS theory, briefly described in the last section. There are several applications of
this method in bioinformatics, such as the investigation of patterns in DNA, the
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extraction of Markov models transition tables and the calculation of entropies.
The algorithm itself is closely related to binary representations of sequences
and suffix trees. The following sections briefly describe the main properties and
results of this method. The CGR generalization for higher-order alphabets is
fully presented in Chapter 3 (Almeida and Vinga, 2002).

CGR definition

The iterative algorithm is constructed on a square in R2 where each of its vertex
is assigned to a DNA symbol or base (A,C,G,T) – see section 1.2. For a given
DNA sequence S = s1s2 · · · sN with length N , si ∈ {A,C,G,T}, i = 1, . . . , N ,
CGR maps each symbol si onto a point xi ∈ R2 following an iterative procedure
defined in Eq. 1.5. The original proposal assigned the first point x0 to the center
of the square [0, 1]2.

{
x0 = (0.5, 0.5)
xi = xi−1 + 1

2 (yi − xi−1), i = 1, . . . , N
where yi =


(0, 0) if si = A

(0, 1) if si = C

(1, 0) if si = G

(1, 1) if si = T

(1.5)
An alternative formula for one particular xi representing the ith symbol as

a function of all previous positions is given by:

xi = 2−ix0 +
i∑

k=1

2−kyi−k+1 , i = 1, . . . , N (1.6)

In Figure 1.8 an example of a CGR map is shown, using the human hemo-
globin gene sequence. This example will be further extended in section 2.4.3.

This mapping can be interpreted as an IFS on the square [0, 1]2 in which
a random iteration algorithm is being used. There are 4 contraction mappings
(f1, f2, f3, f4), one for each DNA base. Each of the functions fi have ratio 1/2
and ‘contraction’ centers in each vertex, one per symbol, and is specified by
symbol si in the original DNA sequence. This procedure is very similar to the
random construction of the Sierpinski triangle described above.

CGR properties

One important property of chaos game representation is the ‘closeness’ of points
in the space [0, 1]2 when the symbols they represent are the same. In fact, the
CGR maps same substrings close to each other, which means that, wherever the
context is, the same suffix will be always mapped in the same region of CGR.

Let us suppose we have two sequences S = sS
1 sS

2 · · · sS
N and T = sT

1 sT
2 · · ·

sT
M that in a given position share the same suffix of length L, sS

i+1 · · · sS
i+L =

sT
j+1 · · · sT

j+L for some i ∈ {0, . . . , N − L} and j ∈ {0, . . . ,M − L}. The CGR
coordinates of these points are calculated with CGR iteration previously defined
(Eq. 1.5) with yS

i+k = yT
j+k through all the shared string k = 1, . . . , L. In

this step we are interested in what happens to the distances between these
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�

�
Figure 1.8: CGR of human beta globin region on chromosome 11 (HUMHBB) -

73308 bases.

coordinates, i.e., to the quantity xS
i+k − xT

j+k, for k = 1, . . . , L. Starting from
the coordinates xS

i and xT
j we have:

xS
i+1 − xT

j+1 = 2−1(xS
i − xT

j )

xS
i+2 − xT

j+2 = 2−1(xS
i+1 − xT

j+1) = 2−2(xS
i − xT

j )

... (1.7)

xS
i+L − xT

j+L = 2−L(xS
i − xT

j )

∇Lx = 2−L · ∇0x

The last formula shows that the difference between coordinates is decreased
by a factor of 2 in each common symbol. One consequence of this result is
that the CGR map can be divided and labelled according to the corresponding
substring, i.e., each substring is mapped onto a sub-square. An example of this
property is shown in Fig. 5.1 on page 105.

CGR and binary numbers

The CGR algorithm can also be interpreted as binary expansions of numbers
and operations performed in base 2. Normally the base used is 10 and is omitted
in most of the representations. Base 2 works in a similar way, where each pos-
itive number x has a unique representation x = (aMaM−1 · · · a1a0.a−1 · · · )2 =∑M

j=−∞ aj2j , with binary digits aj ∈ {0, 1}, also called bits. For example the
number 5.25 is written, in base 2, as 5.25 = (101.01)2 = 1 · 22 + 0 · 21 + 1 · 20 +
0 · 2−1 + 1 · 2−2.
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Some mathematical operations have straightforward results, for example,
dividing by two is simply x/2 =

∑M
j=−∞ aj2j−1, which corresponds to the

shifting of all digits one position to the left, i.e., the digit aj originally associated
with position j, power 2j , after division will be the digit of position j−1, power
2j−1. In the former example 5.25/2 = (10.101)2 = 1 · 21 + 0 · 20 + 1 · 2−1 + 0 ·
2−2 + 1 · 2−3 = 2.625.

This particular operation relates to CGR in the sense that, in each iteration,
the contraction function has ratio 1/2. For example, when representing the
sequence S = CTAG starting from x0 = (0.5, 0.5) = (0.1, 0.1)2, the next points
{xi}i=1,...,4 will be obtained from the contraction mappings fi as:

x1 =
1
2
(0.5, 0.5) +

1
2
(0,1)

=
1
2
(0.1, 0.1)2 +

1
2
(0, 1)2

= (0.01, 0.01)2 + (0.0, 0.1)2
= (0.01, 0.11)2

x2 =
1
2
(0.01, 0.11)2 +

1
2
(1,1)2 (1.8)

= (0.001, 0.011)2 + (0.1, 0.1)2
= (0.101, 0.111)2

x3 = (0.0101, 0.0111)2
x4 = (0.10101, 0.00111)2

The process is now clear: in each step the previous number is shifted one
bit and a new number is added in the form (0.a, 0.b), where (a, b) corresponds
to each of the vertex/symbols.

In this format is also easy to prove the bijective property of CGR – knowing
a given point xk it is possible to recover all the sequence up to that position.

CGR and Markov chains

Due to CGR mapping properties there is a relationship between this represen-
tation and Markov chains (MC), a special case of a stochastic model. This
result was presented in (Almeida et al., 2001), showing that CGR correctly
accommodates MC models.

A stochastic process is a collection of random variables {X(α), α ∈ T},
indexed by the parameter α taking values in the parameter set T (Kulkarni,
1995). The random variables X(α) take values in a state space S. In several
bioinformatics applications a sequence is modelled as a stochastic process, in
which the state space S is an alphabet A – bases for DNA and aminoacids for
protein as in Tab. 1.1 and 1.2 – and the parameter α is the position i of each
symbol in the sequence {Xi, i ∈ N}, with Xi ∈ A.

The probability of observing a given finite sequence S = s1s2 · · · si · · · sN

with si ∈ A is represented as:

p(XN = sN , . . . , Xi = si, . . . , X2 = s2, X1 = s1) = p(s1s2 · · · si · · · sN ) (1.9)
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A special type of models widely used in sequence analysis is the Markov
chain. A Markov chain is a stochastic process with a ‘memoryless’ or Markovian
property that can be stated as follows: if the present of the system is known,
its future is independent from the past. Formally, this relation can be expressed
with conditional probabilities.

When applied to sequence modelling, this means that knowing a specific
symbol in one position, the probabilities of the following symbol are independent
from the previous ones, i.e., the present contains all the relevant information
needed to predict the future.

Using the Markov property just described, the probability of observing sym-
bol si+1 ∈ A on position i+1, given all the observed sequence s1s2 · · · si depends
only on the last observed symbol si:

p(Xi+1 = si+1|Xi = si, Xi−1 = si−1, . . . , X1 = s1) = p(Xi+1 = si+1|Xi = si)

⇔ p(si+1|s1s2 · · · si) = p(si+1|si) (1.10)

The last equation uses a notation simplification that will be used further on,
otherwise noted, where the variable X is omitted. The value p(si+1|si), also
represented as psisi+1 , is called the transition probability from si to si+1. For
homogeneous Markov chains, this probability does not depend on the specific
position i considered, being the same all through the sequence. Therefore,
it is possible to rearrange all these conditional probabilities in one transition
probability matrix of dimension |A| × |A|, where |A| is the alphabet length.

One natural extension of this idea uses longer-memory Markov models, in
which, instead of considering just the last symbol si, a suffix of length L is taken
si−L+1 · · · si.

p(si+1|s1s2 · · · si) = p(si+1|si−L+1 · · · si) (1.11)

More formally, a L-order Markov chain is characterized by conditional dis-
tributions or transition probability tables, which define the probability of one
state given the current L-tuple or suffix ending in the present position.

Using CGR it is possible to estimate all the transition probabilities by ex-
tracting the number of points in each quadrant. This is strongly related to
the suffix property described above, stating that each suffix is mapped onto a
specific CGR sub-quadrant of size 2−L × 2−L. For example, if the sequence is
modelled as a L = 1 order Markov chain, by extracting all di-nucleotides counts
it is possible to estimate the transition probabilities, as illustrated in Fig. 1.9.

More generally, in order to extract the transition probabilities estimates
for an L-order Markov chain, the interval [0, 1] should be divided in 2L+1 sub-
intervals. The number of points in each sub-square thus created is then counted,
which is the same as extracting the number of (L + 1)-nucleotides.

More recently CGR was further explored, using the above mentioned proper-
ties, for time series prediction by fractal prediction machines (FPM) (Tino and
Dorffner, 2001), showing better performances than other models, e.g. variable
length Markov models (VLMM). These results demonstrate that CGR can be
used as generalization of Markov chain models.
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Figure 1.9: CGR and Markov chains. It is possible to estimate transition prob-

abilities with CGR by counting the points in each sub-quadrant. As an example,

by extracting all di-nucleotides counts (#CA, #CC, #CG, #CT) one can calculate the

transition probabilities p(si|C) = #Csi/
∑

j #Csj , si,j ∈ {A, C, G, T}. Also shown the

addresses of each sub-quadrant represented as binary numbers – the first two decimal

bits label each subset and are related to the specific substring (Eq. 1.8).

CGR for higher-order alphabets

More recently a generalization of CGR for higher-order alphabets was defined,
in a more natural way, by extending the original CGR square to an hypercube
(Almeida and Vinga, 2002). The dimension d of the hypercube will depend on
the length of the alphabet |A| as d = log2 |A|. This procedure will be explored
in Chapter 3, which transcribes the cited paper.

1.5 Entropy and information theory

The concept of entropy12 was first introduced in thermodynamics of gases, re-
lating heat and temperature in reversible processes. It was later applied in the
modelling of communication systems in the seminal paper by Claude Shannon
(1948), which founded the field of information theory (IT). Later the relation
between IT and probability and statistics emerged, connecting the concepts of
entropy, expected values, mutual information and independence between ran-
dom variables (Khinchin, 1957; Kullback, 1968).

Entropy concepts are in the base of the work developed on Chapter 5, where
a new measure of DNA entropy is proposed. Its introductory section on page 101
contains additional material and relevant historical background.

12From Greek entropé, in transformation.
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1.5.1 Shannon’s entropy function

Definitions

Entropy is a measure of the uncertainty associated with a probabilistic experi-
ment. For a discrete random variable X taking values in {x1, x2, . . . , xM} with
probabilities {p1, p2, . . . , pM}, simplifying as P (X = xi) = pi, the Shannon’s
entropy HSh of this experiment is given by Eq. 1.12:

HSh(X) = H(p1, . . . , pM ) = −
M∑
i=1

pi log2 pi (1.12)

The convention used in this formulation states that 0 log2 0 = 0, justified by
continuity since limx→0 x log2 x = 0. It is also noteworthy that the entropy is a
functional13 of the distribution of X, not depending on the actual values taken
by the random variable X.

Shannon’s entropy formulation can be interpreted as the minimum number
of binary-YES/NO questions necessary in ‘average’ to determine the output of
one observation of X. For example, when tossing a fair coin, the Shannon’s
entropy is HSh(0.5, 0.5) = 1 bit. This formulation can also be interpreted in
terms of expected values, i.e., HSh(X) = Ep[− log2 p(X)].

The Shannon’s entropy is a non-negative quantity, HSh(X) ≥ 0. It can
be shown that HSh(p1, . . . , pM ) ≤ log2 M with equality if and only if all pi =
1/M (Ash, 1990), which means that the situation with the most uncertainty
or with the highest entropy occurs when all possibilities are equally likely, thus
ascertaining a maximum value for HSh(X).

In the original Shannon’s formulation, the entropy was expressed in bits as
the logarithm base was 2. It is straightforward to change base, since loga b =
loga x·logx b, so if using natural logarithms lnx ≡ loge x, we will obtain loga x =
lnx/ ln a. Therefore, in the following presentation, the natural base ln ≡ loge

will be used, unless otherwise specified.

Axiomatic approach

It can be shown that HSh is the only function that satisfies the following four
axioms (Ash, 1990, chap. 1), where f(M) = H(1/M, . . . , 1/M) represents the
entropy of M equally likely outcomes pi = 1/M .

1. H(1/M, . . . , 1/M) is a monotonically increasing function of M ∈ N.

The entropy should increase with the number of possible equiprobable
states;

2. f(ML) = f(M) + f(L)

For independent variables X and Y with possible M and L states, the
entropy of the joint experiment with ML equally likely outcomes is equal
to the sum of the entropies of the individual experiments;

13A functional is a real-valued function on a vector space V, usually of functions.
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3. H(p1, p2, . . . , pM ) = H(p1 + · · · + pr, pr+1 + · · · + pM ) + (p1 + · · · + pr) ·
H
(

p1∑r
i=1 pi

, . . . , pr∑r
i=1 pi

)
+(pr+1 + · · ·+pM ) ·H

(
pr+1∑M

i=r+1 pi
, . . . , pM∑M

i=r+1 pi

)
This grouping axiom permits the deduction of compound experiments;

4. H(p, 1− p) is a continuous function of p.

This result shows that it is possible to deduce Shannon’s formulation through
an axiomatic approach. All these requirements were initially formulated in the
definition of an uncertainty measure.

Other entropy-related measures

Other important notions related to the entropy definition include joint, con-
ditional and relative entropy of two discrete random variables X and Y , with
joint probability function p(xi, yj) = P (X = xi, Y = yj) = pij , i = 1, . . . ,M

and j = 1, . . . , L. These measures further deepen the former definition and
extended it to the multivariate case, thus permitting the application of new
techniques to distribution function comparison.

The joint entropy H(X, Y ) of X and Y is a natural extension of the former
formula and is defined by:

H(X, Y ) = −
M∑
i=1

L∑
j=1

pij ln pij (1.13)

The conditional entropy of Y given X is a measure of the average uncertainty
of Y after the observation of X. It is calculated by:

H(Y |X) =
M∑
i=1

pi ·H(Y |X = xi)

=
M∑
i=1

pi

L∑
j=1

p(yi|xi) ln p(yi|xi) (1.14)

= −
M∑
i=1

L∑
j=1

pij ln p(yi|xi)

The relative entropy or Kullback-Leibler discrepancy of the probability mass
function p(X) with respect to the mass function q(X) is defined by:

D(p||q) =
M∑
i=1

pi ln
pi

qi
(1.15)

In the above definition the same convention is used, that 0 ln 0
q = 0 and p ln p

0 =
∞, justifiable by continuity. The relative entropy measures the dissimilarity
between two distributions, since D(p||q) is always non-negative and D(p||q) =
0 ⇔ p = q. Although it is not a metric, lacking the symmetrical and the triangle
inequality properties (Eq. 1.2), the KL discrepancy has been successfully used
in several applications.
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The mutual information between two random variables X and Y – or the
information conveyed about X by Y – is defined as:

I(X, Y ) =
M∑
i=1

L∑
j=1

p(xi, yj) ln
p(xi, yj)

p(xi) · p(yj)
(1.16)

Mutual information is a special case of the relative entropy, since I(X, Y ) =
D (p(X, Y )||p(X) · p(Y )). Following the properties of D(p||q), the mutual in-
formation is 0 if and only if p(X, Y ) = p(X) · p(Y ), which is the definition of
independence between variables X and Y . Therefore, I(X, Y ) is measuring the
‘dissimilarity’ between those variables as assessed by their ‘dependence’. Also
noteworthy is the relationship between entropy concepts and probability the-
ory already envisaged. One example is given by the alternative definition of
independence of events X and Y , specified in terms of conditional probabilities
P (X|Y ) = P (X), which is very similar to entropy concepts H(X) = H(X|Y ).

Some important results relating these measures and proven elsewhere (Ash,
1990; Cover and Thomas, 1991) are summarized below.

1. H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y ) – chain rule;

2. H(Y |X) ≤ H(Y ) with equality if and only if X and Y are independent –
conditioning reduces entropy;

3. I(X, Y ) = I(Y,X) = H(X)−H(X|Y ) – if the variables are independent,
the mutual information will be zero;

4. I(X, Y ) = D (p(X, Y )||p(X) · p(Y )) mutual information is the relative en-
tropy between the joint distribution and the product of the marginals.

1.5.2 Rényi’s entropy generalization

The Rényi formulation appeared has a generalization of the Shannon’s measures
(Rényi, 1961; Rényi, 1966). In this section the major definitions are presented
along with some important properties of this quantity. It will be applied also
to continuous probability functions, as a natural extension to the discrete case.
Rényi quadratic entropies are the base theoretical framework for the applications
presented in Chapter 5, where additional background information can also be
found.

Definitions

The Rényi entropy of order α ≥ 0, α 6= 1, Hα is defined both for discrete
p(x) and continuous f(x) probability functions and is given by Eq. (1.17). In
the following sections, both the continuous and discrete cases are presented to
provide a comprehensive and easily accessible listing of important definition and
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properties used in most applications.

Hα =
1

1− α
ln
∑

i

pα
i

Hα =
1

1− α
ln
∫

f(x)αdx (1.17)

The parameter α here introduced weights each probability function value.
When α → 0 the limit of Hα is the logarithm of the support set volume. When
α → +∞ this measure weights more and more the maximum values of p or
f and the H+∞ = ln(maxx f(x)). When α → 1 the limit of Rényi entropy is
Shannon’s measure, as shown in the next section.

As an example, Fig. 1.10 shows the behavior of the Rényi entropy of a two-
state discrete model with probabilities p and 1−p. H(X) is a concave14 function
of p for 0 < α < 2.
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Figure 1.10: Rényi entropy of a two state probability distribution. a) Rényi entropy

H = H(α, p) = 1
1−α

ln(pα +(1−p)α). b) Rényi entropy for α = 0, 1, 2, 50 as a function

of p. The maximum entropy is obtained when α = 0 or p = 0.5 and is equal to the

logarithm of the number of states Hmax = ln 2 ≈ 0.69.

The maximum entropy or uncertainty is attained when both states have the
same probability p = 1− p = 0.5.

Shannon and Rényi relation

Shannon’s entropy is a special case of Rényi’s when α → 1. This can be shown
using l’Hôpital’s Rule :

lim
α→1

Hα (X) = lim
α→1

1
1− α

ln
∑

i

pi (x)α ( 0
0 )=

= lim
α→1

∂
∂α

∑
i pi(x)α∑

i pi(x)α

−1

= − lim
α→1

∑
i pi (x)α ln pi (x)∑

i pi (x)α (1.18)

14A function f is concave if for any two points x and y and λ ∈ (0, 1), f(λx + (1− λ)y) ≥
λf(x) + (1− λ)f(y)). f ′′(x) ≤ 0 if the second derivative exists.
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= −
∑

i pi (x) ln pi (x)∑
i pi (x)

= −
∑

i

pi (x) ln pi (x)

= HSh (X)

An analogous deduction can be made for the continuous case.

Other generalizations

Another important definition related to Rényi formulation redefines the relative
entropy between two distributions as a dissimilarity measure. Therefore, Rényi
relative entropy between p and q is given by:

Dα(p||q) =
1

α− 1
ln
∑

k

pα
k q1−α

k

Dα(p||q) =
1

α− 1
ln
∫

p(x)αq(x)1−αdx (1.19)

Some particular cases are obtained for α = 1/2, called the Bhattacharya
distance D1/2(p||q) = − ln

∫ √
f(x)g(x)dx. Analogously, and using the same

deduction of Eq. (1.18), the limit of this measure when α → 1 is the relative
entropy defined in Eq. (1.15).

1.6 Thesis outline

Each of the following chapters constitutes the transcription of one published
paper, to which additional material might also be added, opportunely indicated
in their respective introductory section. The rationale for this design is justified
in the preface to the thesis.

A simplified scheme of this work is shown in Fig. 1.11, with suggested reading
lines.

Chapter 2 – Alignment-free sequence comparison – a review – is a literature
review of alignment-free sequence comparison methods and introduces the mo-
tivation for all the subsequent work (Vinga and Almeida, 2003). This overview
of methods not based in alignment provides a background section on words in
sequences and imparts several definitions that will be used later in this work.
An effort was also made to uniform the nomenclature, consequently altering the
original formulations, in order to establish a common ground for further meth-
ods development. This bibliographic review can also be seen as a continuation of
the present introductory chapter, as it presents more background information.

Chapter 3 – Universal sequence map (USM) of arbitrary discrete sequences,
preceded chronologically the review (Almeida and Vinga, 2002). In this work,
a natural extension of CGR maps is proposed, allowing the representation of
higher-order alphabet sequences. Several properties are explored, namely the
study of the backward sequence coordinates and measures of dissimilarity be-
tween symbols. This formulation will be pivotal to the calculations of DNA
sequences entropies, on Chapter 5.
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Figure 1.11: Thesis outline scheme. Suggested reading lines.

These two chapters constitute the theoretical foundations of the thesis, defin-
ing two distinct types of vector mappings that belong to the alignment-free
category in sequence analysis. The first one, extensively reviewed, maps the
sequences onto their L-tuple frequency vector, accounting for the relative abun-
dance of L-length substrings. The second method is based on iterated function
systems and maps symbols through an iterative algorithm. This mapping has
context-based properties since it is possible to recover all the sequence from the
mapping of just one symbol.

The next two chapters are devoted to applications of these methods to bi-
ological sequences, namely the classification of proteins and the estimation of
DNA entropy.

Chapter 4 – Comparative evaluation of word composition distances for the
recognition of SCOP relationships – qualitatively analyzes some of the metrics
described before and proposes a new metric, W-metric, that bridges between
alignment-free methodologies (based on tuple counts) and alignment-based algo-
rithms (Vinga et al., 2004). This intersection is achieved by conjugating scoring
mutational matrices with L-tuple based information. An extensive comparative
evaluation of the dissimilarity measures previously reviewed is accomplished by
confronting the classification results of protein secondary structure. For this
assessment, ROC curves theory and the Structural Classification of Proteins
(SCOP) database, a gold standard for structure prediction, are used as major
accuracy evaluation techniques.

Chapter 5 – Rényi continuous entropy of DNA sequences – presents a
CGR/USM-driven entropy definition, based on Rényi formalism, which con-
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stitutes a novel application of iterative maps (Vinga and Almeida, 2004). The
novelty consist on spanning the parameter space continuously using the Parzen
window density estimation method with gaussian kernels. Some examples of
testing are also presented, with the application to artificial and real DNA. Ad-
ditionally, theoretical properties of the measure are deduced, namely its asymp-
totical behavior. Furthermore, Monte Carlo simulations are also performed to
estimate the variability of this quantity.

These two chapters represent the application part of the work outlined in
the figure, with both the study of proteins and DNA, in two specific distinct
problems. In the protein study – Fig. 1.11 left side – all pairwise comparisons
are made in order to classify the sequences into categories, therefore only the
relations between the sequences are important. On the other hand, for the
DNA example – Fig. 1.11 right side – the interest is to analyze each sequence
separately, measuring their global degree of entropy or uncertainty, with no con-
nection with comparison techniques. These applications confirm the flexibility
of these methods, in terms of the objects to which they can be applied and the
target results intended.

The two suggested reading lines are now evident: from the review to the
proteins classification application, and from the review and through the gener-
alization of iterative maps to the analysis of individual DNA sequences by Rényi
entropy-based methods.

Chapter 6 – Final discussion – presents an overall discussion of all the themes
treated, briefly recalls the main thesis’ achievements and suggests future non-
exploited paths in this particular field. This concluding chapter also describes
open problems and epistemological issues in bioinformatics and how the recent
development and revision of strong paradigms and dogmas might change the
future of this field.
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Chapter 2

Alignment-free sequence

comparison – a review

Published in: Vinga, S. and Almeida, J. (2003). Alignment-free sequence com-
parison – a review. Bioinformatics 19:4, 513–523.

Supplementary material added: Non-aligned sequence comparison (NASC) tool-
box description along with three classification applications to DNA, Proteins
and Natural Languages texts – extended section 2.4. All MATLAB functions
described are available online.

Motivation Genetic recombination and, in particular, genetic shuffling are
at odds with sequence comparison by alignment, which assumes conservation of
contiguity between homologous segments. A variety of theoretical foundations
are being used to derive alignment free-methods that overcome this limitation.
The formulation of alternative metrics for dissimilarity between sequences and
their algorithmic implementations are reviewed.

Results The overwhelming majority of work on alignment-free sequence
has taken place in the past two decades, with most reports published in the
past 5 years. Two main categories of methods have been proposed - methods
based on word (oligomer) frequency, and methods that do not require resolving
the sequence with fixed word length segments. The first category is based on
the statistics of word frequency, on the distances defined in a Cartesian space
defined by the frequency vectors, and on the information content of frequency
distribution. The second category includes the use of Kolmogorov complexity
and chaos theory. Despite their low visibility, alignment-free metrics are in
fact already widely used as pre-selection filters for alignment-based querying of
large applications. Recent work is furthering their usage as a scale-independent
methodology that is capable of recognizing homology when loss of contiguity is
beyond the possibility of alignment.

Availability Most of the alignment-free algorithms reviewed were imple-
mented in MATLAB code and are available at
http://bioinformatics.musc.edu/NASC.
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2.1 Introduction

Sequence analysis is a discipline that grew enormously in recent years in re-
sponse to the overwhelming burst in data generated by molecular biology initia-
tives. This tendency will probably continue as new challenges emerge from its
quantity and increasingly integrative nature (Fuchs, 2002; Reichhardt, 1999).
Although initially the algorithms were mostly borrowed from string processing
computer science methodologies (Gusfield, 1997), in a second stage biological
sequence analysis quickly incorporated additional concepts and algorithms from
computational statistics, such as stochastic modelling of sequences using hid-
den Markov models and other Bayesian theory methods for hypothesis testing
and parameter estimation. Both foundations carry a bias, very clear in present
days, that views biological molecules as being linear sequences of discrete units
similar to linguistic representations, in spite of their physical nature as a 3D
structure and the dynamic nature of molecular evolution. The alignment ap-
proach overlooks well-documented long-range interactions and general fluidity
resulting from recombination with shuffling of conserved segments without loss
of function (Zhang et al., 2002; Lynch, 2002). On the other hand, assuming con-
servation of contiguity allows the employment of a large set of well-developed
effective computational procedures. Accordingly, the use of alignment based
pairwise sequence comparison emerges in many bioinformatic applications as-
sociated with querying a sequence databases with a template, where sequence
similarity is used to infer similar structure or function. Moreover, sequence
divergence, leading to dissimilarity between homologous sequences, is intrinsi-
cally hard to solve as the evolutionary process takes place at different scales
simultaneously (Attwood, 2000; Pearson, 2000).

The difficulty in defining a metric for sequence dissimilarity is also appar-
ent in the analysis of natural languages texts (Searls, 2001). The quantifi-
cation of similarity between texts is not unique and unambiguous, depending
strongly on the relative importance assigned to individual particles, letters,
words, phonemes, and grammar and even to the overall context of its occurrence.
The overwhelming majority of biological sequence comparison methods rely on
first aligning reference homologous sequences and deriving a score for the align-
ment of individual units, typically the logarithm of the odds ratio. This score is
then used to optimize the alignment of new sequences. Consequently, sequence
dissimilarity is reduced to the comparison between candidate alignments and
reference alignment of well-studied sequences, a heuristic solution for a funda-
mental problem for which effective solution remains open. Although alignment
methods are not reviewed here, comprehensive reviews abound (Durbin et al.,
1998; Waterman, 1995), a very brief overview of the context of its present wide
use is warranted. There are two basic aspects to consider – the alignment it-
self and the scoring used to produce it. Optimal sequence alignment algorithms
are implemented using dynamic programming, ultimately a regression technique
that identifies optimal alignment by maximizing the score of the path that pro-
duces it. Several algorithms have long been identified that target specific goals
such as global alignment, local alignment, with or without overlapping (Needle-
man and Wunsch, 1970; Smith and Waterman, 1981; Gotoh, 1982). Although
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the algorithmic solutions appear satisfactory, the computational load escalates
as a power function of the length of the sequences (exponent 2 for un-gapped
alignment and somewhat higher for the best gapped algorithms) making its
use for searching large databases unfeasible. Subsequently, a few heuristic ap-
proaches were proposed, mostly based on the recognition of alignment “seeds”,
with BLAST (Altschul et al., 1990, 1997) and FASTA (Pearson, 1990; Pear-
son and Lipman, 1988) being the most ubiquitous applications. The second
critical consideration in this reference to alignment methods is the scoring of
pairwise unit alignments. A wide range of scoring systems has been proposed
such as aminoacid substitution scoring matrices PAM (Dayhoff et al., 1978) and
BLOSUM (Henikoff and Henikoff, 1992) for protein alignment. This heuristic
solution reflects methodological incompleteness in the approach to sequence di-
vergence, and also reflects assumption of conservation of contiguity between
homologous segments. It is interesting to note that no scoring schemes in use
will consider increasing its memory length, e.g. scoring alignment of individ-
ual oligomers rather than of individual units, equivalent to using higher order
Markov model scores.

The more immediate limitations of alignment based sequence analysis are
consistently restated in all the reports reviewed below. Another difficulty, not
often discussed, is that heuristic solutions make it harder to assess the statistical
relevance of the resulting scores, which compromises, for example, the establish-
ment of confidence intervals for homology. Nevertheless, the distribution of the
maximum score obtained under the null hypothesis (non correlated sequences)
was deducted recently for gapped alignments (Siegmund and Yakir, 2000; Storey
and Siegmund, 2001) providing a long waited reinforcement of the theoretical
foundations of scoring methods.

This report reviews published concepts and the corresponding algorithms for
alignment-free comparison of biological sequences. In spite of the present surge
in interest on alignment-free sequence comparison methods, there has never
been, to our knowledge, any collective review of published work. However, clas-
sification, clustering or grouping techniques are not included in this overview. In
cluster analysis the basic input is the cross-tabulation of dissimilarity which is
then object of agglomeration, for which there is extensive literature and widely
available implementation in standard statistical packages. (For a comprehensive
introduction to cluster analysis and classification see (Everitt et al., 2001; Gor-
don, 1999).) This review is confined to the measure of sequence dissimilarity
itself.

2.2 Background

The variety of disciplines involved in development of biological sequence analysis
often brings together conflicting nomenclatures and conceptual
frameworks. Therefore, for the convenience of the reader, some useful concepts
and notation in vectors and metric spaces, information theory and word statis-
tics are briefly recalled. References to comprehensive presentations of those
fields are also included for further depth.
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2.2.1 Words in sequences

A sequence, X, of length n, is defined as a linear succession of n symbols from
a finite alphabet, A, of length r.

A segment of L symbols, with L ≤ n, is designated an L-tuple (in some
references is also defined as L-word or L-plet). The set WL consists of all
possible L-tuples that can be extracted from sequence X and has K elements
(Eq. 2.1)

WL = {wL,1, wL,2, . . . , wL,K}
K = rL (2.1)

The identification of L-tuples in the sequence X can then be object of count-
ing occurrences with overlapping (Eq. 2.2). Computationally, the counting is
usually performed by taking a sliding window L-wide that is run through the
sequence, from position 1 to n− L + 1.

cX
L = (cX

L,1, c
X
L,2, . . . , c

X
L,K) (2.2)

Similarly, one can then calculate word frequencies, fX
L , to estimate the

probability, pX
L,i , of finding a specific word wX

L,i , collectively defining a vector
of word or L-tuple probabilities (Eq. 2.3).

pX
L = (pX

L,1, p
X
L,2, . . . , p

X
L,K) (2.3)

The vector of frequencies fX
L is obtained as the relative abundance of each

word (Eq. 2.4)

fX
L =

cX
L∑K

j=1 cX
L,j

⇔ fX
L,i =

cX
L,i

n− L + 1
(2.4)

For example for DNA sequences, A = {A,T,C,G}, r = 4, a three letter
word, L = 3, could be w3 = ATC. For the sequence X = ATATAC, where n = 6,
the vector pX

3 is estimated by the relative frequencies of all trinucleotides. The
frequencies, determined by sliding a 3 letter window n−L + 1 = 4 times would
be:

WK = {ATA,TAT,TAC,AAA, . . .}
cX
3 = (2, 1, 1, 0, . . .)

fX
3 = (0.5, 0.25, 0.25, 0, . . . )

The vectors cX
3 and fX

3 have length K = 43 = 64 and the zero coordinates
correspond to missing words in X, in this case absent trinucleotides.

2.2.2 Distance between sequences

A distance function d(X, Y ) is a function that assigns a real number to every
pair X and Y belonging to a given set, in this application will be the set of all
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possible sequences. In order for d(X, Y ) to be a metric distance (Strang, 1988)
the three properties in Eq. 2.5 have to be observed.

Positivity : d(X, Y ) ≥ 0 and d(X, Y ) = 0 ⇔ X = Y

Symmetry : d(X, Y ) = d(Y, X) (2.5)

Triangle inequality : d(X, Y ) + d(Y, Z) ≥ d(X, Z)

Most of the distance functions reviewed below are computed in the spaces
defined by the vectors of word counts and word frequencies. For a comprehensive
introductory study of linear algebra and vector spaces see (Strang, 1988) and
for an introduction to matrix analysis (Schott, 1997) is recommended.

2.2.3 Word statistics

The statistical and probabilistic properties of words in sequences were recently
systematized and reviewed (Reinert et al., 2000), with emphasis on the deduc-
tions of exact distributions and the evaluation of its asymptotic approximations.
The problems addressed in that report included finding formulae for counts ex-
pectation, variances and also covariances between frequencies of two words,
namely the distribution of pX

L and the determination of its moments. These
issues are fundamental to assess the statistical significance of dissimilarity re-
sults based on frequencies of words. The period or overlap capability deserves
special mention here, as it will be of importance for the reviewing, below, of
metrics based on the Mahalanobis distance. It indicates to what extent the
prefix and the suffix of a word are equal, i.e., if the word beginning is the same
as the ending (Gentleman and Mullin, 1989). This property is fundamental to
the correct deduction of the covariances of pX

L , as words that share motifs are
more likely to co-occur. The modeling of the resulting word statistics is often
approached within the framework of the theory of stochastic processes, namely
Markov chains and renewal theory (Gentleman and Mullin, 1989; Régnier, 1998;
Reinert et al., 2000; Gentleman and Mullin, 1989; Régnier, 1998; Reinert et al.,
2000; Waterman, 1995) and will not be reviewed here.

2.2.4 Information theory

Information theory was originated in the classical paper of Claude Shannon
in 1948 (Shannon, 1948) to quantify the capability of transmitting data over
a channel. Some years later, Solomon Kullback formalized it as a branch of
statistical theory (Kullback, 1968) and gave rigorous mathematical proofs of
theorems previously introduced. The main concept behind information theory
is the notion of entropy or uncertainty. One defines the entropy of a random
variable based on the probabilities of all the outcomes. The definition will be
subsequently applied to sequences, where the random variable represents an L-
tuple. The entropy H of L-tuples, WL, is calculated from the probability of the
individual words in sequence X (Eq. 2.6).
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H(WX
L ) = −

K∑
i=1

pX
L,i log2(p

X
L,i) (2.6)

This general definition is valid for any word length resolution, L, including
the more common determination of uncertainty associated to the distribution
of individual symbols, e.g. by using L = 1. It was subsequently shown that
this is the only function that satisfies some logically required axioms for the
quantification of uncertainty (Ash, 1990), such as additively of entropies for
joint probability spaces, the fact that H(W) is maximal when all the K possible
words are equiprobable, H(W) = log2(K), and it is minimal when pX

L,i = 1 for
some i-word – knowing the outcome should make uncertainty equal to zero.
H(W) is also an increasing function of K equiprobable spaces, i.e., it will be
higher if the number of possible words increase. Comprehensive presentations
of this matter and respective applications abound, such as (Cover and Thomas,
1991). For the studies reviewed below it is useful to detail the Kullback-Leibler
(KL) discrepancy, measuring relative entropy between two discrete probability
distributions p and q, detailed in Eq. 2.7.

KL(p, q) =
∑

i

pi log
(

pi

qi

)
(2.7)

However, it is noteworthy that the KL discrepancy is not a metric distance
because it only satisfies positivity but not symmetry nor triangular inequality
(Eq. 2.5).

2.3 Alignment-free sequence comparison

The proposition of alignment-free methods to compare biological sequences is a
very recent endeavor, with the earliest systematic publications being less than 2
decades old (Blaisdell, 1986). Although the pace of work in this area is increasing
sharply, the total number of published reports proposing or using alignment-
free metrics is relatively small, still under the one hundred mark. Moreover,
the past decade contains the overwhelming majority of reports and judging by
those published in the past year, the trend is being maintained. Two main
categories of proposed methods can be recognized in the literature reviewed –
methods based on word frequency, and those that do not require resolving the
sequence with fixed word-length segments. The first group includes procedures
based on metrics defined in coordinate space of word-count vectors, such as
the Euclidean distance and relative entropy of frequency distributions. On the
contrary, the second category corresponds to techniques that are independent
from the resolution of the sequence, i.e., they do not involve counting segments
of fixed length. They include the use of Kolmogorov complexity theory and
scale-independent representation of sequences by iterative maps. These two
categories of methods have distinct theoretical lineages and unequal amount
and variety of techniques explored in the published reports, far fewer for the
latter.
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2.3.1 Methods based on word frequencies

All methods described in this section start with the mapping of sequences to
vectors defined by the counts of each L-tuple. This straightforward approach
was the first attempt to transform a sequence into an object for which linear
algebra and statistical theory had useful analytical tools already available. The
vectors obtained represent the original sequence with a fixed resolution L, that
of the word length considered. The basic rationale for sequence comparison is
that similar sequences will share word composition to some extent, which is
then quantified by a variety of techniques. This is, in a way, an extension of the
widespread use of difference in GC content as a measure of sequence dissimilar-
ity. It is noteworthy that the methods described here, although alignment-free,
are still length dependent in the sense that the comparisons are made for fixed
word length. This could even be viewed as a weak departure from the idea of
alignment since sharing L-tuples is equivalent to recognizing an alignment be-
tween identical segments. However, a variety of methods have been proposed to
derive combined distance metrics that contain information about all resolutions,
in order to achieve complete independence from the contiguity of conserved seg-
ments.

Euclidean distance

The first published report systematizing the use of L-tuple counts for sequence
comparison dates from 1986 (Blaisdell, 1986). In this work, the author presents
a new measure of dissimilarity between sequences modeled as Markov chains.
The difference between two sequences was quantified by the square Euclidean
distance between their transition matrices. In spite of its conceptual simplicity,
this method was shown to be an effective alternative to alignment methods.
The fact that a transition matrix of a Markov chain can be identified with the
frequency of all L-tuples lead the author to propose other quantifications of
sequence similarity, such as the use of Chi-Square tests to assess the statistical
significance of a specific comparison (Blaisdell, 1986). It was further shown in
this pioneering report that the approach enabled the measure of dissimilarity be-
tween sequences that are too different to be amenable to alignment, even if they
still have recognizable similarity. The fact that, when alignment is possible the
two methods agree, provided further support for the adoption of the more gen-
erally applicable alignment-free alternative. For each resolution or word-length
L, the squared Euclidean distance between sequences X and Y is determined
by Eq. 2.8, where cX

L = (cX
L,1, . . . , c

X
L,K) and cY

L = (cY
L,1, . . . , c

Y
L,K) are vectors

representing word counts for those sequences and K is the number of different
L-tuples possible for that L-length:

dE
L (X, Y ) = (cX

L − cY
L )T · (cX

L − cY
L )

=
K∑

i=1

(cX
L,i − cY

L,i)
2 (2.8)

Nevertheless, alignment was still observed in the same report to be more ac-
curate for comparison of sequences with very close similarity. A few years later
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the same author formalized the new alignment-free metric and validated its
performance by successfully comparing large genomic sequences from organisms
with well documented phylogenetic relationships (Blaisdell, 1989b). The dis-
similarity values obtained by pairwise sequence comparison was subsequently
used to correctly recognize phylogenetic relationships with PHYLIP package
(Felsenstein, 1993), corroborating results obtained with ‘conventional methods
that assume prior correct homologous total alignment of the sequences’. A sim-
ilar conclusion was reached in a subsequent study (Blaisdell, 1989a) where the
dissimilarity values obtained with alignment-free Euclidean distance were ob-
served to be directly proportional to conventional mismatch counts requiring
sequence alignment. A subsequent report presented statistical deductions of
several characteristic measures (Pevzner, 1992) such as the distance expecta-
tion and variance for L-tuple comparison. The same report proposes filtration
methods based on a prescreening with these metrics. Accordingly, it is possible
to filter out sequences with low similarity, those that do not share similar word
composition, in order to speed database search for similar sequences. In that
report, the same theoretical endpoint proposed previously (Blaisdell, 1989a) is
reached. It is noteworthy that these filtration methods are currently being in-
creasingly explored to optimize database search in the face of exponential growth
of the sequence repository (URL, 2002).

The statistical properties of Euclidean type distance for L-tuple frequencies
have been documented further in depth eventually leading to the identification
of tests for the non-uniformity of the corresponding distribution based on the Π-
statistic thereby defined (Zharkikh and Rzhetsky, 1993). This work enabled the
comparison of values obtained for different resolutions and also offers the very in-
teresting promise of a formal link to the determination of evolutionary distances
backed by a rate of unit substitution that is not affected by shuffling of con-
served segments. The same authors also document a relation between L-tuple
metric and mismatch count distance, which is the basis for homology estimation
by alignment-based methods, thus establishing some comparison between both
methods. The validity of those theoretical propositions was accessed in another
report with applications to Eubacteria, mitochondria and chloroplasts DNA,
including the study of L-tuple frequency homogeneity in coding and non-coding
regions (Sitnikova and Zharkikh, 1993). The scale dependency of similarity
measures itself, such as how 3-tuple counts depends on 2-tuple counts described
in the latter report, is also becoming a recurring theme, albeit reinforced by
similar emphasis in the search for unifying scale independent relationships in
other areas of Biology (Gisiger, 2001).

Weighted Euclidean distance and efficient computation – The fact that the
frequency of different words may have different impact on the standard Eu-
clidean distance between specific words has been explored in the literature to
derive weighted measures. The earliest work calculated the weights of individual
L-tuples in order to maximize the variance of reference sequences with regard to
random sequences (Torney et al., 1990). This approach maximizes the discrim-
ination of reference sequence families. The original implementation, maybe due
to its relatively pioneering date of 1990, is curiously based on weighting L-tuple
counts rather than frequencies (Eq. 2.9), where ρi is the weight assigned to the
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ith word. The weighted distances are then combined by summing the weighted
count difference at different resolutions, from l to u-tuples.

d2(X, Y ) =
u∑

L=l

K∑
i=1

ρi(cX
L,i − cY

L,i)
2 (2.9)

This metric was designated as d2 distance and has subsequently been used,
in its unweighted form, as a stand-alone high performance sequence comparison
technique for database search (Hide et al., 1994). The latter work stands on a
category of its own due to its focus on heuristic optimization of the computa-
tional implementation. That report in particular was directed to the identifica-
tion of optimum values for word length L, window size and extent of overlap.
For the particular example discussed in that report, search for lipases in a ge-
nomic database, an optimal resolution of L = 8 was found to achieve results
similar to performing the search using FASTA.

The practical use of d2 distance has a published record that continues to
present day including the clustering of EST sequences with full-length cDNA
data (Burke et al., 1999) and the recent estimation of the number of human
genes (Davison and Burke, 2001). The method has proven to be selective, sen-
sitive and amenable to high performance implementation. These properties,
combined with the advantages shared by other alignment-free methods of be-
ing context-independent, and consequently the fact that homologous sequences
that are scrambled or contain insertions and deletions will still yield a small d2
value, has had this measure selected for inclusion in software packages. In partic-
ular, d2 clustering was incorporated in the software package STACK (Sequence
Tag Alignment and Consensus Knowledgebase), a sequence analysis tool where
clustering does not rely on pairwise alignment (Burke et al., 1998; Christoffels
et al., 2001; Hide et al., 1997; Miller et al., 1999). Even more recently, this
algorithm was optimized by parallelization (Carpenter et al., 2002), furthering
their efficient computation, with a visible relevance for the classification of EST
sequences.

In general, it is interesting to note that, very recently, filtration methods
based on distance between frequencies of words have had their usage greatly
increased as procedures to “seed” a conventional alignment, both for DNA se-
quences (Giladi et al., 2002) and for proteins (Coghlan et al., 2001). Both
FASTA (Pearson and Lipman, 1988) and BLAST (Altschul et al., 1990) rely on
seeding for a pre-selection of candidate sequences for alignment. Indeed, pre-
processing sequence querying by efficient elimination of non-similar candidates
appears to be the path through which alignment-free sequence comparison is
gradually being incorporated in widely used bioinformatics applications.

Correlation structure

Once the conversion of sequences into L-tuple frequencies was established, a va-
riety of metric systems were quickly proposed, as described above for Euclidean
distances. Within this context, the proposition of metric distances between se-
quences based on the correlation coefficients was to be expected (Fichant and
Gautier, 1987; Gibbs et al., 1971; van Heel, 1991). Indeed, that approach has
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since been put to practice to classify proteins based on di-peptide frequencies
(Petrilli, 1993). The calculation of the linear correlation coefficient (LCC) be-
tween two sequences X and Y , from L-tuple frequencies, fX

L and fY
L , uses the

conventional Pearson formalism as detailed in Eq. 2.10.1

dLCC
L (X, Y ) =

K
K∑

i=1

fX
L,i · fY

L,i −
K∑

i=1

fX
L,i ·

K∑
i=1

fY
L,i(

K
K∑

i=1

(fX
L,i)

2 − (
K∑

i=1

fX
L,i)

2

)1/2

×

(
K

K∑
i=1

(fY
L,i)

2 − (
K∑

i=1

fY
L,i)

2

)1/2

(2.10)

This can be simply expressed by taking vectors fX
L and fY

L as pairs in R2, by
plotting the K points (fX

2,i, f
Y
2,i) , and calculating the correlation coefficient R.

As noted before for Euclidean distances, the availability of a correlation based,
alignment-free, sequence comparison method is of immediate advantageous use
for the querying of large sequence databases, and has been applied to protein
database searching (Petrilli and Tonukari, 1997). The applied work yielded a
number of simplifying conclusions that greatly enhance its practical value, such
as the fact that only 25 out of 400 possible dipeptide frequencies were needed
to correctly classify protein families (Solovyev and Makarova, 1993).

The way tuples are defined has itself been object of exploration with the goal
of identifying spatial correlations between positions differently spaced apart in
the sequence (Mironov and Alexandrov, 1988). Although this approach has
not been subsequently pursued by other researchers, its original proposition
took place in the very early period of development of alignment-free methods
and offers a different perspective on the conceptual foundations of this field.
The spatial correlation measure is based on the determination of dimeric tuples
(L = 2) where the first and second positions are separated by a fixed arbitrary
number of units. The original report proposed to screen different values for
the separation and combine the results in a single correlation measure. The
difference between sequences was then developed using the Euclidean distance
of the vectors representing the extracted features.

Covariance methods

The methods reviewed above explore the use of Euclidean distances and cor-
relations between L-tuple representations of sequences. This section reviews,
instead, distances that take into account the data covariance structure. In this
context the use of Mahalanobis distances (Eq. 2.11) and standardized Euclidean
distances (Eq. 2.12), play a central role.

1Original formulation – can be further simplified using probability properties.



2.3. ALIGNMENT-FREE SEQUENCE COMPARISON 43

dM
L (X, Y ) = (cX

L − cY
L )T · S−1 · (cX

L − cY
L )

=
K∑

i=1

K∑
j=1

(cX
L,i − cY

L,i) · sinv
ij · (cX

L,j − cY
L,j) (2.11)

In Eq. 2.11, S = [sij] represents the covariance matrix of L-tuple counts,
which inverted is composed of K ×K elements sinv

ij . The standard Euclidean
distance (Eq. 2.12) forces cov(ci, cj) = 0 for i 6= j. Therefore, in this distance
measure the correlations between different words are ignored and only same
word variances are accounted for.

dSE
L = (cX

L − cY
L )T · [diag(s11, . . . , sKK)]−1 · (cX

L − cY
L )

=
K∑

i=1

(cX
L,i − cY

L,i)
2

sii
(2.12)

The relevance of this simplification is put into context by noting that the
standard Euclidean distance (Eq. 2.12) is reduced to the squared Euclidean
distance (Eq. 2.8) if the variance structure is ignored, i.e., if sii = 1, i = 1, . . . ,K.
Both the Mahalanobis and standard Euclidean distance were first proposed for
sequence comparison relatively recently (Wu et al., 1997). In that report the
author also proposes to combine different resolutions to obtain a unique distance
measure (Eq. 2.13), similarly to the approach followed in the definition of the
d2 measure (Eq. 2.9).

dM∗ =
n∑

L=l

dM
L

dSE∗ =
n∑

L=l

dSE
L (2.13)

It is in the context of these metrics that the measure of overlap capability
between words, introduced in the Background section above, is most relevant.
Overlap capability indicates periodicity in the word, which leads to higher prob-
ability of co-occurrence of words sharing the repeated motifs (Gentleman and
Mullin, 1989; Reinert et al., 2000), consequently altering the covariance struc-
ture presented.

Some implementation problems arise when calculating Mahalanobis dis-
tance: the covariance matrix S has determinant near zero (matrix almost sin-
gular) so it is computationally difficult to calculate its inverse. A solution often
proposed that was followed to overcome this problem is to use pseudo inverse
matrices (Wu et al., 1997). However this is unsatisfactory for word lengths
higher than 4, when the computational load becomes too heavy for practical
implementation. For this reason and although important from a theoretical
point of view, this method was ruled out by the proponent for applications
with long alphabets and/or long sequences. Nevertheless, it was shown to be
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very efficient when challenged with finding human lipoprotein lipase (LPL) in
a database, providing better selectivity and sensibility than previous distances,
namely the Euclidean and standard Euclidean measures.

The Mahalanobis based distance was also proposed for protein classification
in a report (Solovyev and Makarova, 1993) already approached in the Cor-
relation section. With regard to the Mahalanobis distance, the proponents
suggested practical simplifications, namely that only oligopeptides whose fre-
quencies are distinct from random proteins, are used, as these are the most
informative and, consequently, the most discriminant data.

Information theory based measures

The methods reviewed above were based on statistical distances between fre-
quency vectors. Instead, the distances reviewed in this section are based on the
same L-tuple vectors as above but an information theory based metric is use to
quantify the dissimilarity between them. To that effect, the Kullback-Leibler
discrepancy, KL (see Background section), was recently proposed (Wu et al.,
2001). The KL discrepancy between sequences X and Y , is computed from
their L-tuple frequencies (Eq. 2.14).

dKL
L (X, Y ) =

K∑
i=1

fX
L,i · log2

(
fX

L,i

fY
L,i

)
(2.14)

To avoid having an infinite dKL
L (X, Y ) when fY

L,i = 0 , the authors also sug-
gest modifying this formulation (Eq. 2.14) by adding a unit to both terms of the
frequency ratio. As with the Mahalanobis distance, this report also proposes
an implementation by sliding partially overlapping windows to select the best
conserved regions, under the assumption of contiguity discussed above. The KL
distance was validated using the human lipoprotein lipase dataset the same au-
thors had previously used to evaluate the use of Mahalanobis distance (Wu et al.,
1997). It was concluded that the best performing metric with regard to selec-
tivity and sensitivity was the Mahalanobis distance (Eq. 2.11), followed closely
by the standard Euclidean distance (Eq. 2.12) and somewhat further behind by
the KL discrepancy (Eq. 2.14). These three distance measures clearly outper-
formed the conventional Euclidean distance (Eq. 2.8). As regards computational
efficiency, the performances are reversed with KL discrepancy (Eq. 2.14) being
preferred, followed by the standard Euclidean distance (Eq. 2.13). The Maha-
lanobis distance, as mentioned above, has a hefty computational cost associated
to the calculation of the inverse covariance matrices S−1 (Eq. 2.11).

Angle metrics

Very recently, (Stuart et al., 2002b,a), a new metric was proposed that falls on
a category of its own where the distance between two sequences is based on the
angle between the L-tuple count vectors (Eq. 2.15). As these vectors usually
have high dimensionality (K = rL, see Eq. 2.1), single value decomposition
(SVD) is applied before calculating the angle cosine. Only the dimensions with
the higher eigenvalues are used, thus substantially reducing dimensionality with
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the additional advantage of filtering some noise from this information. Dimen-
sionality reduction along similar lines has been reported by other authors as
being very useful for information retrieval from databases (Berry et al., 1999).

dcos
L (X, Y ) = θXY , where

cos(θXY ) =
(cX

L )T · cY
L

‖cX
L ‖ · ‖cY

L‖
=

∑K
i=1 cX

L,i · cY
L,i√∑K

i=1(c
X
L,i)2 ·

√∑K
j=1(c

Y
L,j)2

(2.15)

Interestingly, this metric is not sensitive to repetitions, instead returning the
difference between the motifs. For example, if a sequence X is compared with
its double repetition XX, the vectors c of the counts will have different norms
but will have the same direction in space, because cX = 2cXX , causing the
angle distance between them to be zero. This property is of fundamental value
because it automatically filters repetitions, therefore distinguishing sequences
by the different balance of tuple composition only. It is also interesting to note
that the distance proposed has strong similarities to the correlation distance
dLCC

L (Eq. 2.10). The pairwise cosine values were proposed in the same reports
to convert to evolutionary distance, determined from L-tuple counts, as detailed
in Eq. 2.16 (Stuart et al., 2002b,a).

dEV OL
L (X, Y ) = − ln[(1 + cos θXY )/2] (2.16)

The cross-tabulation of evolutionary distances was then inputted to the
NEIGHBOR program (Saitou and Nei, 1987), part of the PHYLIP package
(Felsenstein, 1993), used to construct the corresponding phylogenetic trees. The
choice of the appropriate L-resolution is further discussed by the proponent
whose results suggest it may be specific to the degree of evolutionary diver-
gence. In particular, dEV OL

L was applied to the study of whole mitochondrial
genome, and the resulting evolutionary distances were observed to be in agree-
ment with the values previously obtained by other methods. That work put
particular emphasis on the dimensionality reduction using the SVD algorithm,
which allows a different and interesting interpretation of this metric: by reduc-
ing the basis vectors of the representation, the authors are somehow neglecting
the main L-tuple composition used, looking for some feature space that conveys
a special non-literal representation, in some sense. This can provide a pattern
analysis beyond word composition. In principle, the technique could be equally
relevant and applied to the preceding metrics.

2.3.2 Resolution free methods

The metrics reviewed above are dependent on a specific resolution or word
length of the L-tuples. This problem was solved in some reports cited above
by choosing the best discriminant resolution or combining results obtained with
arbitrary word-length intervals. Instead, this section reviews alignment-free se-
quence comparison methods that do not resolve to fixed word-length distance
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measures, which represents absolute independence from the assumption of con-
servation of contiguity. This goal has been pursued following two alternative
paths. The first one uses sequence compression as a tool to measure sequence
complexity. The extent to which joint compression is more effective than inde-
pendent compression is used as a measure of similarity. The second approach
focuses on the representation of the sequence itself, using iterative functions as
bijective maps to continuous, scale-independent formats, where resolution-free
comparisons can be pursued.

Universal Sequence Maps (USM)

The pursuit of distance measures independent from L-tuple resolution has been
proposed by seeking sequence representations that would themselves be scale
independent. Chaos theory, namely as regards the use of iterative functions,
is at the foundations of this pursuit. The proposition of iterative functions
for the representation of biological sequences is now over a decade old. The
original report identified an iterative function for DNA representation, which
was named chaos game representation, CGR (Jeffrey, 1990). The recognition
that CGR defines a resolution free transition matrix that can be used to de-
rive distance metrics is much more recent (Almeida et al., 2001). That work
was later extended and generalized for any order alphabets, thus enabling the
study of any discrete sequence, and the new iterative function was renamed
Universal Sequence Maps, USM (Almeida and Vinga, 2002). The interesting
novel property of the USM bijective mapping is the possibility of accurately
represent and summarize any sequence in a continuous multidimensional space
at arbitrary resolution (that can be later used to recover sequence context).
The comparison of any two unit positions will yield the level of identity be-
tween the respective regions in the sequence. For example, the representation
of two symbols a = (a1, . . . , an) and b = (b1, . . . , bn) in USM coordinates can be
used to estimate the difference between those symbols in the original sequence
(Eq. 2.17).

dUSM (a, b) = − log2(max
i
|ai − bi|) (2.17)

The USM method can be applied to DNA, proteins and natural language
texts but it still is in an experimental development and has not been yet com-
pletely tested in challenging sequence sets. It would also be desirable to apply
this methodology to multiple comparison and database queries. It should also
be noted that the metric proposed, although taking into account symbol con-
text, does not define an overall sequence dissimilarity, like previously reviewed
distances.

Kolmogorov Complexity

The use of savings in joint compression as a measure of similarity is founded on
information theory and coding, particularly on Kolmogorov Complexity The-
ory. Similarly to the methods reviewed in the last two sections, this one is also
a very recent proposition (Li et al., 2001). The fundamental concept behind
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the distance metric proposed is that of algorithmic complexity. In practice,
this pursuit requires the use of compression algorithms that are assumed to be
efficient. There are presently no absolute measures of algorithmic complexity,
which can only be estimated. (For a review of methods see (V’Yugin, 1999).)
In that report (Li et al., 2001), sequence compression is performed using the
GenCompress software program (Chen et al., 1999), empirically assessing the
Kolmogorov complexity, K(X), of a sequence, X by the length of its com-
pressed representation. The conditional complexity is obtained by compressing
the juxtaposition of both sequences. The distance measure derived thereof,
dKC , detailed in Eq. 2.18, uses the relative decrease in complexity or condi-
tional complexity K(X|Y ) as a measure of sequence similarity (Li and Vitanyi,
1997).

dKC(X, Y ) = 1− K(X)−K(X|Y )
K(XY )

(2.18)

The authors demonstrate that dKC satisfies the axioms of a distance func-
tion (Eq. 2.5). This method was only tested with mammalian complete mito-
chondrial genomes (mtDNA), and the distances obtained were observed to be
consistent with the known phylogenetic relationships. Despite this method was
not yet fully explored, only in a rather limited set of sequences, and the need
to estimate the quantities evolved, namely K(•), by a compressing algorithm,
it is conceptually attractive and elegant which suggests its further study and
extension to higher order alphabets, for example, in comparing proteins.

Recent exploits

The increase in diversity of the newer alignment free distance measures being
proposed beyond the framework reviewed here is very apparent as this review is
finalized. For example, alignment-independent classification of G-protein cou-
pled receptors (GPCR) based in extracting physical properties of amino acids
has been very recently suggested (Lapinsh et al., 2002). This correlation data
was processed with multivariate statistical methods, namely Principal Compo-
nent Analysis (PCA), Partial Least Squares (PLS), autocross-covariance trans-
formations (ACC’s), z-scores, in order to weight the individual properties as to
correctly classify the proteins studied in super-families. Previous attempts to
GPCR classification without alignment were based on the extraction of statistics
of communality and specificity for each L-tuple (Daeyaert et al., 1998). These
characteristics measure the relative frequency of specific words with regard to
the respective super-families.

2.4 Algorithm implementation –NASC-Toolbox

Most of the distance metrics reviewed in this report were coded anew and tested.
For that purpose a software toolbox – named Non-aligned sequence comparison
(NASC) – was written in MATLAB language and is made publicly available by
the authors at http://bioinformatics.musc.edu/NASC. Submission of new dis-
tance metrics or more efficient implementation of existing ones to that web-based
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File name Brief description

MANUAL.doc Toolbox Manual with examples.
EU.txt Natural language example. EU 10 languages sequences

Protein example. Translations of the human beta
HUMHBB.txt

globin region on chromosome 11. [NCBI gi:455025]
thrABC.txt DNA example. E. coli K12 threonine operon.
cgcria.m
cgcgr0.m
cgcgr1.m Reads text file, transforms symbol to number,
cgcode.m creates USM coordinates.
cgle.m
cgtp.m

Calculates counts and frequencies of L-tuples (or
freqseq.m

L-words) in sequences previously extracted from file.
overlap.m Calculates overlap capability of words present.
word var.m Variances of L-tuple counts.
word cov.m Covariances of L-tuple counts.
distance.m Calculates different metrics on sequences
nasc.m Calls all previous functions.
plotdistance.m Plots all types of distances between chosen sequences.

Final sequence classification and dendrogram
classif.m

construction (cluster analysis).
USM cross distances calculation; see also bUSM

crossd.m
toolbox (Schwacke and Almeida, 2002).

ang.m Auxiliary function. Angle between vectors (Euclidean).
h rel.m Auxiliary function. Relative entropy between vectors.
isquareform.m Auxiliary function. Matrix operations.

Table 2.1: Non-aligned sequence comparison (NASC) toolbox MATLAB files

repository is encouraged. The toolbox includes a small manual that explains the
algorithms and the use of the functions. It also includes a set of test sequences
using different alphabets to exemplify the application of these techniques to
sequence classification. Three data sets are included: DNA sequences, protein
sequences and natural language – the same text in ten western European idioms
with clearly recognizable philology. The following sections are not intended to
present an exhaustive study but simply exemplify the potential of these methods
on the clustering of sequences. The quantitative analysis of word compositions
dissimilarity measures will be fully investigated in Chapter 4.

2.4.1 Matlab functions

Table 2.1 briefly describes the NASC-Toolbox Matlab functions coded and that
will be used in the following sections to classify three different sequence types.
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2.4.2 DNA

The first example corresponds to the classification of three DNA sequences from
the E. coli K12 threonine operon, namely thrA, thrB, thrC. Table 2.2 contains
the sequences in FASTA format.

Almost all the metrics tested with several resolution (L) options grouped
thrA with thrC in the first step. As an example, the dendrogram obtained with
L = 1 and Mahalanobis distance is shown in Fig. 2.1. This agrees with other
studies, e.g. Almeida et al. (2001).
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Figure 2.1: Dendrogram with classification of E. coli threonine operon, sequences

thrA, thrB and thrC. Mahalanobis dissimilarity (Eq. 2.11) with L = 1.

2.4.3 Proteins

The second example tested consists on the classification of five protein sequences
from the beta chains of human hemoglobin.

Hemoglobin (Hb) is a protein that is carried by red cells which pick up
oxygen in the lungs and delivers it to all peripheral tissues. The hemoglobin
molecule is made up of four polypeptide chains (tetramer): two alpha chains
(HBA) and two beta chains (HBB).

The alpha chains genes are located in chromosome 16 (not shown). The
beta genes (human hemoglobin beta genes or HUMHBB) are located in the
chromosome 11 (Locus 11p15.5) as shown in Fig. 2.2. The beta chains change
over lifetime, from embryonic to fetal and adult Hb (see figure’s legend).

The study of HUMHBB is of major importance in medical science since
alterations of beta globin proteins cause several blood diseases such as sickle cell
anaemia2, where only one (the 6th) aminoacid of 146 has been altered due to a
mutation on one DNA base (from GAG – Glu to GTG – Val), and thalassemia2

, in which there is a premature termination of the protein sequence (also due to
one substitution from AAG – Lys to TAG – stop codon). Both changes lead to
modifications in the folding pattern of the protein and consequently to severe

2In portuguese: anemia falciforme and talassémia.
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>>E.Coli K12 threonine operon 
>thrA 
ATGCGAGTGTTGAAGTTCGGCGGTACATCAGTGGCAAATGCAGAACGTTTTCTGCGTGTTGCCGATATTCTGGAAAGCA 
ATGCCAGGCAGGGGCAGGTGGCCACCGTCCTCTCTGCCCCCGCCAAAATCACCAACCACCTGGTGGCGATGATTGAAAA 
AACCATTAGCGGCCAGGATGCTTTACCCAATATCAGCGATGCCGAACGTATTTTTGCCGAACTTTTGACGGGACTCGCC 
GCCGCCCAGCCGGGGTTCCCGCTGGCGCAATTGAAAACTTTCGTCGATCAGGAATTTGCCCAAATAAAACATGTCCTGC 
ATGGCATTAGTTTGTTGGGGCAGTGCCCGGATAGCATCAACGCTGCGCTGATTTGCCGTGGCGAGAAAATGTCGATCGC 
CATTATGGCCGGCGTATTAGAAGCGCGCGGTCACAACGTTACTGTTATCGATCCGGTCGAAAAACTGCTGGCAGTGGGG 
CATTACCTCGAATCTACCGTCGATATTGCTGAGTCCACCCGCCGTATTGCGGCAAGCCGCATTCCGGCTGATCACATGG 
TGCTGATGGCAGGTTTCACCGCCGGTAATGAAAAAGGCGAACTGGTGGTGCTTGGACGCAACGGTTCCGACTACTCTGC 
TGCGGTGCTGGCTGCCTGTTTACGCGCCGATTGTTGCGAGATTTGGACGGACGTTGACGGGGTCTATACCTGCGACCCG 
CGTCAGGTGCCCGATGCGAGGTTGTTGAAGTCGATGTCCTACCAGGAAGCGATGGAGCTTTCCTACTTCGGCGCTAAAG 
TTCTTCACCCCCGCACCATTACCCCCATCGCCCAGTTCCAGATCCCTTGCCTGATTAAAAATACCGGAAATCCTCAAGC 
ACCAGGTACGCTCATTGGTGCCAGCCGTGATGAAGACGAATTACCGGTCAAGGGCATTTCCAATCTGAATAACATGGCA 
ATGTTCAGCGTTTCTGGTCCGGGGATGAAAGGGATGGTCGGCATGGCGGCGCGCGTCTTTGCAGCGATGTCACGCGCCC 
GTATTTCCGTGGTGCTGATTACGCAATCATCTTCCGAATACAGCATCAGTTTCTGCGTTCCACAAAGCGACTGTGTGCG 
AGCTGAACGGGCAATGCAGGAAGAGTTCTACCTGGAACTGAAAGAAGGCTTACTGGAGCCGCTGGCAGTGACGGAACGG 
CTGGCCATTATCTCGGTGGTAGGTGATGGTATGCGCACCTTGCGTGGGATCTCGGCGAAATTCTTTGCCGCACTGGCCC 
GCGCCAATATCAACATTGTCGCCATTGCTCAGGGATCTTCTGAACGCTCAATCTCTGTCGTGGTAAATAACGATGATGC 
GACCACTGGCGTGCGCGTTACTCATCAGATGCTGTTCAATACCGATCAGGTTATCGAAGTGTTTGTGATTGGCGTCGGT 
GGCGTTGGCGGTGCGCTGCTGGAGCAACTGAAGCGTCAGCAAAGCTGGCTGAAGAATAAACATATCGACTTACGTGTCT 
GCGGTGTTGCCAACTCGAAGGCTCTGCTCACCAATGTACATGGCCTTAATCTGGAAAACTGGCAGGAAGAACTGGCGCA 
AGCCAAAGAGCCGTTTAATCTCGGGCGCTTAATTCGCCTCGTGAAAGAATATCATCTGCTGAACCCGGTCATTGTTGAC 
TGCACTTCCAGCCAGGCAGTGGCGGATCAATATGCCGACTTCCTGCGCGAAGGTTTCCACGTTGTCACGCCGAACAAAA 
AGGCCAACACCTCGTCGATGGATTACTACCATCAGTTGCGTTATGCGGCGGAAAAATCGCGGCGTAAATTCCTCTATGA 
CACCAACGTTGGGGCTGGATTACCGGTTATTGAGAACCTGCAAAATCTGCTCAATGCAGGTGATGAATTGATGAAGTTC 
TCCGGCATTCTTTCTGGTTCGCTTTCTTATATCTTCGGCAAGTTAGACGAAGGCATGAGTTTCTCCGAGGCGACCACGC 
TGGCGCGGGAAATGGGTTATACCGAACCGGACCCGCGAGATGATCTTTCTGGTATGGATGTGGCGCGTAAACTATTGAT 
TCTCGCTCGTGAAACGGGACGTGAACTGGAGCTGGCGGATATTGAAATTGAACCTGTGCTGCCCGCAGAGTTTAACGCC 
GAGGGTGATGTTGCCGCTTTTATGGCGAATCTGTCACAACTCGACGATCTCTTTGCCGCGCGCGTGGCGAAGGCCCGTG 
ATGAAGGAAAAGTTTTGCGCTATGTTGGCAATATTGATGAAGATGGCGTCTGCCGCGTGAAGATTGCCGAAGTGGATGG 
TAATGATCCGCTGTTCAAAGTGAAAAATGGCGAAAACGCCCTGGCCTTCTATAGCCACTATTATCAGCCGCTGCCGTTG 
GTACTGCGCGGATATGGTGCGGGCAATGACGTTACAGCTGCCGGTGTCTTTGCTGATCTGCTACGTACCCTCTCATGGA 
AGTTAGGAGTCTGA 
>thrB 
ATGGTTAAAGTTTATGCCCCGGCTTCCAGTGCCAATATGAGCGTCGGGTTTGATGTGCTCGGGGCGGCGGTGACACCTG 
TTGATGGTGCATTGCTCGGAGATGTAGTCACGGTTGAGGCGGCAGAGACATTCAGTCTCAACAACCTCGGACGCTTTGC 
CGATAAGCTGCCGTCAGAACCACGGGAAAATATCGTTTATCAGTGCTGGGAGCGTTTTTGCCAGGAACTGGGTAAGCAA 
ATTCCAGTGGCGATGACCCTGGAAAAGAATATGCCGATCGGTTCGGGCTTAGGCTCCAGTGCCTGTTCGGTGGTCGCGG 
CGCTGATGGCGATGAATGAACACTGCGGCAAGCCGCTTAATGACACTCGTTTGCTGGCTTTGATGGGCGAGCTGGAAGG 
CCGTATCTCCGGCAGCATTCATTACGACAACGTGGCACCGTGTTTTCTCGGTGGTATGCAGTTGATGATCGAAGAAAAC 
GACATCATCAGCCAGCAAGTGCCAGGGTTTGATGAGTGGCTGTGGGTGCTGGCGTATCCGGGGATTAAAGTCTCGACGG 
CAGAAGCCAGGGCTATTTTACCGGCGCAGTATCGCCGCCAGGATTGCATTGCGCACGGGCGACATCTGGCAGGCTTCAT 
TCACGCCTGCTATTCCCGTCAGCCTGAGCTTGCCGCGAAGCTGATGAAAGATGTTATCGCTGAACCCTACCGTGAACGG 
TTACTGCCAGGCTTCCGGCAGGCGCGGCAGGCGGTCGCGGAAATCGGCGCGGTAGCGAGCGGTATCTCCGGCTCCGGCC 
CGACCTTGTTCGCTCTGTGTGACAAGCCGGAAACCGCCCAGCGCGTTGCCGACTGGTTGGGTAAGAACTACCTGCAAAA 
TCAGGAAGGTTTTGTTCATATTTGCCGGCTGGATACGGCGGGCGCACGAGTACTGGAAAACTAA 
>thrC 
ATGAAACTCTACAATCTGAAAGATCACAACGAGCAGGTCAGCTTTGCGCAAGCCGTAACCCAGGGGTTGGGCAAAAATC 
AGGGGCTGTTTTTTCCGCACGACCTGCCGGAATTCAGCCTGACTGAAATTGATGAGATGCTGAAGCTGGATTTTGTCAC 
CCGCAGTGCGAAGATCCTCTCGGCGTTTATTGGTGATGAAATCCCACAGGAAATCCTGGAAGAGCGCGTGCGCGCGGCG 
TTTGCCTTCCCGGCTCCGGTCGCCAATGTTGAAAGCGATGTCGGTTGTCTGGAATTGTTCCACGGGCCAACGCTGGCAT 
TTAAAGATTTCGGCGGTCGCTTTATGGCACAAATGCTGACCCATATTGCGGGTGATAAGCCAGTGACCATTCTGACCGC 
GACCTCCGGTGATACCGGAGCGGCAGTGGCTCATGCTTTCTACGGTTTACCGAATGTGAAAGTGGTTATCCTCTATCCA 
CGAGGCAAAATCAGTCCACTGCAAGAAAAACTGTTCTGTACATTGGGCGGCAATATCGAAACTGTTGCCATCGACGGCG 
ATTTCGATGCCTGTCAGGCGCTGGTGAAGCAGGCGTTTGATGATGAAGAACTGAAAGTGGCGCTAGGGTTAAACTCGGC 
TAACTCGATTAACATCAGCCGTTTGCTGGCGCAGATTTGCTACTACTTTGAAGCTGTTGCGCAGCTGCCGCAGGAGACG 
CGCAACCAGCTGGTTGTCTCGGTGCCAAGCGGAAACTTCGGCGATTTGACGGCGGGTCTGCTGGCGAAGTCACTCGGTC 
TGCCGGTGAAACGTTTTATTGCTGCGACCAACGTGAACGATACCGTGCCACGTTTCCTGCACGACGGTCAGTGGTCACC 
CAAAGCGACTCAGGCGACGTTATCCAACGCGATGGACGTGAGTCAGCCGAACAACTGGCCGCGTGTGGAAGAGTTGTTC 
CGCCGCAAAATCTGGCAACTGAAAGAGCTGGGTTATGCAGCCGTGGATGATGAAACCACGCAACAGACAATGCGTGAGT 
TAAAAGAACTGGGCTACACTTCGGAGCCGCACGCTGCCGTAGCTTATCGTGCGCTGCGTGATCAGTTGAATCCAGGCGA 
ATATGGCTTGTTCCTCGGCACCGCGCATCCGGCGAAATTTAAAGAGAGCGTGGAAGCGATTCTCGGTGAAACGTTGGAT 
CTGCCAAAAGAGCTGGCAGAACGTGCTGATTTACCCTTGCTTTCACATAATCTGCCCGCCGATTTTGCTGCGTTGCGTA 
AATTGATGATGAATCATCAGTAA 

Table 2.2: DNA Sequences from E. coli K12 threonine operon
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Figure 2.2: Human beta globin genes (HUMHBB) on chromosome 11. The five beta-

like globin genes are found within a 45 kb cluster in the following order: ε (epsilon) —

present in embryonic Hb, later supplanted by fetal and adult Hb → Gγ (G-gamma)

and Aγ (A-gamma) — expressed in fetal Hb, substituted at birth → δ (delta) and β

(beta) — expressed in the adult, ca. 3% and 97% respectively of total Hb (together

with 2 alfa chains not studied).

>>HUMHBB_genes 
>HBE1_epsilonglobin 
MVHFTAEEKAAVTSLWSKMNVEEAGGEALGRLLVVYPWTQRFFDSFGNLSSPSAILGNPKVKAHGKKVLTSFGDAIKN
MDNLKPAFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFGKEFTPEVQAAWQKLVSAVAIALAHKYH 
>HBG2_Ggammaglobin 
MGHFTEEDKATITSLWGKVNVEDAGGETLGRLLVVYPWTQRFFDSFGNLSSASAIMGNPKVKAHGKKVLTSLGDAIKH
LDDLKGTFAQLSELHCDKLHVDPENFKLLGNVLVTVLAIHFGKEFTPEVQASWQKMVTGVASALSSRYH 
>HBG1_Agammaglobin 
MGHFTEEDKATITSLWGKVNVEDAGGETLGRLLVVYPWTQRFFDSFGNLSSASAIMGNPKVKAHGKKVLTSLGDAIKH
LDDLKGTFAQLSELHCDKLHVDPENFKLLGNVLVTVLAIHFGKEFTPEVQASWQKMVTAVASALSSRYH 
>HBD_deltaglobin 
MVHLTPEEKTAVNALWGKVNVDAVGGEALGRLLVVYPWTQRFFESFGDLSSPDAVMGNPKVKAHGKKVLGAFSDGLAH
LDNLKGTFSQLSELHCDKLHVDPENFRLLGNVLVCVLARNFGKEFTPQMQAAYQKVVAGVANALAHKYH 
>HBB_betaglobin 
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAH
LDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH 

Table 2.3: Human beta globin sequences in FASTA format.

alteration of the molecule function. This illustrates the importance of tertiary
structure in the correct functioning of proteins.

The goal of this section is to classify, by alignment-free methods, the pro-
teins of HUMHBB and compare the results with both the phylogeny of the corre-
sponding genes and with dissimilarity measures based on the multiple alignment
of the sequences.

The sequences were extracted from GenBank database. Figure 2.3 shows a
snapshot of the corresponding webpage.

After extracting the relevant information, the FASTA format file of the se-
quences is created (Tab. 2.3).

This FASTA-format file was the input to NASC-Toolbox described above.
The options chosen were L = 1, which corresponds to using aminoacid frequen-
cies, and cosine dissimilarities , i.e., the angle between vectors as an estimation
of dissimilarity between frequency vectors (Eq. 2.15). The dendrogram obtained
with this method is represented in Fig. 2.4 and the known phylogeny of the Hb
genes is shown in Fig. 2.5.

It is noteworthy the correspondence between both classifications. The clus-
tering obtained with aminoacid frequencies is in accordance with the known
phylogenetic relationships, which provides a insightful example of alignment-
free techniques for sequence classification.

As an additional comparison procedure the multiple alignment of the se-
quences was also performed, using program ClustalW (Thompson et al., 1994).
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�

Figure 2.3: GenBank database entry at National Center for Biotechnology Informa-

tion (NCBI) example – Human beta globin region on chromosome 11.
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Figure 2.4: Dendrogram of HUMHBB. Legend: 1 – ε HBE1 epsilonglobin; 2 – Gγ

HBG2 Ggammaglobin; 3 – Aγ HBG1 Agammaglobin; 4 – δ HBD deltaglobin; 5 – β

HBB betaglobin. The dissimilarity used was the angle between aminoacid frequency

vectors (L = 1) for each sequence, Eq. 2.15.

�

Figure 2.5: Ancestry of the hemoglobin genes. Phylogenetic relationships.

In http://www.people.virginia.edu/ rjh9u/globinevolve.html – used with permission

c© Robert J. Huskey.
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Figure 2.6 shows the output of a online application developed at the EBI3 (Lopez
et al., 2003).

CLUSTAL W (1.82) multiple sequence alignment 
 
 
HBG2_Ggammaglobin       MGHFTEEDKATITSLWGKVNVEDAGGETLGRLLVVYPWTQRFFDSFGNLSSASAIMGNPK 60 
HBG1_Agammaglobin       MGHFTEEDKATITSLWGKVNVEDAGGETLGRLLVVYPWTQRFFDSFGNLSSASAIMGNPK 60 
HBE1_epsilonglobin      MVHFTAEEKAAVTSLWSKMNVEEAGGEALGRLLVVYPWTQRFFDSFGNLSSPSAILGNPK 60 
HBD_deltaglobin         MVHLTPEEKTAVNALWGKVNVDAVGGEALGRLLVVYPWTQRFFESFGDLSSPDAVMGNPK 60 
HBB_betaglobin          MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK 60 
                        * *:* *:*:::.:**.*:**: .***:***************:***:**:..*::**** 
 
HBG2_Ggammaglobin       VKAHGKKVLTSLGDAIKHLDDLKGTFAQLSELHCDKLHVDPENFKLLGNVLVTVLAIHFG 120 
HBG1_Agammaglobin       VKAHGKKVLTSLGDAIKHLDDLKGTFAQLSELHCDKLHVDPENFKLLGNVLVTVLAIHFG 120 
HBE1_epsilonglobin      VKAHGKKVLTSFGDAIKNMDNLKPAFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFG 120 
HBD_deltaglobin         VKAHGKKVLGAFSDGLAHLDNLKGTFSQLSELHCDKLHVDPENFRLLGNVLVCVLARNFG 120 
HBB_betaglobin          VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG 120 
                        ********* ::.*.: ::*:** :*: ****************:*****:* :** :** 
 
HBG2_Ggammaglobin       KEFTPEVQASWQKMVTGVASALSSRYH 147 
HBG1_Agammaglobin       KEFTPEVQASWQKMVTAVASALSSRYH 147 
HBE1_epsilonglobin      KEFTPEVQAAWQKLVSAVAIALAHKYH 147 
HBD_deltaglobin         KEFTPQMQAAYQKVVAGVANALAHKYH 147 
HBB_betaglobin          KEFTPPVQAAYQKVVAGVANALAHKYH 147 
                        ***** :**::**:*:.** **: :** 
�

Figure 2.6: Multiple alignment of HUMHBB proteins using ClustalW program -

available at http://www.ebi.ac.uk/clustalw/. The similarity is marked in the last row

through consensus symbols, which represent the degree of conservation observed in

each column: ‘*’ means that the residues or nucleotides in that column are identical in

all sequences in the alignment, ‘:’ means that conserved substitutions have been ob-

served, according physicochemical criteria, ‘.’ means that semi-conserved substitutions

are observed.

The classification obtained with multiple alignment scores is comparable to
the previous results (not shown). The advantage of multiple alignment is to
easily recognize the conservation segments and the level of similarity of each
aminoacid, which makes this method very insightful in the extraction of substi-
tution and evolutionary processes information.

The previous results show that alignment-free methods were able to clus-
ter the beta globin proteins in accordance with evolutionary information and
multiple alignment dissimilarity calculations.

2.4.4 Natural languages

To demonstrate the strength of alignment-free methods for sequences compar-
ison this last example shows an application to natural language texts. This
example uses an introductory text to a European Union (EU) site on the web,
which is translated in 10 different EU official languages: English (EN), Por-
tuguese (PT), Spanish (SP), Italian (IT), French (FR), German (DE), Dutch
(NL), Danish (DA), Finish (FI), Swedish (SW) and Greek (EL), which was
excluded from this study given its different alphabet.4

The sequences were copied from the web-site http://europa.eu.int, where all
the texts are translated in the official EU languages. The main goal of perform-
ing the classification of the 10 brands with NASC-Toolbox was to evaluate to
what point they were compatible with current evolutionary information from
linguistic studies.

3The European Bioinformatics Institute (EBI) is a non-profit academic organization that
forms part of the European Molecular Biology Laboratory (EMBL).

4These were the official languages before the entrance of 10 new countries in 2004.
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In the following Tab. 2.4 are represented the 10 sequences used in FASTA
format.

The dissimilarity measure applied in this example was the combined Eu-
clidean distance between all pairs of sequences X and Y This is calculated by
extracting, for each of the 10 sequences, the 1-tuple to 4-tuple frequencies fL or
counts cL, which corresponds to the relative abundance of individual letters to
4-mer strings, and calculating all pairwise distances between those vectors (see
Eq. 2.8). The composed distance, similar to Eq. 2.13, is given by the following
Eq. 2.19:

dE∗ =
4∑

L=1

dE
L (X, Y ) (2.19)

The following Fig. 2.7 represents the dendrogram of the classification using
the combined distance defined above.
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�Figure 2.7: Dendrogram with EU languages classification. Classification of EU

languages using combined Euclidean distances between all sequences (L = 1, . . . , 4).

Legend: PT - Portuguese, SP - Spanish, IT - Italian, FR - French, EN - English, DE

- German, DA - Danish, SV - Swedish, NL - Dutch, FI - Finish.

As seen from the figure, there are two main branches corresponding to dis-
tinct groups: the Latin branch (also called the Italic or Romance languages)
that includes PT, SP, IT and FR, and the Germanic branch, including all the
other languages. This classification was even more accurate when joining PT
and SP first and then IT and FR. On the other group DA and SV are clustered
together first (what corresponds to a known classification of Swedish and Dan-
ish, both Scandinavian languages) and with DE after. It is noteworthy that FI
is far apart, which is also known in Linguistic studies since Finish belongs to the
Uralic family while all the other languages studied belong to the Indo-European
family.5

5Feature not totally captured with this classification since FI was clustered with the Ger-
manic branch instead of being in a separate group.
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>>EU 
>EnglishEN 
The History of the European Union, presents the chronology of important 
accomplishments of the EU and its institutions. It is a selection of events, updated on a 
monthly basis. This selection is based on the Bulletin of the European Union (published 
10 times a year), and is fully revised once a year with the annual General Report on the 
Activities of the European Union. From Robert Schuman's declaration of 1950 to the 
first enlargement waves in the 70's and the 80's, from the establishment of the Single 
Market in 1993 to the introduction of the euro notes and coins on January 1st, 2002, 
and the opening of enlargement negotiations with the countries of Eastern and Central 
Europe. 
>PortuguesePT 
A História da União Europeia apresenta a cronologia das mais importantes realizações 
da UE e das suas instituições. Trata-se de uma selecção de acontecimentos, 
actualizada numa base mensal. Esta selecção baseia-se no Boletim da União 
Europeia (publicado 10 vezes por ano) e revista uma vez por ano em função do 
Relatório Geral das Actividades da União Europeia. Da Declaração de Robert 
Schuman de 1950 até à primeira vaga de alargamentos nas décadas de 70 e de 80 e 
da criação do Mercado Interno em 1993 à introdução das notas e moedas em euros 
em 1 de Janeiro de 2002 e ao lançamento das negociações de alargamento com os 
países da Europa Central e Oriental. 
>SpanishSP 
La Historia de la Unión Europea presenta la cronología de los acontecimientos más 
importantes protagonizados por la UE y sus instituciones. Es una selección de 
acontecimientos, actualizada mensualmente, basada en el Boletín de la Unión 
Europea(que se publica 10 veces al año) y revisada completamente una vez al año de 
acuerdo con el Informe General sobre las Actividades de la Unión Europea. En ella 
puede encontrarse desde la declaración de Robert Schuman de 1950 hasta las 
primeras oleadas de ampliación en las décadas de los 70 y los 80, y desde el 
establecimiento del Mercado Único en 1993 hasta la introducción de los billetes y 
monedas de euro el 1 de enero de 2002 y el inicio de las negociaciones de ampliación 
con los países de Europa Central y Oriental. 
>ItalianIT 
La Storia dell'Unione europea è una presentazione cronologica dei principali eventi che 
hanno segnato la vita dell'Unione europea e delle sue istituzioni. È una selezione di 
evento che viene aggiornata mensilmente sulla base del Bollettino dell'Unione europea 
(10 numeri all'anno) e rivista ogni anno alla luce della Relazione generale sull'attività 
dell'Unione europea, e che va dalla dichiarazione di Robert Schuman del 1950 ai primi 
allargamenti degli anni Settanta e Ottanta, passando per la instaurazione del mercato 
unico nel 1993, l'immissione in circolazione delle monete e banconote in euro il 1 
gennaio 2002 e il varo dei negoziati di adesione con i paesi dell'Europa centrale e 
orientale. 
>FrenchFR 
L'histoire de l'Union européenne donne un aperçu chronologique des principales 
réalisations de l'UE et de ses institutions. Il s'agit d'une sélection d'événements mise à 
jour tous les mois. Cette sélection repose sur le Bulletin de l'Union européenne (publié 
dix fois par an) et est entièrement revue chaque année sur la base du Rapport général 
sur l'activité de l'Union européenne. Les événements repris vont de la déclaration de 
Robert Schuman, en 1950, aux premiers élargissements des années 70 et 80, de la 
mise en place du marché unique, en 1993, à l'introduction des billets et des pièces en 
euros, le 1er janvier 2002, et à l'ouverture des négociations d'adhésion avec les pays 
d'Europe centrale et orientale. 
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>GermanDE 
Die Geschichte der Europäischen Union enthält eine chronologische Übersicht über die 
wichtigsten Errungenschaften der EU und ihrer Organe. Es handelt sich um eine 
monatlich aktualisierte Auswahl von Ereignissen, die sich auf das Bulletin der 
Europäischen Union (erscheint zehnmal im Jahr) stützt und im Rahmen des 
Gesamtberichts über die Tätigkeit der Europäischen Union einmal im Jahr vollständig 
aktualisiert wird. Sie reicht von der Erklärung Robert Schumans aus dem Jahr 1950 bis 
zu den ersten Erweiterungen in den 70er und 80er Jahren, von der Errichtung des 
Binnenmarktes im Jahr 1993 bis zur Einführung der Euro-Banknoten und -Münzen am 
1.  Januar 2002 und der Aufnahme der Erweiterungsverhandlungen mit den Ländern 
Mittel- und Osteuropas. 
>NetherlandsNL 
De geschiedenis van de Europese Unie bevat een chronologisch overzicht van de 
belangrijkste stappen in de ontwikkeling van de EU en haar instellingen. Het is een 
selectie van gebeurtenissen die maandelijks wordt bijgewerkt. Deze selectie is 
gebaseerd op het Bulletin van de Europese Unie, dat 10 keer per jaar verschijnt, en op 
het Algemeen verslag over de werkzaamheden van de Europese Unie, waarin 
eenmaal per jaar al deze informatie wordt samengevat. Het overzicht loopt van de 
verklaring van Robert Schuman van 1950, via de eerste uitbreidingsgolven in de jaren 
zeventig en tachtig en de totstandbrenging van de interne markt in 1993, tot de 
invoering van de euromunten en - biljetten op 1 januari 2002 en het begin van de 
toetredingsonderhandelingen met de landen van Midden- en Oost-Europa. 
>DanishDA 
I Den Europæiske Unions historie finder man en kronologisk oversigt over de vigtigste 
resultater, EU og EU's institutioner har opnået. Det er et udvalg af begivenheder, som 
ajourføres hver måned. Udvælgelsen sker på grundlag af Bulletinen for Den 
Europæiske Union (udkommer 10 gange om året) og revideres fuldstændigt en gang 
om året i den almindelige beretning om Den Europæiske Unions virksomhed. Fra 
Robert Schumans erklæring i 1950 til de første bølger af udvidelser i 1970'erne og 
1980'erne, fra oprettelsen af det indre marked i 1993 til indførelsen af eurosedler og -
mønter den 1. januar 2002 og indledningen af udvidelsesforhandlinger med landene i 
Øst- og Centraleuropa. 
>FinishFI 
Tässä Euroopan unionin historiassa käydään läpi EU:n ja sen toimielinten tärkeimmät 
saavutukset aikajärjestyksessä. Kyseessä on kuukausittain päivitettävä kooste 
tapahtumista. Kooste perustuu Euroopan unionin tiedotteeseen (ilmestyy 10 kertaa 
vuodessa). Kerran vuodessa tehtävän perusteellisemman tarkistuksen pohjana on 
vuosittain ilmestyvä Yleiskertomus Euroopan unionin toiminnasta. Katsaus ulottuu 
Ranskan ulkoministerin Robert Schumanin vuonna 1950 antamasta, Euroopan hiili- ja 
teräsyhteisön perustamiseen johtaneesta julistuksesta ensimmäisiin 
laajentumiskierroksiin 1970- ja 1980-luvulla, yhtenäismarkkinoiden perustamiseen 
vuonna 1993, euroseteleiden ja -kolikoiden käyttöönottoon 1. tammikuuta 2002 sekä 
laajentumisneuvotteluiden käynnistämiseen Keski- ja Itä-Euroopan maiden kanssa. 
>SwedishSV 
Europeiska unionens historia ger en kronologisk översikt över viktiga händelser i EU:s 
och EU-institutionernas historia. Det är ett urval som uppdateras varje månad. 
Uppgifterna är hämtade från Europeiska unionens bulletin, som utkommer tio gånger 
om året, och från den årliga Allmänna rapporten om Europeiska unionens verksamhet. 
I översikten hittar du allt, från Robert Schumans deklaration 1950, de första 
utvidgningsomgångarna på sjuttio- och åttiotalen och upprättandet av den inre 
marknaden 1993 till övergången till mynt och sedlar i euro den 1 januari 2002 och de 
pågående anslutningsförhandlingarna med länderna i Central- och Östeuropa. 
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2.5 Conclusions

Sequence comparison by alignment has both fundamental and computational
limitations. The conservation of contiguity underlying alignment is at odds with
genetic recombination, which includes shuffling subgenomic DNA fragments.
This limitation is particularly clear by recalling that, regardless of the progress
in the identification of scoring matrices, alignment fails to recognize proteomic
sequences with less than 20% sequence identity. In addition, optimal alignment
is computationally too heavy for efficient querying the sharply inflating genomic
and proteomic public databases. The increasing awareness of those limitations
is driving the proposition of a diversity of new foundations for alignment-free
sequence analysis, hereby reviewed. The diversity of theoretical foundations
explored by the reports reviewed here ranges from linear algebra and statistics,
to information theory, Kolmogorov complexity and chaos theory. The recent
abundance of successful applications of alignment-free sequence analysis, and
the increasing focus on practical implementations makes it a safe prediction
that the next few years will see some of them become widely used for functional
annotation and phylogenetic study.
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Chapter 3

Universal sequence map

(USM) of arbitrary discrete

sequences

Published in: Almeida, JS. and Vinga, S. (2002). Universal Sequence Map
(USM) of arbitrary discrete sequences. BMC Bioinformatics 3:6.

Background For over a decade the idea of representing biological sequences
in a continuous coordinate space has maintained its appeal but not been fully
realized. The basic idea is that any sequence of symbols may define trajectories
in the continuous space conserving all its statistical properties. Ideally, such a
representation would allow scale independent sequence analysis – without the
context of fixed memory length. A simple example would consist on being able to
infer the homology between two sequences solely by comparing the coordinates
of any two homologous units.

Results We have successfully identified such an iterative function for bijec-
tive mapping of discrete sequences into objects of continuous state space that
enable scale-independent sequence analysis. The technique, named Universal
Sequence Mapping (USM), is applicable to sequences with an arbitrary length
and arbitrary number of unique units and generates a representation where map
distance estimates sequence similarity. The novel USM procedure is based on
earlier work by these and other authors on the properties of Chaos Game Repre-
sentation (CGR). The latter enables the representation of 4 unit type sequences
(like DNA) as an order free Markov chain transition table. The properties of
USM are illustrated with test data and can be verified for other data by using the
accompanying web-based tool (http://bioinformatics.musc.edu/∼jonas/usm/).

Conclusion USM is shown to enable a statistical mechanics approach to
sequence analysis. The scale independent representation frees sequence analysis
from the need to assume a memory length in the investigation of syntactic rules.
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3.1 Background

For over a decade the idea of representing biological sequences in a continuous
coordinate space has maintained its appeal but not been fully realized (Román-
Roldán et al., 1996; Nady, 1994; Tino, 1999). The basic idea is that sequences of
symbols, such as nucleotides in genomes, aminoacids in proteomes, repeated se-
quences in Multi-Locus Sequence Typing (MLST) (Enright et al., 2000), words
in languages or letters in words, would define trajectories in this continuous
space conserving the statistical properties of the original sequences (Tino, 1999;
Jeffrey, 1990; Hill and Singh, 1997; Forte et al., 1998; Fiser et al., 1994; De-
schavanne et al., 1999). Accordingly, the coordinate position of each unit would
uniquely encode for both its identity and its context, i.e. the identity of its
neighbors (Roy et al., 1998). Ideally, the position should be scale-independent,
such that the extraction of the encompassing sequence can be performed with
any resolution, leading to an oligomer of arbitrary length. The pioneer work by
Jeffrey published in 1990 (Jeffrey, 1990) achieved this for genomic sequences by
using the Chaos Game Representation technique (CGR), defining a unit-square
where each corner corresponds to one of the 4 possible nucleotides. Subsequent
work further explored the properties of CGR of biological sequences, but two
main obstacles prevented the realization of its early promise – lack of scala-
bility with regard to the number of possible unique units and inability to rep-
resent succession schemes. Meanwhile, Markov chain theory already offered a
solid foundation for the identification of discrete spaces to represent sequences
as cross-tabulated conditional probabilities – Markov transition tables. This
Bayesian technique is widely explored in bioinformatic applications seeking to
measure homology and align sequences (Durbin et al., 1998). In a recent re-
port (Almeida et al., 2001) we have shown that, for genomic sequences, Markov
tables are in fact a special case of CGR, contrary to what had been suggested
previously (Goldman, 1993). This raised the prospect of an advantageous use
of iterative maps as state spaces not only for representation of sequences but
also to identify scale independent stochastic models of the succession scheme.
That work (Almeida et al., 2001) is hereby extended and further generalized to
be applicable to sequences with arbitrary numbers of unique component units,
without sacrificing the inverse correlation between distance in the map and se-
quence similarity independent of position. Accordingly, the technique is named
Universal Sequence Map (USM).

3.2 Results

The Results are divided in two sections. The first section presents the foun-
dations for identifying an iterative function with the desired properties. The
second section describes algorithm implementation illustrated with a sample
data set. Both sections are best understood by using the accompanying web-
based tool (see Abstract for address) where the different steps of the procedure
can be verified and reproduced with the test data or the reader’s own data.
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3.2.1 Conceptual foundations

The USM generalization proposed here is achieved by observing two stipulations:
A – alternative units in the iterative map are positioned in distinct corners of
unit block structures; and B – sequence processing is bi-directional.

Basis for USM generalization:
A. Each unique unit is referenced in the map for positions that are at equal n-

distances from each other, and possibly, but not necessarily, defining a complete
block structure (Tino, 1999). n-distances are defined as the maximum distance
along any dimension, e.g. n-distance between [a1, a2, . . . , an] and [b1, b2, . . . , bn]
is max(|b1 − a1|, |b2 − a2|, . . . , |bn − an|), see also Eq. 3.3. It will be shown
that this stipulation leads to the definition of spaces where distance is inversely
proportional to sequence similarity, independent of position. In this respect,
USM departs from previous attempts to generalize chaos game representation
that conserve the bi-dimensionality of the original CGR representation (Fiser
et al., 1994; Basu et al., 1997; Pleissner et al., 1997; Solovyev et al., 1993).

B. The iterative positioning is performed in both directions. Therefore, there
will be two sets of coordinates, the result of forward and backward iterative op-
erations. It will be shown that, by adding backward and forward map distances
between two positions, the number of identical units in the encompassing se-
quences can be extracted directly from the USM coordinates. As a consequence,
two arbitrary positions can be compared, and the number of contiguous simi-
lar units is extracted by an algebraic operation that relies solely on the USM
coordinates of those very two positions.

3.2.2 Implementation of USM algorithm

The algorithm will be first illustrated for the first and last stanzas of Wendy
Cope’s poem “The Uncertainty of the Poet” (Cope, 1992), respectively, “I am
a poet. I am very fond of bananas.” and “I am of very fond bananas. Am I a
poet?”. The procedure includes four steps:

1. Identification of unique sequence units – e.g. these two stanzas have 19
unique characters, (Tab. 3.1), i.e. uu = 19.

2. Replacement of each unique unit (in this case units are alphabetic charac-
ters) by a unique binary number – e.g. in Tab. 3.1 each of the 19 unique units is
replaced by its rank order minus one, represented as a binary number. Other ar-
rangements are possible leading to the same final result as discussed below. The
minimum number of dimensions necessary to accommodate uu unique units, n,
is the upper integer of the length of its binary representation: n = dlog2(uu)e.
For W. Cope’s stanzas, n = dlog2(19)e = 5. The binary reference coordinates
for the unique units are defined by the numerals of the binary code – for ex-
ample, a will be assigned to the position U‘a’ = [0, 0, 1, 0, 1]. Each symbol is
represented as a corner in a n-dimensional cube (Tab. 3.1). The purpose of
these first two steps is to guarantee that the reference positions for each unique
sequence unit component are equidistant (stipulation A) in the n-metric defined
above. Any other procedure resulting in equidistant unique positions will lead
to the same final results independently of the actual binary numbers used or
the number of dimensions used to contain them.
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Unit Bin.Code
00000

. 00001
? 00010
A 00011
a 00101
b 00110
d 00111
e 01000
f 01001
I 00100
m 01010
n 01011
o 01100
p 01101
r 01110
s 01111
t 10000
v 10001
y 10010

Table 3.1: Binary codes for the 19 possible units occurring in the two stanzas. The

first unit is a space character “ ”.

3. The CGR procedure (Jeffrey, 1990) (Eq. 3.1) is applied independently
to each coordinate, j = 1, 2, . . . , n, for each unit, i, in the sequence of length
k, uj(i) with i = 1, 2, . . . , k, and starting with a random map position taken
from a uniform distribution in [0, 1]n, i.e. Unif([0, 1]n). The random seed is
not fundamentally different from using the middle position in the map as is con-
ventional in CGR and it has the added feature that it prevents the invalidation
of the inverse logarithmic proportionality of n-distance to sequence similarity
(Almeida et al., 2001) for sequences that start or end with the same motif.

For a sequence with k units, the USM positions i = 1, . . . , k for the j =
1, . . . , n dimensions are determined as follows:

{
USM

(0)
j ∼ Unif([0, 1])

USM
(i)
j = USM

(i−1)
j + 1

2

(
u

(i)
j − USM

(i−1)
j

)
= 1

2USM
(i−1)
j + 1

2u
(i)
j

(3.1)
4. The previous step generated k positions in a n-dimension space by pro-

cessing the sequence forward (Eq. 3.1). This subsequent step adds an additional
set of n dimensions by implementing the same procedure backward (Eq. 3.2),
again starting at random positions for each coordinate. Consequently the first n

dimensions of USM will be referred to as defining a forward map and the second
set of n dimensions will define a backward map. Put together, the bi-directional
USM map defines a 2n-unit block structure.

The n additional backward coordinates are determined as follows:
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{
USM

(k+1)
n+j ∼ Unif([0, 1])

USM
(i)
n+j = 1

2USM
(i+1)
n+j + 1

2u
(i)
j

(3.2)

The forward USM map for genomic sequences, where uu = 4, and, conse-
quently, n = 2, is the same as the result generated by CGR. However, by freeing
the iterative map from the dual-dimensional constraint of conventional CGR,
the USM forward map alone achieved the goal of producing a scale independent
representation of sequences of arbitrary number of unique units. These prop-
erties will be briefly illustrated with W. Cope’s example. The 16th unit of the
first stanza, “I am a poet. I am very fond of bananas.”, has USM coordinates
USM

(16)
[1,...,2n] =[0.02, 0.01, 0.63, 0.00, 0.53, 0.07, 0.30, 0.52, 0.27, 0.57]. The

first n = 5 coordinates, the position in the forward map, can now be used, by
reversing Eq. 3.1 (Almeida et al., 2001; Goldman, 1993), not only to extract the
identity the unit i = 16 but also the identity of the preceding units:

–using forward coordinates alone (0.0156, 0.0138, 0.6314, 0.0001, 0.5338)
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The same procedure can be applied to the remaining n = 5 coordinates, the
position in the backward map, to extract the identity of the succeeding units,
now ordered backwards.

–using backward coordinates alone (0.0703, 0.3004, 0.5169, 0.2742, 0.5652)

��

00101
01010
00000
10001
01000
01110
10010
00000
01001
01100
01011
00111
00000
01100
01001
00000
00110
00101
01011
00101
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00101
01111
00001

00101
01010
00000
10001
01000
01110
10010
00000
01001
01100
01011
00111
00000
01100
01001
00000
00110
00101
01011
00101
01011
00101
01111
00001
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� The length of the sequence that can be recovered from a position in the
CGR or USM space is only as long as the resolution, in bits, of the coordinates
themselves. In addition, the relevance of these iterative techniques is not asso-
ciated with the property of recovering sequences as much as with the ability to
recover the succession schemes, e.g. the Markov probability tables. It has been
recognized for almost a decade that the density of positions in unidirectional, bi-
dimensional, iterated CGR maps (e.g. of genomic sequences, uu = 4 → n = 2)
defines a Markov table (Almeida et al., 2001; Goldman, 1993). The complete
accommodation of Markov chains in unidirectional USM (i.e. either forward or
backward, which is an equivalent to a multidimensional solution for CGR) can
be quickly established by noting that the identity of a quadrant is set by its
middle coordinates (Goldman, 1993). In order to extract the Markov format,
for an arbitrary integer order ord, each of the two n-unit hypercubes, the set
of n or backward coordinates, would be divided in q = 2n·(ord+1) equal quad-
rants and the quadrant frequencies rearranged (Almeida et al., 2001). The use
of quadrant to designate what is in fact a sub-unit hypercube is a consonance
with the preceding work on bidimensional CGR maps (Almeida et al., 2001),
where it was shown that since any number of subdivisions can be considered
in a continuous domain, the density distribution becomes an order-free Markov
table that accommodates both integer and fractal memory lengths. The extrac-
tion of Markov chain transition tables from USM representations, both forward
and backward, is included in the accompanying web-based application (see Ab-
stract).
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Above, the USM procedure was shown to allow for the representation of
sequences as multidimensional objects without loss of identity or context. These
objects can now be analyzed to characterize the sequences for quantities such as
similarity between segments or entropy (Román-Roldán et al., 1994; Oliver et al.,
1993) within the sequence. In Figure 3.1 the 10-dimensional object defined by�
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Figure 3.1: Representation of the USM of the two stanzas,respectively dark and light

spheres connected by dashed lines, in a reduced 3-dimension space obtained using the

first three principal components, PC1,2,3. In a) the units corresponding to the segment

“very fond of” in both stanzas are connected by solid lines. The procedure is repeated

in b) for the segment “bananas.”. These figures illustrate the property that similar

segments converge in the USM representation, which is reflected by the docking of

homologous units. The factorization for dimensionality reduction serves visualization

purposes only. The variance represented by each of the three principal components is

40%, 13% and 11%, respectively.

the USM positions of the two stanzas was projected in 3-dimensions by principal
component analysis. The dimensionality reduction by principal factor extraction
has visualization purposes only. As established above, the minimum necessary
dimensionality of the USM state space is set by the binary logarithm of the
number of unique units. Nevertheless, the sequence variance associated with
each component is provided in the figure legend. In Figure 3.1a, the segments
“very fond of” in the two stanzas are linked by solid lines to highlight the fact
that sequence similarity is reflected by spatial proximity of USM coordinates.
The representation is repeated in Fig. 3.1b with solid lining of the segment
“bananas”. The matching of the two segments of the second stanza (light) to
the similar segments of the first stanza (dark) is, again, visually apparent.

The USM algorithm determines that similar sequences, or segments of se-
quences, will have converging iterated trajectories: the distance will be cut
in half for every consecutive similar unit.1 This property was noticed before
for CGR of genomic sequences (Almeida et al., 2001), and will be further ex-
plored here for USM generalization. In that preceding work it was shown that
the number of similar consecutive units can be approximated by a symmetrical
logarithmic transformation of the maximum distance between two positions in

1See Eq. 1.7 on page 19.
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either of the dimensions (n-distance), d.

d = − log2(max |USMunidirectional|) (3.3)

Since the USM coordinates include two CGR iterations per dimension, one
forward and another backward, two distances can be extracted. The first
1, . . . , n coordinates define a forward similarity estimate, df , and the second
n + 1, . . . , 2n coordinates can be used to estimate backward similarity, db. The
former measures similarity with regard to the units preceding the one being
compared and the latter does the same for those succeeding that same units.
Therefore, the forward and backward distances between the positions i and j

of two sequences, a and b, with a length of ka and kb, respectively, would be
calculated as described by Eq. 3.4, defining two rectangular matrices, df and
db, of size ka x kb (Fig. 3.2a,b).
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Figure 3.2: Cross-tabulation of similarity between positions of the two stanzas. The

figures can be reproduced using accompanying web based USM tool (see Abstract for

URL address, test data also included). a) forward distance, df (Eq. 3.4); b) backward

distance, db (Eq. 3.4); c) bi-directional similarity, D, compensated for P3 = 0.5, n =

4.25 (Eq. 3.11). Notice that the values of diagonals between similar segments estimate

the number of units in the segments, although each D value is computed solely from a

single pairwise comparison of USM coordinates; d) Compounded similarity, Dc, with

a maximum for the mid-position of the similar segments (Eq. 3.12).

df (ai, bj) = − log2(max |USMb
(j)
1,...,n − USMa

(i)
1,...,n|)

db(ai, bj) = − log2(max |USMb
(j)
n+1,...,2n − USMa

(i)
n+1,...,2n|)

(3.4)
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However, the values of d necessarily overestimate the number of similar con-
tiguous units preceding (df , illustration for stanza comparison in Fig. 3.2a) or
succeeding (db, illustration for stanza comparison in Fig. 3.2b) the positions be-
ing compared. The value of d would be the exact number of contiguous similar
units, h, if the starting positions for the similar segments were at a n-distance
of 1, e.g. if they were in different corners of the unit hyper-dimensional USM
cube. Since the initial distance is always somewhat smaller, the homology, h,
measured as the number of consecutive similar units, will be smaller than d

(Eq.3.5).

d = h + φ, φ ≥ 0 (3.5)

The contribution of φ to the similarity distance, d, can be estimated from the
distribution of positions in the USM map of a random sequence. A uniformly
random sequence (Tino, 1999; Oliver et al., 1993; Mata-Toledo and Willis, 1997)
will occupy the USM space uniformly, and, for that matter, so will the random
seed of forward and backward iterative mapping, respectively Eq. 3.1 and 3.2.
Therefore, a uniform distribution is an appropriate starting point to estimate
the effect of φ , the over-determination of h by d (Eq. 3.5). Accordingly, for a
given x ∈ [0, 1], the probability, P0, that any two coordinates, x1 and x2, are
located within a radius r ∈ (0, 1) is given by Eq. 3.6.

P0(r) = P0(4x < r) = r(2− r), r ∈ (0, 1) (3.6)

Since Po(r) is the probability of two points chosen randomly from a uni-
form distribution Unif([0, 1]) being at a distance less than r from each other,
for any set of n coordinates in the USM, the likelihood of finding another po-
sition within a block distance of r would be described by raising Eq. 3.6 to
the n exponent. Finally, recalling from Eq. 3.3 that sequence similarity can be
obtained by a logarithmic transformation of r, the probability that the unidi-
rectional coordinates of two random sequences are at a similar length d > φ

is described by Eq. 3.7. The simplicity of the expansion for higher dimensions
highlights the order-statistics properties (Arnold et al., 1992) of the n-metric
introduced above (Eq. 3.3). It is noteworthy that the model for the likelihood
of over-determination is the null-model, e.g. the comparison of actual sequences
is evaluated against the hypothesis that the similarity observed happened by
chance alone.

P1(φ) = P1 (φ ≥ − log2 (max(r))) = (21−φ − 2−2φ)n, r ∈ (0, 1)n (3.7)

Finally, it is also relevant to recall that the null model for d (Eq. 3.7 for
unidirectional comparisons, bi-directional null models are derived below) allows
the generalization for non-integer dimensions. For example, the 19 unique unites
found in the two stanzas (Tab. 3.1), define forward and backward USM maps
in 5 dimensions each. However the 5th dimension is not fully utilized, as that
would require 25 = 32 unique units. Therefore, if there is no requirement for
an integer result, the effective value of n for the two stanzas can be refined as
being n = log2(19) = 4.25.
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An estimation of bi-directional similarity will now be introduced that adds
the forward and backward distance measures df and db. The motivation for this
new estimate is the the determination of the similar length of the entire similar
segment between two sequences solely by comparing any two homologous units.
Accordingly, since df is an estimate of preceding similarity and db provides
the succeeding similarity equivalent the sum of the two similar distances, D,
(Eq. 3.8) will estimate of the bi-directional similarity, e.g. the length of the
similar segment, H.

D = df + db = H + φ, φ ≥ 0 (3.8)

As illustrated later in the implementation, for pairwise comparisons of ho-
mologous units of similar segments, all values of D and, consequently, of φ, are
exactly the same. This result could possibly have been anticipated from the
preceding work (Almeida et al., 2001) by noting that the value of d between
two adjacent homologous units differs exactly by one unit. However, this re-
sult was in fact a surprise and one with far reaching fundamental and practical
implications.

Similarly to unidirectional similarity estimation, d, the bi-directional esti-
mate, D, being the sum of two overestimates, is also overestimated by a quantity
to be defined, φ (Eq. 3.8). The derivation of an expression for the bi-directional
overestimation will require the decomposition of P1 (Eq. 3.7) for two cases,
comparison between unidirectional coordinates of similar quadrants, P1a, and
of opposite quadrants, P1b, as described in Eq. 3.9. Recalling from Eq. 3.2,
positions in the same quadrant correspond to sequence units with the same
identity, and positions in opposite quadrants correspond to comparison between
coordinates of units with a different identity.

P1(φ, n) =
(

P1a(φ) + P1b(φ)
2

)n

⇔ Eq. 3.7

P1a(φ) =

{
1 if φ < 1(
22−φ − 22−2φ

)
otherwise

(3.9)

P1b(φ) =

{
22−φ − 21−2φ if φ < 1
21−φ otherwise

The need for the distinction between same and opposite quadrant compar-
ison, which is to say between similar and between dissimilar sequence units, is
caused by the fact that same quadrant comparisons are more likely to lead to
higher values of d. As illustrated above for the 16th unit of the first stanza,
the forward and backward coordinates must fall in the same quadrant. Con-
sequently, the similar pattern of same and opposite quadrant comparisons for
each dimension will be reflected as a bias in the bi-directional overestimation.
The determination of probability, P2, of over-determination between sums of
independent unidirectional similarity estimates is derived in Eq. 3.10.

P2(φ, n) = 1−
∫ φ

0

(1− P1(φ− γ)) ·
(
−dP1(γ, n)

dγ

)
dγ (3.10)



74 3. UNIVERSAL SEQUENCE MAP (USM)

The probability of bi-directional over-determination, can now be established
by using the same and opposite unidirectional comparison expressions presented
in Eq. 3.9. The resulting expression for similarity over-determination by the
distance between bi-directional USM coordinates, P3, is presented in Eq. 3.11.

P3(φ, n) =
(

P3a(φ) + P3b(φ)
2

)n

6= P2(φ, n)

P3a(φ) = 1−
∫ φ

0

(1− P1a(φ− γ)) ·
(
−dP1a(γ, n)

dγ

)
dγ (3.11)

P3b(φ) = 1−
∫ φ

0

(1− P1b(φ− γ)) ·
(
−dP1b(γ, n)

dγ

)
dγ
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� Figure 3.3: Probability distribution of similarity estimates for the uniformly random

sequence null model – e.g. experimental values deviating from this model would in-

dicate real homology, as in Fig. 3.4. The dark lines represent the numerical solution

for the bi-directional over-determination, P3 (Eq. 3.11), for different dimensionalities,

n, identified by numbers in the plot. The gray lines represent the numerical solution

for the same values of n, for the uni-directional over-determination, P1 (Eq. 3.9). The

solution for the dimensionality of the two stanzas, n = log2(19) = 4.25, is highlighted

by a thick line, for both P3 (thick dark line) and P1 (thick gray line).

In Figure 3.3, the probability distribution for both unidirectional (P1, in
gray) and bi-directional (P3, in black) comparisons is represented for different
dimensions, n. It is clearly apparent that the over-determination becomes much
less significant as dimensionality increases. From a practical point of view, the
over-determination is of little consequence because the computational load of
comparing sequences corresponds mostly to the identification of candidate pair-
ing combinations. The fact that the n-metric unidirectional distances, df and db,
defined in Eq. 3.4, and bi-directional D, defined in Eq. 3.8, are over-determined
implies that the identification of similar segments between two sequences will
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include false positives but will not generate false negatives. The false positive
identifications can be readily recognized by comparing the sequences extracted
from the coordinates, as demonstrated above for the 16th unit of the first stanza.
Nevertheless, since over-determination will necessarily occur, its probability dis-
tribution was identified (Eq. 3.11, Fig. 3.3). This can also be achieved for indi-
vidual values by solving Eq. 3.11 for the value of observed. For example, for the
conditions of the two stanzas, the value of φp1 = 0.5, n = 4.25 is 0.71 sequence
units, which is the expected median unidirectional over-determination, P1, of df

and db (Eqs. 3.5, 3.7). The corresponding probability of bi-directional overde-
termination, P3, should be somewhat above twice that value. Using Eq. 3.11,
the value obtained is 1.67 similar units. Finally, it is worthy to stress that the
expressions for calculation of likelihood of arbitrary levels of over-determination
(Eq. 3.5–3.11) can be inverted to anticipate the level of over-determination for
arbitrary probability levels. This use of the null random model is also included
in the accompanying online tool (see Abstract for URL).

3.3 Discussion

H is the number of contiguous units that are similar between the two sequences
aligned at the positions being compared (Eq. 3.8). This value is estimated by
D, which is the sum of the overestimated number of preceding, df , and suc-
ceeding, db, homologous units (Eq. 3.4, 3.5 and 3.8). The determination of
these similarity estimates, df and db, was illustrated for the two stanzas in
Fig. 3.2a,b. The same values compensated for over-determination at P3 = 0.5
are represented in Fig. 3.2c. The striking property of bi-directional similarity
(H, Eq. 3.8) is that the D values obtained for any two homologous pair from
similar segments are exactly the same. That value is an estimator of the length
of the entire similar segment, H (Eq. 3.11). This is further illustrated in Fig. 3.5
for comparison of genomic sequences, where it is also observed that the values
of the distances between similar segments are constant and estimate the similar
length. This was a somewhat unexpected property of enormous practical value
since the length of the similar segment can be determined by a single pairwise
comparison between any of analogous positions. Consequently, when compar-
ing two sequences of length ka and kb to identify all similar segments of length
w or above, kakb/w pairwise comparisons will suffice. In addition, each pair-
wise comparison is now achievable with a single algebraic operation (Eq. 3.8)
rather than requiring the conventional dynamic programming approach (Durbin
et al., 1998). The computational effort of positioning database sequences in the
USM state space occurs at the level of database indexing. Consequently, search
algorithms based on the USM state space representation will necessarily lead
to speedier implementations. In order to facilitate the comparison with dy-
namic programming, the software library of functions, in MATLAB format,
Mathworks Inc., for the determination of USM coordinates is also provided
(http://bioinformatics.musc.edu/∼jonas/usm/).

Additional measures of similarity can be derived for specific practical pur-
poses using bi-directional and unidirectional d values. For example, the use
of docking algorithms to align sequences would benefit from a measure with a
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maximum value in the center of the similar segments. This could be provided
by defining a compounded similarity measure, Hc, as suggested in Eq. 3.12. The
behavior of Hc, which would be obtained by the overestimated value of Dc, is
illustrated for the two test stanzas in Fig. 3.2d.

Hc = hf · hb

Dc = df · db + φ
(3.12)

The detection of similar segments in arbitrary sequences using D becomes
very effective as the length of the similar segment increases. This was clear in
the distribution of over-determination in Fig. 3.3 but it is even more so when
the distances between sequences with homologous segments are represented.
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Figure 3.4: Cumulative distribution of bi-directional similarity, D, between the two

stanzas and comparison of genomic and proteomic sequences of E. coli threonine gene

A, thrA (2463 base pairs for the genomic sequence and 820 aminoacids for the pro-

teomic sequence), with B, thrB (933 base pairs for the genomic sequence and 310

aminoacids for the proteomic sequence). The null model expectation, that of uniform

random distribution of units, is represented by dashed lines, obtained using Eq. 3.11.

for n = 2 (half dimensionality of USM state space for DNA) and n = 4.3 (half dimen-

sionality of USM state space for proteins, n = 4.32, and for the two stanzas, n = 4.25).

The solid lines represent the actual cumulative distribution of D values.

In Figure 3.4 the distances between the two stanzas are represented alongside
the distances to be expected if no homology existed, apart from the coincidental
(random null model, using Eq. 3.11). It can be observed for the comparison of
the two stanzas (Fig. 3.4, gray lines) that H values above 4 units occur with
higher frequency than allowed by the random distribution model, reflecting the
presence of real homologous segments (similar words).

USM of biological sequences
The representation of biological information as discrete sequences is dom-

inated by the fact that genomes are sequences of discrete units and so are
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the products of its transcription and translation. However, not all biological
sequences are composed of units that are functionally equally distinct from
each other, as is the case of proteomic data and Multi-Locus Sequence Typ-
ing (MLST), (Enright et al., 2000). To avoid the issue of unit inequality and
highlight the general applicability of the USM procedure, stanzas of a poem
were used to illustrate the implementation instead. Nevertheless the original
motivation of analyzing biological sequences is now recalled.

In the preceding report the authors have illustrated the properties of uni-
directional n-metric estimation of similarity for the threonine operon of E. coli
(Almeida et al., 2001). The same two two regions of thrA and thrB sequences
of E.coli K-12 MG1655 are compared in Fig. 3.5 to highlight the advancement
achieved by USM. It should be recalled that the particular dimensionality of
DNA sequences, n = 2, allows a very convenient unidirectional bi-dimensional
representation, which is in fact the Chaos Game Representation procedure
(CGR) (Jeffrey, 1990). Consequently, CGR is a particular case of USM, ob-
tained when n = 2 and only the forward coordinates are determined. This can
also be verified by comparing Fig. 3.5a with a similar representation reported
before (Almeida et al., 2001, Fig. 10), obtained with the same data using CGR.
The advantageous properties of full (bi-directional) USM become apparent when
Fig. 3.5a is compared with Fig. 3.5b. It is clearly apparent for bi-directional
USM (Fig. 3.5b) that all pairwise comparisons of units of identical segments
now have the same D values. This converts any individual homologous pairwise
comparison into an estimation of the length of the entire similar segment. The
conservation of statistical properties by the distances obtained, D, can also be
confirmed by comparing observed values with the corresponding null models
(Fig. 3.4). For the analysis of this figure it is noteworthy to recall that the sta-
tistical properties of prokaryote DNA are often undistinguishable from uniform
randomness (Almeida et al., 2001; Román-Roldán et al., 1994; Oliver et al.,
1993). The genomic sequence of the first gene of the threonine operon of E.
coli, thrA, is compared with that of the second, thrB. The distribution of the
resulting D values is represented in Fig. 3.4 (solid black line), alongside with
the null model for that dimensionality (Eq. 3.11, with n = log2(4) = 2, gray
dotted line). The genomic sequences of thrA and thrB were translated into pro-
teomic sequences using SwissProt’s online translator, applied to the 5’-3’ first
frame (http://www.expasy.ch/tools/dna.html). Similarly, the distribution of D

values for the comparison of the proteomic thrA and thrB sequences is also
represented in Fig. 3.4, alongside with the null model, Eq.3.11, for its dimen-
sionality (n = log 2(uu = 20 possible aminoacids) = 4.32), which is graphically
nearly undistinguishable from that of the comparison between the stanzas, with
n = log2(uu = 19 possible letters) = 4.25 (dotted gray line for the rounded
value, n=4.3). Both the genomic and the proteomic distribution of D values is
observed to be contained by the null model, unlike the comparison between the
stanzas discussed above, where the existence of structure is clearly reflected by
its distribution. The genomic and proteomic of thrA and thrB, used to illustrate
this discussion, are provided with the web-based implementation of USM (see
Methods for URL).
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Figure 3.5: Comparison of uni-directional and bi-directional USM implementation

for DNA sequences. The similarity matrices for, respectively, df and D values between

two portions of E. coli K-12 MG1655 threonine gene A (thrA, genome positions 337–

2799) and threonine gene B (thrB, genome positions 2801–3733) are presented. The

numbers in the axis identify the position in the gene. Actual values of df and D are

shown for the framed region on the table to the right. a) The df values were obtained

by a unidirectional implementation of the USM procedure (Eq. 3.4). By comparing

this figure with a similar analysis reported previously (Almeida et al., 2001, Fig. 10)

for the same sequences, it can be seen that they are nearly indistinguishable, even if

the exact values vary. The equivalence between unidirectional USM for n = 2 and

CGR highlights the property that CGR is a special case of USM. The fact that the

latter can be implemented for any value of n or any number of unique units justifies

the universal naming; b) In this plot the same sequences were compared using bi-

directional USM, and, accordingly, generate a matrix of D values (Eq. 3.8, 3.11). It

is clearly apparent, and as already noted for Fig. 3.2, that D-similarity between any

two homologous units is an estimate of the length of the entire homologous segment.
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3.4 Conclusions

The mounting quantity and complexity of biological sequence data being pro-
duced (Roos, 2001) commands the investigation of new approaches to sequence
analysis. In particular, the need for scale independent methodologies becomes
even more necessary as the limitations of conventional Markov chains are in-
creasingly noted (Hill and Singh, 1997). These limitations are bound to become
overwhelming when signals such as succession schemes of the expression of over
30,000 human genes (Venter et al., 2001) become available. This particular
signal would be conveniently packaged within a 30 dimension USM unit block
(n = dlog2(3.103)e = 15).

In addition, the advances in statistical mechanics for the study of complex
systems, particularly in non-linear dynamics, have not been fully utilizable for
the analysis of sequences due to the missing formal link between discrete se-
quences and trajectories in continuous spaces. The properties of USM reported
above suggest that this may indeed be such a bridge. For example, the embed-
ding of dimensions, a technique at the foundations of many time series analysis
techniques offers a good example of the completeness of USM representation of
sequences. By embedding the forward and backward coordinates separately, at
the relevant memory length, the resulting embedded USM is exactly what would
be obtained by applying USM technique to the embedded dimeric sequence it-
self.

3.5 Methods

3.5.1 Computation

The algorithms described in this manuscript were coded using MATLABTM

language (version 6.0 – release 12), licensed by The MathWorks Inc2. An inter-
net interface was also developed to make them freely accessible through user-
friendly web-pages (http://bioinformatics.musc.edu/∼jonas/usm/).

3.5.2 Source code

In order to facilitate the development of sequence analysis applications based on
the USM state space, the software library of functions written to calculate the
USM coordinates is provided with the web-based implementation (see address
above). The code is provided in MATLAB format, which is general enough so as
to be easily ported into other environments. These functions process sequences
provided as text files in FASTA format. In addition to the functions, the test
datasets and a brief readme.txt documentation file are also included.

3.5.3 Test data

The USM mapping proposed is applicable to any discrete sequence, even if
the primary goal is the analysis of biological sequences. For ease of illustra-

2http://www.mathworks.com



80 3. UNIVERSAL SEQUENCE MAP (USM)

tion and to emphasize USM’s general validity, the test dataset used to de-
scribe implementation of the algorithm consists of two stanzas of a Poem by
Wendy Cope, “The Uncertainty of the Poet” (Cope, 1992). In the Discussion
section, USM was also applied to the DNA sequence of the threonine operon
of Escherichia coli K-12 MG1655, obtained from the University of Winscon-
sin E. coli Genome Project (http://www.genetics.wisc.edu), and to its 5’-3’
first frame proteomic translation obtained by using SwissProt online transla-
tor (http://www.expasy.ch/tools/dna.html). The three test sequence datasets
are also included in the web-based USM application.
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word composition distances

for the recognition of SCOP

relationships

Published in: Vinga, S., Gouveia-Oliveira, R. and Almeida, JS. (2004). Com-
parative evaluation of word composition distances for the recognition of SCOP
relationships. Bioinformatics 20:2, 206–215.

Motivation Alignment-free metrics were recently reviewed by the authors,
but have not until now been object of a comparative study. This paper compares
the classification accuracy of word composition metrics therein reviewed. It also
presents a new distance definition between protein sequences, the W-metric,
which bridges between alignment metrics, such as scores produced by the Smith-
Waterman algorithm, and methods based solely in L-tuple composition, such as
Euclidean distance and information content.

Results The comparative study reported here used the SCOP/ASTRAL
protein secondary structure hierarchical database and accessed the discriminant
value of alternative sequence dissimilarity measures by calculating Areas Un-
der the Receiver Operating Characteristic Curves (ROC). Although alignment
methods resulted in very good classification accuracy at family and superfamily
levels, alignment-free distances, in particular standard Euclidean distance, are
as good as alignment algorithms when sequence similarity is smaller, such as for
recognition of fold or class relationships. This observation justifies its advanta-
geous use to pre-filter homologous proteins since word statistics techniques are
computed much faster than the alignment methods.

Availability All Matlab code used to generate the data is available upon
request to the authors. Additional material available at
http://bioinformatics.musc.edu/wmetric.

83



84 4. COMPARATIVE EVALUATION OF WORD COMPOSITION DISTANCES

4.1 Introduction

Bioinformatics applications rely heavily on sequence comparison techniques,
from searching a database with a query DNA sequence to the classification
of protein domains. In most cases alignments are performed between the target
sequences and the resulting alignment scores are used to calculate a measure of
dissimilarity. In protein comparison, the scoring methods depend on aminoacid
mutation rate information, represented as scoring matrices, and find optimal
alignments between sequences by dynamic programming techniques. Alignment
scores are particularly useful when sequences are known to be closely homol-
ogous since the more conserved regions are automatically detected. However,
for remote homologues this approach tends to fail: proteins with less than 20%
identity, a region sometimes referred to as the ‘twilight zone’, are not satisfacto-
rily aligned neither its similarity detected (Pearson, 2000). It is also noteworthy
that dynamic programming is computationally intensive and consequently un-
practical for querying large datasets, which forces the use of some heuristics to
reduce the running times, as exemplified by BLAST.

In a recent paper (Vinga and Almeida, 2003) the authors reviewed align-
ment-free methods for sequence comparison but did not compare them quanti-
tatively. In that review metrics based on L-tuple composition, the focus of this
report, emerged as the alignment-free technique most often proposed by other
researchers. In these algorithms each sequence is mapped onto an n-dimensional
vector according to its word composition. Linear algebra theory is further em-
ployed to define distances between sequences represented in those vector spaces,
namely by using Euclidean distance and information content (see review for a
full description and related references).

This report also presents a novel distance function between protein se-
quences, the W-metric, which tailors L-tuple composition methods with tech-
niques based in alignment. This is accomplished by defining a function that
includes both one-tuple composition information, more specifically the differ-
ences in aminoacid content between two proteins, and weights from the scoring
matrices used in alignment methods. Although these two concepts are not new,
their conjugation constitutes the novelty aspect of this metric. The weights
correspond to the estimation of log-likelihood ratios between probabilities of
symbols that best describe mutation rates in known homologous proteins, thus
providing evolutionary information.

The usefulness of the L-tuple composition approach is associated with its
light computational load, which makes it very useful in pre-filtering relevant
sequences, and then using alignment algorithms to refine the searches. This
type of heuristic approach is already used in programs like BLAST (Altschul
et al., 1990) and FASTA (Pearson and Lipman, 1988). Although the solution
may not be the optimal, it drastically shortens processing speed to the point
that the method can be used to query large databases. However, a comparative
study of the effectiveness of alignment-free sequence dissimilarity measures is,
to the authors’ best knowledge, absent from the literature. Consequently it
is difficult to decide at what similarity level are alignment methods required.
Such a comparative study of how these different metrics perform is reported
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here. This is the main motivation for the present work, where alignment-free,
linear algebra type methods are comparatively assessed. Some previous stud-
ies have reported comparative assessments of various methods (Brenner et al.,
1998; Lindahl and Elofsson, 2000; Pearson, 1991, 1995), but not consistently for
the same reference dataset. These studies showed however the importance of
following an extensive protocol involving as many examples as possible in the
assessment of any classification procedure. Only then is it possible to improve
some heuristics commonly applied in sequence similarity searches and identify
the best algorithmic choice for each problem category.

We compared L-tuple metrics with Smith-Waterman algorithm by Receiver
Operating Characteristic curves (ROC) applying the algorithms to a subset of
SCOP/ASTRAL database. This database constitutes the reference gold stan-
dard for protein secondary structure classification, which makes it a commonly
used benchmark for protein structure prediction algorithms, a crucial field in
computational biology applications. In addition it has a hierarchical organiza-
tion that can be browsed to assess classification accuracy for each of its levels.

4.2 Systems and Methods

In the section below the W-metric, a novel word statistic distance between pro-
tein sequences is presented as well as additional background on alignment-free
algorithms. In the subsequent sections the reference protein datasets and the
methods used to compare the distance measures are described. Finally, the last
two sections describe the algorithms and protocol used and its implementation.

4.2.1 Word statistics

There is a large body of literature on word statistics (Reinert et al., 2000), where
sequences are interpreted as a succession of symbols and are further analyzed
by first representing the frequencies of its small segments (L-tuples or words).
This approach does not take into account any of the physicochemical or struc-
tural properties of the aminoacids or nucleotides. There is also an increasing
number of studies focusing on distance definition in the frequency space of L-
tuples. These definitions are a fundamental step for the subsequent application
of exploratory analysis methods, such as cluster analysis and dimensionality
reduction techniques. In a recent review (Vinga and Almeida, 2003) the au-
thors overviewed these metrics and their application to biological sequences,
both DNA and proteins. That review will be used as the main reference for
description of the L-tuple distances and alignment-free algorithms that will be
tested here. A protein X of length n is a sequence of symbols from the alphabet
of all possible aminoacids: X = s1 · · · sn, si ∈ A = {A,R,N,D, . . . ,V}. The
mapping of X into the Euclidean space can be defined by representing X by its
aminoacid composition in counts, cX and frequencies, fX (Eq. 4.1):

cX = (cX
A , cX

R , cX
N , cX

D , . . . , cX
V )

fX =
cX

n
(4.1)
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For example, the peptide X = AARNNDAA is mapped onto the vectors
cX = (4, 1, 2, 1, 0, 0, . . .) and fX = (0.5, 0.125, 0.25, 0.125, 0, 0, . . .). Instead of
single aminoacid frequencies, longer fragments of length L could be considered
(L-tuples) with resulting 20L long vector of frequencies. One can further define
a distance or dissimilarity measure between two proteins X and Y , d(X, Y ),
based on their corresponding vectors fX and fY .

4.2.2 W-metric definition

The novel W-metric hereby proposed to complement existing word composition
methods is based on the quadratic form defined in Eq. 4.2. The distance between
two proteins X and Y , dW (X, Y ), is defined by their corresponding one-tuple
frequencies, fX and fY , weighted by matrix W below described.

dW (X, Y ) = (fX − fY )T ·W · (fX − fY )

=
∑
i∈A

∑
j∈A

(fX
i − fY

i ) · (fX
j − fY

j ) · wij (4.2)

These quadratic forms play an important role in major theoretical and ap-
plied disciplines and scientific fields, from linear algebra to econometrics. In
statistics they are used, for example, in parameter estimation and statistical
tests (Schott, 1997). They represent a scoring between conveniently weighted
vectors of observations. It is noteworthy that other L-tuple distances are also
based on quadratic forms (Eq. 4.2), for example, when W is the covariance
matrix of the data it represents Mahalanobis distance between the correspond-
ing vectors and the standard Euclidean distance is obtained when taking only
covariance matrix diagonal. The distance reduces to the squared Euclidean
distance when W is the identity matrix.

The weight matrices W chosen in Eq. 4.2 can be rationalized as being scor-
ing or aminoacid substitution matrices, instead of covariance-based weights as
in other distances. These matrices, such as PAM - Point Accepted Mutation
(Dayhoff et al., 1978) and BLOSUM - BLOcks SUbstitution Matrices (Henikoff
and Henikoff, 1992), are used in alignment-based methods and estimate the log-
likelihood ratios between probabilities of symbols that best describe mutation
rates in known homologous proteins. In particular BLOSUMX matrix is esti-
mated with ungapped aligned blocks of proteins sharing less than X% identity.
PAMn matrices account for evolutionary change in protein sequences and its
estimation is based on the construction of phylogenetic trees, which are subse-
quently used to create a Markov chain n-step transition matrix. This matrix
is further transformed and normalized for conditional probabilities. For exten-
sive description of this substitution matrices and some estimation examples see
(Ewens and Grant, 2001), section 6.5.

The key idea of W-metric is to weight aminoacid composition differences be-
tween two sequences, fX

i −fY
i , according to its relative conservation in proteins

known to be homologous. The overall distance between two proteins will be the
sum of these weighed factors. For example, if an aminoacid is highly conserved
in known homologous sequences (high wii), two proteins with a very differ-
ent frequency of this aminoacid should be less similar than if the aminoacids
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are ‘closer’ to each other in that statistical sense. If the opposite occurs, i.e.,
if an aminoacid is known to have high mutational rates (low wii), the differ-
ences between its compositions in the two sequences being compared should
be attenuated in the overall distance calculation. The same scheme applies to
off-diagonal elements wij(i 6= j): if there is a high mutation rate between these
two aminoacids, it means that wij is higher than the corresponding weight of
two aminoacids very different, so this component should be weighted more. The
main idea is thus weighting aminoacid differences according to their similarity,
given by known evolutionary information. The weighted metric hence includes
both aminoacid composition information, like other alignment-free techniques,
and conserved homology information, as used to score the conventional align-
ment algorithms.

Some variations of this metric were also tested, namely using several normal-
ization procedures. It is appealing the low computational load associated with
the calculation expressed in Eq. 4.2. It is not proven here, however, that the
W matrix associated with mutation information is the best in discriminating
classification levels. This can be further accomplished by using artificial neu-
ral networks (ANN) or other algorithms to optimize classification accuracy by
finding a ‘better’ W weighting matrix.

4.2.3 ROC curve definition

The methods that will be used here to assess and compare the accuracy of classi-
fication schemes and prediction algorithms are based on the analysis of Receiver
Operating Characteristic curves (ROC). This method goes back to signal detec-
tion and classification problems and is now widely applied in medical diagnosis
studies and psychometric analysis (Egan, 1975). This approach is employed in
binary classification of continuous data, usually categorized as positive (1) or
negative (0) cases. The classification accuracy can be measured by plotting,
for different threshold values, the number of true positives (TP ), also named
sensitivity or coverage, vs. false positives (FP ), or (1−specificity), encountered
for each threshold, properly normalized – see Eq. 4.3.

sensitivity =
TruePositives

Positives
=

TP

TP + FN

specificity =
TrueNegatives

Negatives
=

TN

TN + FP

1− specificity =
FP

TN + FP
(4.3)

A ROC curve is simply the plot of sensitivity vs. (1-specificity) for different
threshold values. The area under a ROC curve (AUC) is a widely employed
parameter to quantify the quality of a classificator because it is a threshold
independent performance measure and is closely related to the Wilcoxon signed-
rank test (Bradley, 1997). For a perfect classifier the AUC is 1 and for a random
classifier the AUC is 0.5. For additional results and comprehensive discussion of
AUC measure see (Bradley, 1997). The references (Baldi et al., 2000; Brenner
et al., 1998; Green and Brenner, 2002) describe other possible classification
accuracy measures not employed in this study.
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Figure 4.1: SCOP/ASTRAL db – hierarchical classification of proteins. Example of

Fibroblast Growth Factor Receptor (FGFR2) classification in each of the four levels.

4.2.4 Protein test datasets – SCOP/ASTRAL classifica-
tion

The sequences used to perform the tests and compare different metrics are pro-
teins from the Structural Classification of Proteins (SCOP) database (Lo Conte
et al., 2002; Murzin et al., 1995). This database consists of Protein Data Bank
(PDB) entries and provides a detailed and reliable description of protein struc-
ture relationships and homology. The 3D structure analysis allows the detection
of more remote homologies, since structure is typically more conserved than se-
quence. The fundamental unit of classification is the protein domain, which
is the basic element of protein structure and evolution. The ASTRAL com-
pendium provides additional tools and datasets (Brenner et al., 2000; Chando-
nia et al., 2002), namely the possibility to filter sequence sets where two different
proteins have less than a chosen percentage identity to each other. This classifi-
cation is a hierarchical description of proteins (see Fig. 4.1). The first two levels,
family (fa) and superfamily (sf), describe evolutionary relationships; the third
one, fold (cf), describes geometrical relationships or major structural similarity,
and the fourth one represents protein structural class (cl). This will allow the
study of each classifier for different levels of similarity.

Two different datasets were tested in order to assess the accuracy of each
metric. The basic protein set, PDB40-B, was extracted directly from the AS-
TRAL website and corresponds to SCOP database release 1.61 (November
2002). This subset includes all the sequences that share less than 40% iden-
tity to each other and has become a benchmark test set in the evaluation of
methods to detect remote protein homologies. (See, for example, (Brenner
et al., 1998; Dubchak et al., 1999; Karwath and King, 2002; Lindahl and Elofs-
son, 2000; Luo et al., 2002; Park et al., 1997; Webb et al., 2002)) This dataset
was subsequently trimmed to exclude sequences with unknown aminoacids and
those belonging to families with less than 5 elements, thus obtaining the protein
group named PDB40-v (see Tab. 4.1). For example, there are 232 families with
only one sequence, which is not informative regarding intra-family dissimilarity,
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Datasets do fa sf cf do fa sf cf do fa sf cf do fa sf cf Total

PDB40-B (1.61) 867 409 257 151 1051 362 213 111 1237 467 190 117 1065 487 307 212 4220
PDB40-v (1.61) 285 35 28 27 517 43 30 24 542 58 40 31 339 39 37 33 1683
PDB40-b (1.35) 220 128 97 73 309 150 115 54 285 154 98 66 240 147 115 80 1054

Classes
all-α all-β α/β α+β

�

Table 4.1: Protein datasets used in this study. For each protein set, number of

sequences or domains (do), families (fa), superfamilies (sf) and folds (cf), in each

class. PDB40-B: sequences that share less that 40% to each other, current release

(1.61) of SCOP/ASTRAL (not tested). PDB40-v: set derived from PDB40-B (1.61) by

excluding sequences with unknown aminoacids and families with less than 5 domains.

PDB40-b: sequence dataset used in (Luo et al., 2002), corresponds to previous release

(1.35) of the same database.

which makes these domains insufficiently representative of a family. The effect
of trimming the dataset was in this way also studied. Only the four major
classes were included, namely all-α class, constituted mainly by proteins with α

helix; all-β class, essentially formed by β-sheet structures; α/β class, proteins
with mixtures of α-helices and β-strands; and α+β class, those where α-helices
and β-strands are largely segregated. Other SCOP classes include multi-domain
proteins, small proteins, theoretical models and other types, and were not in-
cluded in this study. See (Chothia et al., 1997) and SCOP documentation for
description of protein folds and classification.

This study also considered separately another protein set from an outdated
release of the SCOP database (1.35), the PDB40-b, due to the large amount of
literature already published with those sequences. (See Luo et al. (2002) and
corresponding references.) Table 4.1 summarizes all the sequences sets examined
in this paper.

4.2.5 Protocol for comparative assessment

The comparative test procedure followed in this report was based on a binary
classification of each protein pair, where 1 corresponds to the two proteins shar-
ing the same group in SCOP database, 0 otherwise. The group can be defined
at one of the 4 different levels of the database: family (fa), superfamily (sf),
class fold (cf) or class (cl), exploring the hierarchical organization of the pro-
teins in that structure. Therefore each protein pair is associated to 4 binary
classifications, one for each level.

In order to compute the ROC curves, we calculated the distances between all
possible protein pairs, according to the different metrics referred to and briefly
described below.

The similarity measure based on alignment tested was the Smith-Waterman
(SW) raw score, with no correction for statistical significance, using score ma-
trix BLOSUM50 and a linear gaping penalty scheme, with a gap penalty of 8.
The distances based on L-tuple composition evaluated were W-metric (Wm),
Euclidean (eu), standard Euclidean (se), Kullback-Leibler discrepancy (ku), co-
sine (co), and Mahalanobis (ma). For the corresponding complete definitions
and properties see (Vinga and Almeida, 2003). In W-metric calculations some
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alternative weighting matrices W (Eq. 4.2) were used: these included the scoring
matrices BLOSUM50, BLOSUM40, BLOSUM62 and PAM250. The following
normalization procedures were also applied: take only the diagonal of W , pass
all its negative values to zero, use the exponential function of the original matrix
and normalize by minimum and range. However, in this printed report only the
results obtained with BLOSUM50 will be presented. The variations described
are documented on the online annex.

For each metric, the distances between all proteins pairs were subsequently
sorted, from maximum to minimum similarity, that is, from the closest to the
farthest pair. A perfect metric would completely separate negative from posi-
tive relationships, i.e., the maximum similarity would correspond always to the
same group, and the binary classification obtained after this distance sorting
would be the vector (1, . . . , 1, 1, 0, 0, . . . , 0). Of course this does not happen in
practice, and the classes are interspersed. The ROC curves permit to assess the
level of accuracy of this separation without choosing any distance threshold for
the separation point. In particular, the AUC will give us a unique number of
the relative accuracy of each metric and level, according to the SCOP classifi-
cation scheme. We also tested each of the four classes separately with the same
procedure, to evaluate hypothetical differences between the structural classes.

4.2.6 Computation

All the algorithms were implemented in MATLABTMlanguage (version 6 release
13). The code is available upon request to the authors.

4.3 Results and Discussion

In the following sections we present some of the results obtained. For extensive
and additional results regarding all metrics and datasets see also the web page
http://bioinformatics.musc.edu/wmetric, where the complete graphs and tables
are shown (data not shown due to space limitations).

4.3.1 Complete dataset

ROC curves and AUC values

The Receiver Operating Characteristic (ROC) curves obtained for the complete
dataset (Tab. 4.1) are presented in Fig. 4.2 (PDB40-v) and 4.3 (PDB40-b).
As overviewed in the Systems and Methods section, a random classifier would
have identical values of sensitivity and (1-specificity) for any threshold value
considered (dashed diagonal).

Figures 4.4 and 4.5 provide graphs with the areas under ROC curves (AUC)
obtained for both datasets and each SCOP level. The AUC values are typically
used as a measure of overall discrimination accuracy.

As would be expected, Fig. 4.4 and 4.5 show that the AUC decreases from
family to class level for both datasets. The sequence similarity between pro-
teins sharing the same family is still well recognized. Consequently, all the
distances achieve their best discrimination accuracy at this level. At class level,
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Figure 4.2: ROC curves for PDB40-v dataset. Sensitivity (sen) vs. 1-specificity

(spe). SCOP levels: family (fa), superfamily (sf), class fold (cf) and class (cl). Met-

rics: Smith-Waterman (SW), W-metric (Wm), standard Euclidean (se), cosine (co),

Kullback-Leibler (ku), Euclidean (eu) and Mahalanobis (ma). A random classifier

would generate equal proportions of false positive and true positive classifications,

which corresponds to the ROC diagonal (dashed line). Correspondingly, the better

classification schemes have plots with higher values of sensitivity for equal values of

specificity, resulting in higher values for the areas under the curve (AUC, see text).

Smith-Waterman is the best at family and superfamily levels. W-metric and standard

Euclidean outperform other alignment-free metrics. Standard Euclidean is the best

at fold level for high sensitivity/low specificity values. For class level all metrics have

similar results, slightly above random guessing.
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Figure 4.3: ROC curves for PDB40-b dataset. Sensitivity (sen) vs. 1-specificity

(spe). SCOP levels: family (fa), superfamily (sf), class fold (cf) and class (cl). Met-

rics: Smith-Waterman (SW), W-metric (Wm), standard Euclidean (se), cosine (co),

Kullback-Leibler (ku), Euclidean (eu) and Mahalanobis (ma). The classification accu-

racies for this dataset are slightly better than for the PDB40-v dataset (see Fig. 4.2).

The qualitative relation between the metrics is maintained.
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Figure 4.4: AUC values for PDB40-v dataset, for each hierarchical level. SCOP

levels: family (fa), superfamily (sf), class fold (cf) and class (cl). Metrics: Smith-

Waterman (SW), W-metric (Wm), standard Euclidean (se), cosine (co), Kullback-

Leibler (ku), Euclidean (eu) and Mahalanobis (ma). Areas under ROC curves of

Fig. 4.2. Higher AUC values correspond to better classification schemes. All the dis-

tances achieve their best discrimination accuracy at family level. This figure illustrates

the loss of discrimination as the target of classification moves up in the SCOP level,

from family to class.
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Figure 4.5: AUC values for PDB40-b dataset, for each hierarchical level. SCOP

levels: family (fa), superfamily (sf), class fold (cf) and class (cl). Metrics: Smith-

Waterman (SW), W-metric (Wm), standard Euclidean (se), cosine (co), Kullback-

Leibler (ku), Euclidean (eu) and Mahalanobis (ma). Areas under ROC curves of

Fig. 4.3. The results are slightly more discriminant for this dataset than for PDB40-v

(Fig. 4.4) but with no significant changes in the metrics’ relative ordering.
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classification relationships reflect similar structures, which can have completely
different sequences and aminoacid compositions. This underlies the observation
that sequence similarity is lost, regardless of the metric, from family to class.
The comparative discriminant value of the different metrics (Fig. 4.4 and 4.5)
shows two clear trends. First, at family level, alignment has a clear advan-
tage, with AUC values of 0.86 and 0.81 (PDB40b and PDB40v sets), whereas
all word-statistics metrics perform at or under 0.75 and 0.68 respectively. The
most discriminant word-statistics metric at family level is the novel W-metric
introduced by this report (see Systems and Methods), reflecting the value of
weighting the quadratic form (Eq. 4.2) by evolutionary rather than statistical
criteria. At the superfamily level the advantage of alignment remains, but sta-
tistically weighting performs just as well as the W-metric. Interestingly the
unweighted Euclidean metric (eu), covariance weighting (ma) and information-
based Kullback-Leibler (ku) lag behind. The main surprise of this analysis is
to be observed at the next level, the fold, where the standard Euclidean metric
performs as well as alignment scores in both versions of SCOP, especially for
the low specificity/high sensitivity range (corresponds to many False Positive
relationships). In fact, standard Euclidean is clearly more discriminant than
Smith-Waterman for 1-specificity values around 0.75. Finally at the class level,
the absence of conserved segments in fact turns alignment into a computation-
ally expensive procedure to score aminoacid composition differences. At this
point most alignment-free metrics outperform it. The inspection of the ROC
curves themselves (Fig. 4.4 and 4.5) further documents this comparison between
metrics. The results obtained are slightly less discriminant for the more recent
version of the protein dataset (PDB40-v) for all the levels except for class, where
higher values of AUC are obtained. However, there are no significant changes in
their relative ordering. It is noteworthy that there is also a dependency between
levels as regards classification accuracy. Hits at a lower level may be argued to
bias for more populated grouping at upper levels. However it should be noted
that this study is of exploratory rather than discriminant nature, which places
any pairwise comparison, regardless of the SCOP classification level, on an equal
standing.

Variations in the W-metric definition

The W-metric AUC values in the previous graphics were obtained using the
scoring matrix BLOSUM50. The results using BLOSUM40, BLOSUM62 and
PAM250 are virtually the same and will be omitted. Nevertheless those results
were compiled and are made available at the support webpage (see Availability).
It is interesting to note that, although defining a different score for each domain
pair, the different matrices W produce the same score ordering. Similarly, all the
normalization procedures did not lead to improved discrimination, producing
worse classification results but are still made available in the same webpage.

Higher order tuples

We also tested higher order word composition metrics, calculating 2 and 3-tuple
distances between the domains, for Euclidean, standard Euclidean, Kullback-
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Leibler and cosine. Somewhat intriguing was the fact that for all levels of clas-
sification discrimination worsened (see webpage). However it should be noted
that the high dimension of the frequency vectors in these cases (respectively
400 and 8000) and the relative low dimension of the sequences length itself
(mean values around 175 aminoacids), caused the frequency vector f to be very
sparse. Additional problems arising from this increased dimensionality of data
are the need to raise sampling size in order to maintain accuracy, which goes
along with the “curse of dimensionality” (Donoho, 2000). Consequently only
the results obtained for one-tuples were presented in this report. The weighting
proposed, as observed before for the one-tuple scenario, might not be the best
for the recognition of the relationships. One idea worth exploring would be to
extract some effective higher order tuples, by adequate selection of the weights,
thus optimizing the classification accuracy and hopefully avoiding the dimen-
sionality problem. However, this would lead to discriminatory and optimization
procedures, which are out of the scope of this exploratory study.

Computational performance

It is noteworthy that the Smith-Waterman algorithm is computationally inten-
sive. Its running times can be 1000 fold longer than that of the other metrics
here compared. For example in PDB40-v dataset, SW took approximately 80
hours and W-metric just 5 minutes, using a 700MHz PentiumIII with 1GB total
memory. The other word composition metrics themselves have varied compu-
tation implementation efficiencies (Vinga and Almeida, 2003).

4.3.2 Stratified analysis by class

AUC values

In order to compare the metrics, we also conducted additional studies for each
of the 4 classes (all-α, all-β, α/β and α + β) separately. The AUC values are
represented in Fig. 4.6, for Smith-Waterman alignment scores and standard
Euclidean distance, the two metrics that emerged as the most discriminant in
the previous analysis (Fig. 4.2–4.5) (see webpage for similar analysis for the
other metrics).

It is easier to recognize family relationships by alignment (Fig. 4.6, black
symbols) for proteins belonging to class all-α, where values are above the overall
accuracy (AUC values ranging from 0.70 to 0.87) and for α+β class (AUC from
0.70 to 0.91). The class where these relationships seem more difficult to detect
was the class all-β, where we obtained the lowest AUC values for this level
(0.60 to 0.77). For superfamily level, class α + β enables a surprising accuracy
for both metrics (AUC from 0.70 to 0.90) as opposed to class all-β, where the
superfamily relationships are still harder to detect only by sequence inspection
(AUC between 0.55 and 0.64). At fold level, all-α class retains the higher AUC
values for both metrics (0.69 to 0.81). The graph obtained for PDB40-b is
qualitatively the same (see webpage) with a difference: the AUC values for fold
level are much lower for all-α and α + β classes for both metrics.
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Figure 4.6: Stratified analysis by class in PDB40-v dataset. AUC values for Smith-

Waterman algorithm (black) and std. Euclidean distance (gray) for each class: total

set, all-α, all-β, α/β and α+β. SW is generally a better classification scheme – higher

AUC values. At family level the best results are for proteins belonging to classes all-α

and α + β; the lowest AUC values were obtained for class all-β. At superfamily level

class α + β enables a surprising accuracy for both metrics as opposed to class all-β,

which has the worse results. At fold level, all-α class retains the higher AUC values

for both metrics.

PDB40 version datasets comparison

There is a significant improvement of discrimination accuracy for α + β class,
in PDB40-v dataset. The difference in AUC values is constantly positive, for
different metrics and levels, reaching a value as high as 0.21 at fold level with the
Smith-Waterman alignment scores. It seems that the trimming procedure taken
when obtaining PDB40-v set (see Systems and Methods) affected particularly
all-α and α+β classes. It is noteworthy these quantitatively differences obtained
for the two datasets.

The α-helix and β-sheet content

Judging from published reports, protein class classification is controversial.
Some studies based class classification on the percentages of α-helix and β-
sheets content of each chain. In a recent report a schematic table was presented
with different definitions (Eisenhaber et al., 1996). As noted in that study, there
are some regions of the space defined by those percentages that are not clearly
classifiable. It is in this uncertainty context that SCOP offers a classification
that is a global measure and takes into account all the structural information
of all chains in a protein.

In order to assess the correct assignment to classes, and avoid arbitrary
classification, we extracted the α and β content for each SCOP domain tested
from the PDB webpage (http://www.rcsb.org/pdb/). In Figure 4.7 we present
the α and β percentages for each domain, grouped by the corresponding SCOP
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class classification, obtained for the PDB40-b dataset.
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Figure 4.7: The α-helix and β-sheet content (%) for each domain in PDB40-b dataset,

grouped by SCOP class. The classes are interspersed. Protein 1HYM - Trypsin in-

hibitor V (species: pumpkin – Cucurbita maxima) is globally classified in α + β class

but their two chains, 1HYM:A and 1HYM:B, have contrasting α-helix and β-sheet

content.

From Figure 4.7 it is apparent that some domains have arguable classifica-
tions. For example protein with PDB identification 1HYM - Trypsin inhibitor
V (species: pumpkin – Cucurbita maxima), has two chains that correspond to
two SCOP domains. Domain 1HYM:A has 24.44% of α-helix and 0% of β-
sheet (labelled * symbol close to the X axis in Fig. 4.7) and domain 1HYM:B
has 0%α-helix and 33.33%β-sheet (labelled * symbol close to the Y axis in
Fig. 4.7). Nevertheless the whole protein was classified in the α + β class, in
spite of the fact that each of its chains taken individually would be classified in
other classes. The SCOP classification is global in the sense that looks to the
whole protein rather than to a particular domain, therefore classifying chains of
1HYM as α+β is formally correct. Interestingly a multivariate analysis of vari-
ance (MANOVA) of the aminoacid composition in the 4 classes leads to similar
results (see webpage), showing that class α + β is clearly intermixed with the
others in terms of α and β content.

4.4 Conclusion

In this report we quantitatively compared several protein dissimilarity mea-
sures based on L-tuple composition with alignment scores obtained with Smith-
Waterman algorithm. A new metric, the W-metric, which combines both ap-
proaches by including word statistics information weighted by scoring matrices
is described.

The accuracy of each metric to detect protein relationships was assessed
through the four hierarchical levels of the SCOP/ASTRAL database. The com-
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parative protocol employed the areas under ROC curves (AUC), which are a
good measure of overall accuracy of a classification scheme.

The Smith-Waterman alignment score was shown to be the most discrimi-
nant at family and superfamily levels. At family level, the W-metric is clearly
more discriminant than the other L-tuple distances for sensitivity values between
0.5 and 0.8. From superfamily to class levels, all metrics lose discriminant power
and converge to similar AUC values, which makes it counterproductive to use
computational intensive alignment algorithms to detect those relationships. At
fold level standard Euclidean distance outperforms most of the metrics, achiev-
ing an unexpected accuracy for high sensitivity/low specificity range. This
important result anticipates its use in providing a conservative pre-screening
procedure for this problem category. In fact, since L-tuple methods are com-
putationally much lighter, they can be useful to pre-select similar proteins be-
fore applying the alignment algorithms, thus combining the powerful aspects of
each technique and greatly improving heuristic methods in sequence similarity
searches.

The graph showing α-helix and β-sheet content for each domain shows that
class classification cannot be inferred directly from that information, at least for
mixed classes. Therefore it might be advantageous in some applications to re-
consider protein class classification of each domain by exploring the distribution
of sequence distances by unsupervised learning algorithms.
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Chapter 5

Rényi continuous entropy of

DNA sequences

Published in: Vinga, S. and Almeida, JS. (2004). Rényi continuous entropy of
DNA sequences. Journal of Theoretical Biology 231:3, 377–388.
Supplementary material added: appendix D with additional deductions; descrip-
tion of MATLAB functions.

Entropy measures of DNA sequences estimate their randomness or, inversely,
their repeatability. L-block Shannon discrete entropy accounts for the empirical
distribution of all length-L words and has convergence problems for finite se-
quences. A new entropy measure that extends Shannon’s formalism is proposed.
Rényi’s quadratic entropy calculated with Parzen window density estimation
method applied to CGR/USM continuous maps of DNA sequences constitute
a novel technique to evaluate sequence global randomness without some of the
former method drawbacks.

The asymptotic behavior of this new measure was analytically deduced and
the calculation of entropies for several synthetic and experimental biological
sequences was performed. The results obtained were compared with the distri-
butions of the null model of randomness obtained by simulation. The biological
sequences have shown a different p-value according to the kernel resolution of
Parzen’s method, which might indicate an unknown level of organization of their
patterns. This new technique can be very useful in the study of DNA sequence
complexity and provide additional tools for DNA entropy estimation.

The main MATLAB applications developed are available at the webpage
http://bioinformatics.musc.edu/renyi. Specialized functions can be obtained
from the authors.

5.1 Introduction

Biological sequences are the ultimate support for the description of biological
systems. However, the mathematical foundations for sequence analysis still very
incompletely address issues of scale (Markov order) dependency. Consequently,
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the analogy between DNA and a structured language with rules and the cor-
respondence to coding theory has long been the object of theory and, more
recently, computational exploits. The concept of entropy, as accessed by infor-
mation content (Shannon) or algorithmic complexity (Kolmogorov), is of pivotal
importance in the quantitative assessment of this analogy. Entropy is a mea-
sure of the degree of randomness of a system. This definition was first applied
to the study of gases in thermodynamics, measuring the level of organization
of the system by the number of allowable microstates. Later, Claude Shan-
non’s pioneer paper (Shannon, 1948) founded the field of Information Theory
(IT), establishing a relationship between entropy, probability of source outcomes
and the ability of conveying information. IT is now an independent discipline,
founded on probabilistic and axiomatic grounds (Khinchin, 1957). Alfréd Rényi
further extended Shannon’s entropy concepts providing more flexibility to the
uncertainty measure definition (Rényi, 1961; Rényi, 1966).

As mentioned, information theory was first developed to study transmission
of messages over a channel in engineering applications. Only much later IT
was applied to the study of biological sequences. Over three decades ago, in a
seminal book (Gatlin, 1972), Lila Gatlin explored the relation between infor-
mation theory and biology and the applicability of entropy concepts to DNA
sequence analysis. The most widely used definition is the L-block Shannon
discrete entropy HShannon = −

∑
i pi log2 pi, where pi represents the observed

probabilities of words of length L (or L-tuples). Subsequently, a wide range of
applications developed based on these important concepts, namely intron/exon
comparison and gene prediction, the role of repeats in entropy estimates (Herzel
et al., 1994b), the study of the inherent stochasticity of this quantity (Jimenez-
Montano et al., 2002), Zipf and redundancy analysis (Mantegna et al., 1994)
and several other applications (Chechetkin and Lobzin, 1996; Lio et al., 1996;
Xiao et al., 2002).
One of the major problems when calculating Shannon’s L-block entropy is the
finite size sample effect (Herzel et al., 1994a), given that real biological sequences
are always finite. The resulting convergence problem causes the systematic un-
derestimation of entropy when L increases. This problem was mentioned and
was partially corrected in several published studies (Schmitt and Herzel, 1997),
but the main sample effect always persists for some higher word length.

Following also Shannon’s pioneering work, where it was shown that there is
a relation between the entropy of a source and the length of the optimal binary
code transmitted, some studies have applied compression methods to DNA se-
quences. There is an association between these concepts: a sequence with low
entropy, i.e. high redundancy, will be more compressible. Therefore, the length
of the compressed sequence will give an estimate of its complexity, and conse-
quently its entropy (Farach et al., 1995). The drawback of this method is that
the compression procedures are likely to fail to recognize complex organization
levels in the sequences. This is particularly relevant for biological sequences
where some level of redundancy spans all scales (multiple codons for the same
coded aminoacid, repeats in regions with high recombination, and finally, gene,
and even genome, duplication). Several compression techniques have been de-
veloped to estimate entropy/complexity (Lanctot et al., 2000; Loewenstern and
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Yianilos, 1999). One striking result obtained in several studies reports the low
decrease of complexity for biological sequences. For example, it was shown
that proteins are almost random polypeptides, having 99% of the complexity of
random proteins (Orlov et al., 2002; Weiss et al., 2000), which shows that non-
randomness is not required for proteins to be functional. Similar results were
obtained for bacterial DNA, where the entropy, measured with standard meth-
ods, is almost the same as for random sequences (Almeida et al., 2001; Hariri
et al., 1990; Oliver et al., 1993). This fact might be associated with the higher
information holding capacity of almost random sequences: if they were perfectly
random error detection would be impossible. On the other hand, if sequences
were perfectly deterministic or predictable, and therefore highly redundant, no
information could be stored and transmitted. These scenarios illustrate the sub-
tle balance between error and fidelity that is apparent in biological sequences.
This also establishes the need for new measures of randomness capable of ex-
ploring scales simultaneously, similarly to the Biological processes supported by
the sequence themselves.

Other concepts are associated with entropy, such as the Linguistic Complex-
ity (LC) (Crochemore and Verin, 1999; Gabrielian and Bolshoy, 1999; Troy-
anskaya et al., 2002) that accounts for L-tuple variability in sliding windows.
An alternative format where entropy can be investigated is the fractal anal-
ysis of DNA sequence representations as random walks in several dimensions
and the study of long-range correlations and scaling features (Almeida et al.,
2001; Berthelsen et al., 1992; Herzel and Grosse, 1995; Stanley et al., 1999).
The results obtained are comparable to other previous methods. It is worth
mentioning that derived entropy concepts were also developed to classification
problems, for example the Kullback-Leibler discrepancy between sequences and
the Kolmogorov complexity (Sadovsky, 2003; Vinga and Almeida, 2003).

In the present work a new measure of entropy based on Rényi definition
(Rényi, 1961; Rényi, 1966) is proposed. This measure is based on the Chaos
Game Representation/Universal Sequence Maps (CGR/USM) (Almeida and
Vinga, 2002; Jeffrey, 1990) of DNA, which maps a sequence onto a continu-
ous space and permits the depiction of all its L-tuple frequencies in an invariant
representation. This representation is closely related to the genomic signature
concept (Deschavanne et al., 1999) and with fractal theory (Barnsley, 1998; Yu
et al., 2004). It was proven elsewhere that these maps generalize Markov chain
models on any order (Almeida et al., 2001), which can be used to extract dis-
crete entropy measures; the present study proposes the additional extraction of
continuous entropy measures from the same maps.

This representation was also shown to be preferable to variable length Mar-
kov models for the prediction of several finite memory models (Tino and Dorffner,
2001). There is also a close relation between fractal dimensions of these maps
and the discrete entropies of the sequences under study (Tino, 1999, 2002), which
further justifies its application in this paper. It is also noteworthy that in a very
recent paper, the application of Rényi discrete entropy measure to the identi-
fication of DNA binding sites was significantly better than the Shannon-based
results, which reflects the flexibility gained when using the Rényi formulation
(Krishnamachari et al., 2004).
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In the present report, the Parzen window density estimation of CGR/USM
maps associated to Rényi entropy calculations was used, which has very signifi-
cant computational advantages, described and discussed below. The association
of this method with Rényi entropy estimation was already employed with suc-
cess in machine learning and data mining techniques for the non-supervised
classification of several classes of objects (Principe et al., 2000). These three
concepts allow the calculation of a continuous entropy measure of a discrete se-
quence and will be used in this report to analyze both real and synthetic DNA
sequences, with reference Rényi entropy values obtained by Montecarlo simula-
tion experiments. This study follows on a review of alignment-free methods for
sequence comparison (Vinga and Almeida, 2003), which was then put to use in
a systematic analysis of functional protein families as described by the SCOP
database (Vinga et al., 2004).

5.2 System and methods

This section will describe the new continuous entropy measure for DNA se-
quences, H2 – Rényi quadratic entropy, based on Chaos Game Representa-
tion/Universal Sequence Maps – CGR/USM (Almeida and Vinga, 2002; Jeffrey,
1990) and probability density estimation (pdf) by the Parzen window method
(Parzen, 1962). Some properties of H2 are explored, namely its asymptotic be-
havior and the results for random sequences, and the DNA sequence dataset
tested is described.

5.2.1 CGR/USM representation of a sequence

Chaos Game Representation (CGR) was first proposed nearly a decade and a
half ago as a method to identify patterns in DNA sequences (Jeffrey, 1990). The
algorithm is based on iterated function systems of fractal theory (Barnsley, 1998)
and maps a discrete sequence of symbols onto a continuous space. The method
was later extended to n-dimensional alphabets, named Universal Sequence Maps
(USM) (Almeida and Vinga, 2002), thus allowing the representation of proteins
and natural languages texts. The algorithm assigns each symbol of the sequence
alphabet to a corner of a hypercube and represents a sequence by successively
going half the distance to the corner corresponding to the following symbol in
the sequence. For example the CGR mapping xi ∈ R2 of a N -length DNA
sequence S = s1s2 . . . sN , si ∈ A = {A,T,C,G}, i = 1, . . . , N is given by the
following Eq. 5.1:

{
x0 ∼ Unif(0, 1)2

xi = xi−1 + 1
2 (yi − xi−1), i = 1, . . . , N

where yi =


(0, 0) if si = A

(0, 1) if si = C

(1, 0) if si = G

(1, 1) if si = T

(5.1)
The starting point x0 is randomly chosen within the square, which corre-

sponds to the Uniform distribution in the equation above (in the original report
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proposing CGR this point was set as the middle of the square). Each sym-
bol is then mapped onto a unique point in the CGR map using Eq. 5.1. In
an earlier report it was shown that CGR representation generalizes transition
probability tables of Markov chains (Almeida et al., 2001). This is due to an
important CGR property represented in Fig. 5.1: sub-strings with the same suf-
fix of length p are in the same sub-quadrants of size 2−p. This means that if a
motif is highly repeated in the sequence, the area that corresponds to that motif
is more densely populated. Accordingly, the sub-quadrants that correspond to
missing motifs or sub-strings will be empty. A random sequence will fill the
space uniformly. The Rényi entropy measure here proposed will be anchored in
this important property. Although visually appealing as a 2D representation of
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Figure 5.1: Chaos Game Representation (CGR) suffix property. Sequences ending

in a specific sub-string are in the square labeled with that suffix, creating a fractal

like figure. Represents equivalence of CGR and Markov chain models by transition

probability matrices extraction.

DNA sequences (4-symbol alphabet), CGR considers symbol pairs differently:
the Euclidean distance between the symbols represented in each diagonal (in
this case symbol ‘A’–‘T’ and ‘C’–‘G’ – see Fig. 5.1) is

√
2, which is different

from the distance between the other symbol-pairs, equal to the square size, 1.
To avoid this bias between symbols, 4D sparse USM representation (Almeida
and Vinga, 2002) is used, since all the properties are maintained, and assign
each DNA symbol to the following binary numbers on Eq. 5.2, where each point
representing each symbol is given by xi ∈ R4, i = 1, . . . , N (N is the length of
the sequence):
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{
x0 ∼ Unif(0, 1)4

xi = xi−1 + 1
2 (yi − xi−1), i = 1, . . . , N

where yi =


(1, 0, 0, 0) if si = A

(0, 1, 0, 0) if si = C

(0, 0, 1, 0) if si = G

(0, 0, 0, 1) if si = T

(5.2)

Although visualization power might be lost, a more accurate and unbiased
model for sequence representation is achieved. CGR/USM representation will
be used given its flexibility and because this continuous space representation
of a discrete sequence allows more generalization in the tools that might be
applied. The variables employed below will be the USM coordinates sample
points {xi}i=1,...,N .

5.2.2 Rényi continuous entropy definition

Entropy concepts were first introduced to study information transmission over a
channel (Shannon, 1948), borrowing a concept first used in thermodynamics of
gases. Shannon’s entropy is a measure of randomness of a source based on the
probabilities pi of all its possible states or outcomes i = 1, . . . , N . The maximum
entropy occurs when all the states have the same probability, which corresponds
to the highest degree of randomness of the system. On the contrary, when pi = 1
for some i, the entropy is zero, which corresponds to a deterministic system. For
a comprehensive introduction to information theory and applications see (Ash,
1990; Cover and Thomas, 1991).

Later Alfréd Rényi proposed a natural extension of Shannon’s entropy defi-
nition (Rényi, 1961; Rényi, 1966) for discrete and continuous probability density
functions (pdf). The Rényi entropy of order α ≥ 0, α 6= 1 of a continuous pdf
f(x) is defined in Eq. 5.3:

Hα =
1

1− α
ln
∫

fα(x)dx (5.3)

In this report natural logarithms will be used otherwise noticed. It can be shown
that limα→1 Hα is the Shannon’s entropy, proving that Rényi’s formulation is a
generalization of the former measure. The parameter α can be interpreted as
the inverse of the temperature in thermodynamic systems. When α = 0, which
corresponds to infinite temperature, the entropy attains its maximum and is
simply given by the volume of the support set. It is noteworthy that entropies
of continuous functions do not have the same properties as discrete probability
functions, namely their positivity.

This report is focused on Rényi’s quadratic entropy, α = 2, because this leads
to an important computational simplification, described in the next section,
obtained for Gaussian kernels. The expression of Rényi quadratic entropy used
in this report is given by Eq. 5.4.

H2 = − ln
∫

f2(x)dx (5.4)
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The function f(x) is the density of points of the CGR/USM maps, i.e. the
continuous density of a given coordinate; x represents the CGR/USM coordinate
of a symbol. Rényi entropy of a CGR map will hopefully give important clues
about the randomness of the original represented sequence.

5.2.3 Parzen window density estimation

There are several non-parametric methods to perform an estimation of a con-
tinuous probability density function (pdf). These consist on estimating f̂(x)
given a sample of N independent identically distributed random variables a =
(a1, a2, . . . , aN ) with common underlying probability density function f(x).
(ai, i = 1, . . . , N are also known as the training points.) Parzen window method
(Parzen, 1962) is one of the most widely used kernel-based methods and con-
sists on the choice of a specific weighting function or kernel κ(x), which usually
satisfies the properties of a pdf, namely

∫
κ(x)dx = 1. The estimation f̂(x) of a

random vector x is a linear combination of the kernels centered in the observed
sample points ai (Eq. 5.5):1

f̂(x; a) =
1
N

N∑
i=1

κ(x− ai) (5.5)

For differentiable kernels κ(x) this procedure corresponds to smoothing the
original discrete empirical distribution while keeping all pdf properties, namely∫

f̂(x; a)dx = 1. This method is used in a wide range of applications, from
neural networks to classification problems, given its flexibility and convenient
properties of the estimate when the sample size tends to +∞, such as consistency
and asymptotic normality.

In this report the p-dimensional Gaussian or Normal kernel gp is chosen,
to take full advantage of some important properties of this distribution. This
corresponds to the pdf Gaussian Eq. A.1 in appendix. A spherical symmetric
Gaussian kernel will be further assumed, with mean zero µ = 0 and diagonal
covariance matrix Σ = σ2Ip, where Ip is the p×p identity matrix, with simplified
formula given by Eq. 5.6:

κ(x) = gp(x; 0, σ2Ip) =
1

(2π)p/2σp
exp

(
− 1

2σ2
xT x

)
(5.6)

5.2.4 Simplification of Rényi entropy calculation for USM
maps

The proposed entropy measure conjugates the three last concepts described.
The Rényi quadratic entropy of the USM map density f(x) is calculated using
Parzen’s method with a Gaussian kernel. An additional simplification obtained
in the calculations of Rényi quadratic entropy uses another important property
of Gaussian functions: the convolution of two Gaussians is also a Gaussian. This

1The original formulation includes another parameter, the window width h, and estimates
the pdf as f̂(x; a) = 1

Nh

∑N
i=1 κ(x−ai

h
). In this report, the width was set to h = 1, meaning

that only the kernel variance effect on the estimation was studied.
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important simplification avoids the calculus of the integral with numeric meth-
ods as shown below. (See Appendix B for the complete deduction.) This leads
to the simplified expression for the Rényi quadratic entropy given by Eq. 5.7:

H2(USM) = − ln
∫

f̂2(x)dx

= − ln
1

N2

N∑
i=1

N∑
j=1

g4(ai − aj ; 2σ2I4) (5.7)

= − ln
1

N2

N∑
i=1

N∑
j=1

1
16π2σ4

exp
(
− 1

4σ2
dij

)
where dij is the squared Euclidean distance between the USM points (co-

ordinates) ai and aj . The global Rényi quadratic entropy of the USM map
depends only on all pairwise squared Euclidean distances dij , i.e. all interac-
tions between pairs of samples, reason why some authors call this expression an
information potential, as analogous to gravitational and electromagnetic fields
(Principe et al., 2000), and look at these quantities as cost functions for machine
learning algorithms. It should be stressed that there is no approximation in this
assessment, apart from the pdf estimation.

The combination of Rényi quadratic entropies and Parzen’s method has been
extensively explored in classification problems and machine learning techniques
(Gokcay and Principe, 2000, 2002; Principe and Xu, 1999; Principe et al., 2000),
but never, to our knowledge, specifically applied to bioinformatics problems.

The study described here extends L-tuple entropy calculations to a contin-
uous measure, hopefully extracting more features in this new USM map. Al-
though this measure is still dependent of one parameter, the kernel variance σ2,
the protocol described below will overcome this problem by the systematically
use of random and synthetic control sequences, obtained by simulation.

5.2.5 Asymptotic properties of H2 and random sequence
simulation

The study of the function H2 theoretical limiting behavior is of critical impor-
tance since this provides a threshold for further comparison with real biological
sequences. Given that the entropy of a sequence H2 in this method depends on
the variance of the Gaussian kernel used, it is necessary to study H2 properties
for different σ2 values, namely the asymptotic behavior of H2 = H2

(
f(σ2)

)
when σ2 tends to +∞ and 0.

It is proven in this study that the graph of the function H2 = H2(lnσ2)
has two linear asymptotes of the form H+

2 = m lnσ2 + b for ln σ2 → +∞ and
H−

2 = m′ lnσ2 +b′ for ln σ2 → −∞ that are independent of the sequences under
study. This means that in the graph H2 vs. lnσ2 every sequence will tend to
the straight asymptote lines given by the following Eq. 5.8:

H+
2 = 2 lnσ2 + ln 16π2

H−
2 = 2 lnσ2 + ln 16π2 + lnN (5.8)
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For demonstration details, see Appendix C. This result suggests the use of
log graphs, i.e. H2 = H2(lnσ2).

The asymptotic result for lnσ2 → +∞ is a delimiting reference since all
sequences, independently of their length and type, will tend to this straight line
when the variance σ2 increases. The uniformity of H2 for higher values of σ2

can be made intuitive by noting that higher variance corresponds to wider and
flatter Gaussians, and, consequently, more uniform the pdf estimation will be,
independently of the sequences represented.

Analogously, when lnσ2 → −∞ the linear asymptote H−
2 has the same

variance-dependent component and a term that is dependent of the sequence
length (lnN) but again is independent of the sequence randomness level. It is
interesting to note that both asymptotes correspond exactly to the entropy of a
sequence with just one symbol (single-point USM map), since in this case (N =
1), Eq. 5.7 reduces to H2(USM)|N=1 = 2 lnσ2 + ln 16π2 = H+

2 = H−
2 |N=1.

Another pivotal property is the H2 behavior for random sequences. Given
the difficult mathematical deduction of the corresponding distribution of H2,
with no explicit algebraic solution, all the properties were calibrated with ref-
erence to simulation studies. Hence simulations were performed generating, for
each kernel variance, 104 sequences of the same length as the original sequence
dataset (all sequences have length N = 2000) and their H2 value was calculated.
With this procedure it is possible to obtain empirical distributions of the Rényi
quadratic entropy values for the null model of randomness, thus permitting the
subsequent comparison with the H2 values of the sequence test set (see Results
section below). This simulation study also provides standard deviation values
for the measure H2, which are important to further perform hypothesis testing
and confidence intervals calculation.

The H2 properties for random sequences of different lengths are also studied
by simulation, considering again the mathematical difficulties due to the inher-
ent stochasticity of the entropy measures. Similarly to the previous case, but
with fewer replicates, 1000 random sequences are simulated with lengths vary-
ing between 1 and 4000 symbols, providing threshold values of H2 entropies and
standard deviations of this measure, again in the null random model case. These
empirical values will help to model H2 behavior as a function of the sequence
length.

5.2.6 DNA sequence dataset description

This study of Rényi entropies was mostly focused on artificial DNA sequences.
This ensures an accurate interpretation of the results, since it is often very
difficult to have a rigorous parameter control when dealing with real biologi-
cal data. Hence, several DNA sequences of different types were generated to
produce calibrated values, adding in this study one biological sequence as a
comparison target. The following Table 5.1 describes all the DNA sequences
used, where for consistency a cutoff length of N = 2000 was imposed. These
DNA sequences include several categories, including random sequences with
equiprobability of symbols, i.e. pA = pT = pC = pG = 0.25, which corresponds
to the absence of any structure and/or motifs (rand). Another type simulated
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Name Sequence description

rand random
m3 random with inserted motif L=3 'ATC'
m4 random with inserted motif L=4 'ATCG'
m5 random with inserted motif L=5 'ATCGA'
m7e random with inserted motif with error, L=7 'ATC*AGC', * denotes any symbol
R1 repeated motif L=1, 2000 times 'A'
R5 repeated motif L=5, 400 times 'ATCGA'
MC0 markov chain of order 0, pA=0.50, pT=0.30, pC=0.15, pG=0.05
MC1 markov chain of order 1, p(T|A)=p(C|T)=p(G|C)=p(A|G)=0.91; otherwise p(*|*)=0.03
Es experimental promoter regions of B.subtilis - see text

�

Table 5.1: Sequence DNA dataset used in this study. Description of DNA sequences

generated to test Rényi quadratic entropy, all having length N = 2000 symbols. Other-

wise noticed, “random” denotes a DNA sequence generated with the same probability

of each symbol, i.e. pA = pT = pC = pG = 0.25. For inserted motifs, both the mo-

tif inserted and their lengths L are specified. For Markov Chain (MC) models the

corresponding transition probabilities used to generate the sequence are given.

uses a random DNA sequence with insertions of specific exact motifs in known
locations (mo3, mo4 and mo5 ). For example in a sequence with length 2000,
motifs were inserted in all the positions 50 + 100n, n = 0, . . . , 19. A motif of
length 7 with a substitution or error in the middle position (mo7e) was also
used. Another sequence category consisted in the repetition of the same sym-
bol (R1 ) or motif (R5 ) the exact number of times to reach 2000. Additional,
sequences were generated based in Markov chains of order 0 (MC0 ) and order
1 (MC1 ). Finally this study also includes real biological DNA sequences ob-
tained from experimental data of promoter regions in B.subtilis (Es) (Helmann,
1995; Vanet et al., 1999). The tested sequence Es corresponds to the concate-
nation of 20 upstream regions before transcription, each with length 100, and
all having a known promoter sequence constituted by the sub-string TTGACA—
(space)—TATAAT with at most one substitution (known as the TATA-box). All
the dataset and additional information are available in the webpage referred to
above.

The tests consisted in calculating H2 for different values of kernel variances
σ2 and analyze the curves obtained. The H2 values were further compared with
the quantiles of the empirical distributions of the random model.

5.3 Results and Discussion

This section presents the Rényi continuous quadratic entropy results H2 ob-
tained for the sequences dataset described above (see Systems and Methods)
and further compares H2 with a null model that corresponds to random se-
quences obtained by simulation. The relations between this new measure and
the discrete Shannon’s L-block entropy are also investigated.
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5.3.1 Rényi continuous quadratic entropies H2

The following Fig. 5.2 represents the graph of the function H2 vs. lnσ2 for all
the sequences in the dataset. As expected, the deterministic sequences have
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Figure 5.2: Rényi continuous quadratic entropy for the sequence DNA dataset.

Representation of entropies for the dataset described in Tab. 5.1 as a function of

the logarithm of the gaussian kernel variance ln σ2 used in the Parzen’s Method.

The lower the value of entropy H2, the less random or more structured the sequence

is. Graph has theoretically demonstrated asymptotes for ln σ2 → +∞ given by line

H+
2 = 2 ln σ2 + ln16π2 and for ln σ2 → −∞, line H−

2 = 2 ln σ2 + ln16π2 + ln N (see

text).

lower entropy values, which corresponds to higher redundancy. The sequence
R1, where the same symbol ‘A’ is repeated 2000 times, has the lower entropy
measure for all kernel variances σ2, thus representing a minimum threshold value
for H2. The maximum entropy values are attained for random sequences (rand),
as would also be expected. The asymptotic behavior deduced in the Systems
and Methods section is illustrated in this plot with all the sequences’ Rényi
entropies approaching the straight line given by Eq. 5.8 when ln σ2 → +∞.

For reference, the graph of H2 for random sequences of different lengths N

is represented in Fig. 5.3. These results were obtained by simulation, and the
values represented correspond to the median entropies H2 of all the replicates.
Once more the asymptotic behavior of H2 when lnσ2 → +∞ is confirmed,
independently of the sequence length. Additionally, it is also apparent the
linear asymptotic behavior for lnσ2 → −∞, for which there is an approximately
linear relationship between H2 and lnN , as deduced: the longer the sequence,
the higher its entropy is. This result provides the foundation to construct a
simplified model of Rényi entropies as a function of the sequence length and
kernel variance used.

In order to study how these values relate to one particular σ2 an approximate
derivative of the H2 was obtained. This procedure is analogous to the calculation
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Figure 5.3: Rényi continuous quadratic entropy for random simulated sequences. a)

This figure presents the Rényi continuous quadratic entropy H2 for random sequences

of different lengths: N = 1, . . . , 4000 (see plot legend). The results correspond to the

median H2 values obtained in the simulation of 1000 replicates (random sequences)

with specified length N . The longer the random sequence, the higher its entropy.

Smaller sequences have fewer degrees of freedom, which is reflected in lower entropy

values. The graph asymptotic behavior for ln σ2 → +∞ is the same as for the previous

Fig. 5.2 and independent of N , as deduced (see text) – with line H+
2 = 2 ln σ2+ln16π2.

For ln σ2 → −∞ the asymptote is H−
2 = 2 ln σ2 + ln16π2 + ln N . b) The standard

deviations of the H2 values have a two-mode distribution for some N , and have limiting

values 0 for ln σ2 → ±∞.
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of differential or conditional L-block Shannon entropies in the discrete case,
given by ∆H(L) = H(L+1) − H(L) (Schmitt and Herzel, 1997). There is an
analogy between L-tuple value and kernel variance here explored. Figure 5.4
shows the first order differences between H2 values, normalized by σ2 steps.
In this representation it is possible to distinguish more clearly the differences
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Figure 5.4: Derivative of Rényi quadratic entropy for the sequence DNA dataset. The

values were obtained as the first derivatives of the Rényi entropy results represented

in Fig. 5.2.

between the sequences. For example regarding the biological sequence Es, which
in the previous Fig. 5.2 was superimposed with all the others, in Fig. 5.4 a
clear difference is spotted for its first derivatives, suggesting a new aspect of
entropy variation with potential use for discrimination. It is noteworthy that
the maximum redundancy sequence R1, composed of a 2000 long sequence of
‘A’, has the same derivative as the asymptote, with value 2.

Analogously, Figure 5.5 contains the Rényi entropy derivatives obtained for
the random sequences simulation, which confirms deviation from the asymp-
totic slope 2 as a measure of disorder. Figure 5.5 also illustrates the relation
between the minimum value of the entropy derivative ∆H2 and the length of
the random sequences: longer sequences have lower minima, reached in a lower
value of σ2. This observation might represent the continuous counterpart to the
discrete finite sample effect described in the introductory section. Furthermore
this result can establish the possibility of measuring information content as the
equivalent length of a random sequence, which will be explored further below.

In order to produce a quantitative representation of the comparison with
the uniformly random reference, the corresponding quantile order of H2 was
calculated, as compared with the simulations performed for random sequences
represented in Fig. 5.3. This approach can be interpreted as calculating the
p-value of the test that each sequence is random. Figure 5.6 plots the quan-
tile order values, always referred to the null random model, for each sequence
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Figure 5.5: Derivative of Rényi quadratic entropy for random simulated sequences.

Corresponds to the derivative of Rényi values obtained in the simulations (Fig. 5.3).

The longer is the sequence the lower is the minimum value of the derivative, which

corresponds to the slope of the entropy values H2(ln σ2).

vs. lnσ2. The random sequences have quantile order values near 0.5 (median).
The sequences with motifs have values near 0 for most of the σ2. The oscilla-
tions for values of lnσ2 ' 10 correspond to higher standard deviations of the
simulated H2 values, which have a two-mode distribution for some N (Fig. 5.3).
One particularly interesting result observed in this figure was the quantile os-
cillation of the biological sequence Es: significantly, the promoter sequences
are more deterministic than random for lower σ2 values but for higher values
of the kernel variance their H2 value is above the maximum value obtained in
the simulations (quantile probability near 1). These profiles offer a reference to
calibrate observed sequence randomness at different resolution levels.

5.3.2 Equivalent sequence length Neq

As noted above, the randomness of a sequence can be represented by an equiv-
alent random sequence length Neq, estimated by interpolation of the entropy
values for the simulated random case (see Fig. 5.3a). This value corresponds
to the length of the random sequence whose entropy is the same as the tar-
get sequence. For example, a sequence composed of only one symbol repeated,
such as R1, has an entropy profile equal to the random sequence with just one
symbol. Analogously sequence R5 has the same entropy values than a random
5-symbol sequence, i.e. Neq = 5, which corresponds precisely to the length of
the repeated motif, showing that Rényi entropy H2 has captured the redun-
dancy of each sequence. For the other sequences in the dataset (see Tab. 5.1 for
a description) the Neq values depend on the kernel variance σ2, which illustrates
the fact that for all but the most redundant or random sequences, the equivalent
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Figure 5.6: Quantile order or probability values of Rényi entropy for the sequence

DNA dataset. Quantile order obtained when comparing each H2 value with the distri-

bution of 104 simulated random sequences of the same length N = 2000. Analogy to a

p-value in the test for randomness. The values near zero correspond to sequences with

entropy values below the minimum obtained for random sequences of the same length.

The values near 0.5 are the median obtained in the simulation. Note the oscillating

behavior of Es, with discrepant quantile values for different σ2.

random length is contingent on the resolution considered.

5.3.3 Comparison between continuous and discrete mea-
sures of entropy

In this section the relationship between Rényi continuous entropy H2 and the
reference discrete Shannon’s L-block entropy is investigated. The values for
Shannon’s entropy for the sequence dataset used are represented in Fig. 5.7.
This plot shows clearly the finite sample effect: for infinite random sequences
the entropy should follow a linear relationship (dashed line in the graph) but
instead a decay of entropy values for L-tuple above 6 is observed. This can be
quickly reasoned by noting that above this resolution there are actually more
possible outcomes 46 than the possible observed frequencies of L-tuples. For
higher L there is one point per tuple box, which corresponds to maximum
entropy as a function of sequence length N , given by Hmax = lnN .

In order to assess the association level between both measures, the correla-
tion coefficient between discrete and continuous entropy values for the sequence
dataset was calculated. (Using the quadratic discrete entropy, α = 2, and not
the common Shannon entropy, α = 1, since the goal was to compare measures
and not the effect of α on the entropy results.) The high correlation obtained
for specific (L-tuple, σ2) pairs shows that Rényi continuous entropy is linearly
related to Shannon’s L-block entropy. For example the correlation is maximal
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Figure 5.7: Rényi or Shannon discrete entropies for the sequence DNA dataset.

Calculated with the formula analogous to Shannon’s entropy, for each L-tuple fre-

quencies. The levelling of entropy values for high values of L reflects the finite sample

effect, which corresponds to the underestimations of the entropy for large L: random

infinite-length sequences have entropies that match the dashed diagonal line (– –).

for the pair (6-tuple, 5.6e-8), for which a linear correspondence is given by the
regression line H2 = 0.6925HShannon−28.3175 with R2 = 1 (graph not shown).
This establishes that continuous measures of entropy are smoothly connected
with Shannon’s discrete values, of which Rényi entropies represent an extension
to a more general solution.

5.3.4 Algorithm implementation – Rényi-Toolbox

Table 5.2 briefly describes the MATLAB functions made available online to
perform all the calculations.

5.4 Conclusions

In this report a novel entropy measure of DNA sequences is proposed. This mea-
sure is based on the Rényi quadratic entropy definition for continuous probabil-
ity functions and is used in conjunction with the Parzen window method, applied
to the point density estimation of the Chaos Game Representation/Universal
Sequence Maps (CGR/USM) of a sequence. It was verified that continuous
Rényi quadratic entropy is a good measure of randomness of DNA sequences
by testing the method both in artificial and biological sequences. Although a
finite size sample problem might arise, similarly to the discrete equivalent one
seeks to expand, the continuous entropy measure proposed enriches sequence
randomness determination by not requiring a L-tuple count assignment, in ef-
fect searching the kernel variance space continuously. By freeing the calculation



5.5. ACKNOWLEDGEMENTS 117

File name Brief description

Reads sequences from FASTA format files to
readfasta.m

structured MATLAB variables
usm make.m Creates CGR/USM coordinates of a sequence
sig2.mat Variances σ2 of the Gaussian kernel tested

Calculates Rényi quadratic entropy of CGR/USM
renyi2usm fast.m

coordinates for several σ2 and saves results in file
Rényi entropies for random sequences

simul renyi usm2.m
Montecarlo simulation (calls randUSM.m)

randUSM.m Generates USM coordinates of random sequence
L-tuple discrete Shannon’s entropy

usm entropy.m
(Calls entropy renyi.m)
Calculates Rényi discrete entropy of a vector

entropy renyi.m
(counts or probabilities)

example.m script with full example of application
Brief example on how to use the functions

RenyiManual.pdf
described – uses example.m output

Table 5.2: Rényi MATLAB toolbox function description

of this discrete restriction, a deeper insight on the randomness level of a se-
quence is achieved, by simultaneously probing variable orders. Moreover, the
simplifications obtained with Parzen method allow for its straightforward and
efficient computation. The proposed Rényi continuous quadratic entropy pro-
vides new tools for the study of motifs and to describe general repeatability in
biological sequences. Additionally, this technique can eventually be applied to
the development of compression tools for DNA data.
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5.6 Appendix

A. Gaussian or Normal distribution function definition

The Gaussian or Normal p-dimensional distribution with mean µ and covariance
matrix Σ is given by the following Eq. A.1, where x ∈ Rp is a p-dimensional
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random vector, xT is the transpose vector of x and |Σ| is the determinant of Σ:

gp(x;µ,Σ) =
1

(2π)p/2|Σ|1/2
exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
(A.1)

When a random variable X, taking values in Rp, has a probability density
function (pdf) given by the former equation we say that X ∼ Np(µ, Σ).

B. Rényi quadratic entropy simplification

When using the Rényi quadratic entropy with Gaussian kernels, there is an
important simplification given the property of the convolution of two Gaussians
being also a Gaussian, i.e.

∫
g(x−ai; 0,Σ1)g(x−aj ; 0,Σ2)dx = g(ai−aj ; 0,Σ1+

Σ2) (full proof on page 121). Hence the following demonstration is obtained
(Eq. B.1), when applying to the USM representation of a N -length sequence,
where Ip is the (p× p)-dimension identity matrix.

H2(USM) = − ln
∫

f̂2(x)dx = − ln
∫ (

1
N

N∑
i=1

g4(x− ai; 0, σ2Ip)

)2

dx

= − ln
∫

1
N2

N∑
i=1

N∑
j=1

g4(x− ai; 0, σ2Ip)g4(x− aj ; 0, σ2Ip)dx

= − ln
1

N2

N∑
i=1

N∑
j=1

∫
g4(x− ai; 0, σ2Ip)g4(x− aj ; 0, σ2Ip)dx

= − ln
1

N2

N∑
i=1

N∑
j=1

g4(ai − aj ; 0, 2σ2Ip) (B.1)

This expression further simplifies to Eq. B.2 since the kernel used was the spheri-
cal 4-dimensional Gaussian distribution g4(x; 0, 2σ2I4) = 1

16π2σ4 ·exp
(
− 1

4σ2 xT x
)
:

H2(USM) = − ln
1

N2

N∑
i=1

N∑
j=1

1
16π2σ4

exp
(
− 1

4σ2
dij

)

= − ln
1

N216π2σ4

2 ·
N∑

i<j
i,j=1

exp
(
− 1

4σ2
dij

)
+ N

 (B.2)

where dij = (ai−aj)T (ai−aj) =
∑4

k=1

(
a
(k)
i − a

(k)
j

)2

represents the squared
Euclidean distance between sample USM points ai and aj and the last simpli-
fication occurs because all the pairwise distances dii = 0 and dij = dji.

C. Asymptote calculation

The graph of function H2 = H2(lnσ2) has an asymptote for lnσ2 → +∞
given by the straight line H+

2 = m lnσ2 + b, where m and b are given by
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the following Eq. C.1 and C.2 – using the notation simplification ν = σ2 and
dij = (ai − aj)T (ai − aj):

m = lim
ν→+∞

H2(ν)
ln ν

= lim
ν→+∞

− ln 1
N2

∑N
i=1

∑N
j=1

1
16π2ν2 exp

(
− 1

4ν dij

)
ln ν

= lim
ν→+∞

ln 16π2N2 + 2 ln ν − ln
∑N

i=1

∑N
j=1 exp

(
− 1

4ν dij

)
ln ν

= 2− lim
ν→+∞

ln
∑N

i=1

∑N
j=1 exp

(
− 1

4ν dij

)
ln ν

= 2 (C.1)

And the parameter b is:

b = lim
ν→+∞

(H2(ν)−m ln ν)

= lim
ν→+∞

− ln
1

N2

N∑
i=1

N∑
j=1

1
16π2ν2

exp
(
− 1

4ν
dij

)
− 2 ln ν


= lim

ν→+∞

− ln
ν2

N2

N∑
i=1

N∑
j=1

1
16π2ν2

exp
(
− 1

4ν
dij

)
= lim

ν→+∞

− ln
1

16π2N2

N∑
i=1

N∑
j=1

exp
(
− 1

4ν
dij

)
= ln 16π2 + lim

ν→+∞

− ln
1

N2

N∑
i=1

N∑
j=1

exp
(
− 1

4ν
dij

)
= ln 16π2 (C.2)

since limν→+∞
∑N

i=1

∑N
j=1 exp

(
− 1

4ν dij

)
= N2.

The graph asymptote is hence H+
2 = 2 lnσ2 + ln 16π2.

Analogously, for lnσ2 → −∞, i.e. σ2 → 0, the asymptote is given by the
straight line H−

2 = m′ lnσ2 + b′, where m′ and b′ are given by the following
Eq. C.3 and C.4, using the same simplifications:

m′ = lim
ν→0

H2(ν)
ln ν

= 2− lim
ν→0

ln
(

2 ·
∑N

i<j
i,j=1

exp
(
− 1

4σ2 dij

)
+ N

)
ln ν

= 2 (C.3)
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And the value b′ is:

b′ = lim
ν→0

(H2(ν)−m′ ln ν)

= ln 16π2 + lim
ν→0

− ln
1

N2

2 ·
N∑

i<j
i,j=1

exp
(
− 1

4σ2
dij

)
+ N




= ln 16π2 + lnN (C.4)

since limν→0

(
2 ·
∑N

i<j
i,j=1

exp
(
− 1

4σ2 dij

)
+ N

)
= N .

And hence the asymptote for σ2 → 0 is H−
2 = 2 lnσ2 + ln 16π2 + lnN .

D. Convolution of normal distribution functions

Convolution definition

The convolution f ∗ g of two functions f(x) and g(x) defined in R is given by:

f ∗ g(z) =
∫

R
f(x)g(z − x)dx (D.1)

Convolution properties

Some of the properties of f ∗ g are described below.

1. f ∗ g = g ∗ f (commutative);

2. f ∗ (g ∗ h) = (f ∗ g) ∗ h (associative);

3. f ∗ (g + h) = (f ∗ g) + (f ∗ h);

4. d(f∗g)
dx = df

dx ∗ g = f ∗ dg
dx ;

5.
∫

f ∗ g =
∫

f ·
∫

g;

6. laplace transform2 L [f ∗ g] = L(f)L(g);

7. in probability theory, the convolution of two functions has a special rela-
tion with the distribution of the sum of two independent random variables.
If the two random variables X and Y are independent, with pdf f and g

respectively, the distribution h(z) of Z = X + Y is given by h(z) = f ∗ g.
This result is obtained below:

2Laplace transform of function f(t) is defined as L[f(t)](s) =
∫∞
0 f(t)e−stdt



5.6. APPENDIX 121

H(z) = P (Z ≤ z) = P (X + Y ≤ z)

=
∫

P (X + Y ≤ z|Y = y) · g(y)dy

=
∫

P (X ≤ z − y) · g(y)dy

=
∫

FX(z − y) · g(y)dy

h(z) =
dH(z)

dz
=

d(
∫

FX(z − y) · g(y)dy)
dz

=
∫

d(FX(z − y))
dz

· g(y)dy

=
∫

f(z − y) · g(y)dy

= f ∗ g

Convolution of normal distribution functions

Given two p-dimensional normal probability density functions represented as
G1 ≡ gp(x; a,A) and G2 ≡ gp(x; b, B) (see Eq. A.1) we will prove that the
convolution of these two functions is a normal probability density distribution
function with mean a + b and variance A + B, i.e. gp(x; a + b, A + B):

G1 ∗G2(z) = gp(z; a + b, A + B)

The next sections demonstrate this result by first presenting an algebraic
simplification of integrals using some properties of determinants and the factor-
ization of quadratic forms.

Integral simplification

The following deduction represents the simplification of the integral
∫

G1 ·G2dx

where G1 and G2 are the pdf of the normal distribution described above.

∫
gp(x; a,A) · gp(x; b, B)dx

=
∫

1

(2π)p/2 |A|1/2
e−

1
2 (x−a)′A−1(x−a) 1

(2π)p/2 |B|1/2
e−

1
2 (x−b)′B−1(x−b)dx

=
∫

1

(2π)p/2 |A|1/2

1

(2π)p/2 |B|1/2
e−

1
2 ((x−a)′A−1(x−a)+(x−b)′B−1(x−b))dx

=
∫

1

(2π)p/2 |A|1/2

1

(2π)p/2 |B|1/2
e−

1
2 ((x−c)′(A−1+B−1)(x−c)+(a−b)′C(a−b))dx

=

∣∣∣(A−1 + B−1
)−1
∣∣∣1/2

(2π)p/2 |A|1/2 |B|1/2
e−

1
2 (a−b)′C(a−b) ·

·
∫

1

(2π)p/2
∣∣∣(A−1 + B−1)−1

∣∣∣1/2
e−

1
2 (x−c)′(A−1+B−1)(x−c)dx
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=

∣∣∣(A−1 + B−1
)−1
∣∣∣1/2

(2π)p/2 |A|1/2 |B|1/2
e−

1
2 (a−b)′C(a−b) (D.2)

=
1

(2π)p/2 (|A| |B| |A−1 + B−1|)1/2
e−

1
2 (a−b)′(A+B)−1(a−b)

=
1

(2π)p/2 |ABA−1 + ABB−1|1/2
e−

1
2 (a−b)′(A+B)−1(a−b)

=
1

(2π)p/2 |ABA−1 + A|1/2
e−

1
2 (a−b)′(A+B)−1(a−b)

=
1

(2π)p/2 |A (B + A) A−1|1/2
e−

1
2 (a−b)′(A+B)−1(a−b)

=
1

(2π)p/2 |A + B|1/2
e−

1
2 (a−b)′(A+B)−1(a−b)

Properties of determinants

1. |AB| = |A| |B|

2.
∣∣A−1

∣∣ = 1
|A|

3. |cA| = cn |A|

4.
∣∣BAB−1

∣∣ = |B| |A|
∣∣B−1

∣∣= |B||A|
|B| = |A|

5.
∣∣B−1AB − λI

∣∣ = ∣∣B−1AB −B−1λIB
∣∣ = ∣∣B−1 (A− λI) B

∣∣ = |A− λI|

Factorization of quadratic forms

Given x, a and b vectors of dimension p, A and B symmetric matrices of order
p positively defined such as A + B is not singular, we have the following result,
demonstrated e.g. in (Box and Tiao, 1973):

(x− a)′ A (x− a) + (x− b)′ B (x− b) =

(x− c)′ (A + B) (x− c) + (a− b)′ C (a− b) (D.3)

where c = (A + B)−1 (Aa + Bb)

C = A (A + B)−1
B =

(
A−1 + B−1

)−1

Result

Let G1(x) and G2(x) be the probability density function of the p-dimensional
normal distributions N(a,A) and N(b, B) respectively. The convolution G1∗G2

is defined as:
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G1 ∗G2(z) =
∫

G1(x)G2(z − x)dx

=
∫

1

(2π)p/2 |A|1/2
e−

1
2 (x−a)′A−1(x−a) ·

· 1

(2π)p/2 |B|1/2
e−

1
2 (z−x−b)′B−1(z−x−b)dx (D.4)

=
∫

gp(x; a,A) · gp(x; z − b, B)dx

=
1

(2π)p/2 |A + B|1/2
e−

1
2 (z−(a+b))′(A+B)−1(z−(a+b))

= gp(z; a + b, A + B)

This means that the convolution G1 ∗G2(z) is the pdf of the normal distri-
bution N(a + b, A + B).
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Chapter 6

Final discussion

The previous chapters have described the development of biological sequence
analysis techniques not dependent on alignment algorithms. The main applica-
tions of these alignment-free methods were presented and extensively reviewed.
Additionally, a quantitative evaluation of the dissimilarity measures thus ob-
tained was performed for the classification of proteins as specified by the SCOP
database. This work has also extended chaos game representation (CGR) pro-
cedure, initially proposed only for DNA, to higher order alphabets, thus ac-
commodating proteins, and finally applied this generalization, named Universal
Sequence Maps (USM), to estimate DNA Rényi’s continuous entropy.

An important contribution of the present thesis was the extensive revision
of alignment-free techniques for sequence analysis and comparison, systematiz-
ing the methods currently published and providing a collection of bibliographic
references. Emphasis was also put on nomenclature standardization, an essen-
tial step for the progression of the field. These applications have shown that
mapping sequences onto n-dimensional vectors permits a flexible and elegant so-
lution for sequence comparison and classification. Very recently, and following
the publication of this work, some papers have explored these techniques and
have also extended dissimilarity measures, explicitly expanding on our review
(Pham and Zuegg, 2004; Liao et al., 2004; Zimmermann et al., 2004), which
validate the initial proposal of unifying alignment-free techniques in one unique
approach.

Other important achievement was the quantification of classification accu-
racy of the dissimilarity measures reviewed, defining a protocol that can be easily
extended to accommodate new proposed measures. Additionally, this work in-
troduced a novel metric, W-metric, that merges alignment-free distances and
methods based on alignment by reusing concepts from linear algebra and evo-
lutionary substitution matrices. Word composition-based metrics can provide
efficient filters for sequence comparison, subsequently sending the corresponding
results onto more specific alignment-based algorithms, thus improving compu-
tational speed. For example, new methods for multiple sequence alignment are
based on this idea (Edgar, 2004a,b).

In the attempt of investigating alternative resolution-free representations,
a special contribution of the work described in this thesis was the generaliza-
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tion of CGR maps to higher-order alphabets through Universal Sequence Maps
(USM), thus exploring a representation that has long been fruitful in time series
prediction and Markov chains modelling.

Finally, another important achievement was the definition of a novel contin-
uous uncertainty measure of DNA sequences that considers Rényi generalization
of Shannon’s formalism. The theoretical framework was established, with an-
alytical deduction of asymptotical behavior, and simulation studies performed
when a solution is not available in closed form. This constitutes the foundation
work to future endeavors to investigate repeatability and uncertainty of biologi-
cal sequences, adjusting the parameters of this estimation to additional features
extraction. The study of randomness and order in DNA can reveal important
properties of how genetic information is stored, transmitted and structured.

This work has shown that dissimilarity measures and vector representations
of biological sequences are far from being fully explored. Other important as-
pect that emerged from the results included in this thesis was the modelling of
the sequences themselves; the results obtained further ascertain that the suc-
cession order of biological sequences is not totally captured by Markov chain
(MC) models and, most likely, real DNA and protein strings present a more
complex arrangement which explains the wide functions they carry out in cells.
The MC extension given by CGR/USM representation might be the solution for
efficiently estimating order-free structure that is independent of specific L-tuple
resolutions. Ideally, spanning different scales simultaneously would provide an
insightful view of how biological sequences are organized and how they inter-
act at different levels. Evidence suggests that the cell entirely exploits this
structure, notoriously ambiguous, thus augmenting the scope of possible output
molecules and functions, furthermore generating complex control systems. The
redundancy present in several processes, from metabolic networks to protein
synthesis, along with their apparent stochastic component, establish a dialectic
between determinism and randomness, whose equilibrium is the key to fully
explore DNA vast information potential, though using the same mechanisms
and cell’s machinery. Interestingly, this is precisely the notion conveyed by en-
tropy measures, bridging molecular biology and information theory. The study
of probabilistic systems entropy provides accurate measures of coding, trans-
mission and information gain, with direct implication to biological systems and
highly related to the study of sequences.

Future work envisaged will include extensions of dissimilarity measures based
on vector operations in the alignment-free space. As seen, these vector repre-
sentations of sequences have numerous advantages that fully justify their use for
DNA and protein comparison, as well as for efficient implementation of several
classification algorithms. Additionally, it is essential to probe structures beyond
Markov models, in which manageable vector maps play a fundamental role. In
particular, the CGR/USM provides an appealing representation of sequences
useful for feature extraction via machine learning algorithms. For example, the
direct application of artificial neural networks or support vector machines in
this space should be investigated, as a method to predict crucial regions in bi-
ological sequences and their respective representation. Ideally, key molecular
functions, such as promoters and transcription factors in DNA, would be recog-
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nized through clustered positions in CGR/USM obtained with those algorithms.
One possible development in protein classification, that followed directly the

study performed, is the optimization of quadratic forms for protein pre-filtering,
searching the scoring matrix space for the best combination of values that leads
to more accuracy in protein (family through class) relationship recognition. In
fact, the W-metric here proposed was not proven to be the most discriminant.
Due to the high dimensionality of data and parameters, the optimization of
the matrix associated with the quadratic form might be better achieved with
resource to artificial neural networks associated with genetic algorithms. As
referred to before, the optimal quadratic form-based dissimilarity measure thus
obtained can be used for efficiently pre-processing protein datasets and heuristic
reasoning for the improvement of alignment-based algorithms.

Another topic that can be extended in the future is related to the continuous
Rényi entropy proposed in the present work. In fact, only the basic introduction
to this measure was presented, without a comprehensive description of its po-
tential relevance for sequence analysis. For example, one obvious application of
the Rényi continuous entropy is the definition of entropic profiles, thus describ-
ing local symbol-in-context information (in preparation). These entropic profile
signatures, based on the kernel density estimation, provide local properties of
the sequence, possibly related to the statistical significance of motifs and suf-
fixes. The profile values are taken directly from the Parzen’s estimation, hence
depending on the kernel variance parameter. This characterization is impor-
tant, in this context, as a method to reveal how strongly statistical properties
may convey biological meaning. The link between entropy and significance is
very important and should be further investigated. In fact, one epistemological
key question in bioinformatics is how the computational analysis of sequences
robustly coincides with biological reality, a question without a definite answer.
Possible applications of this technique in the future include prediction prob-
lems, e.g. intron-exon recognition, and identification of long-range correlations
in DNA. Moreover, the straightforward extension of this methodology to pro-
teins should be analyzed, with possibly suitable use of compressed alphabets as
to reduce space dimensionality of Rényi entropy calculations.

Another important issue that should be considered in the future is related
to the kernel density estimation itself (of Parzen’s method); the use of Gaussian
functions was justified by computational reasons and accepted a priori without
discussion, but other kernel functions should also be investigated. In fact, rect-
angular variable kernels might be more appropriate given USM intrinsic square
geometry, instead of densities that clearly spread outside the original set. Fur-
thermore, the parameter α might also be adjusted and investigated, analyzing
how the resulting entropy is affected by its change, verifying if this value can be
optimized in specific problems.

Another central topic will be the optimization and efficient implementation
of the algorithms described, with its subsequent application to large datasets
for whole genome analysis.

Bioinformatics and biological sequence analysis is evolving very fast and
their future is, without any doubt, indissociable from the forthcoming discov-
eries of molecular biology. In the next years, it is foreseen that new emerging
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paradigms will nourish bioinformatics exploits, and vice-versa, bioinformatics
will also propose new theories to biologists, creating a knowledge loop with
challenging problems posed in both directions. It is worth mentioning that
nowadays it is believed that sequence per se is not sufficient to grasp the func-
tioning of all molecular biology processes. The complex network referred to
requires integrative techniques to bring together different levels of information,
as illustrated by the emerging microarray analysis and proteomics fields.

Very recently, new discoveries have shown that several dogmas, thought to be
universally true, have exceptions, casting some doubt on the comprehension of
biological systems. For example, the recent interest in epigenetics – term defin-
ing all meiotically and mitotically heritable changes in gene expression that are
not coded in the DNA sequence (Egger et al., 2004) – is bringing back the con-
troversial (not to say heretical . . . ) issue of Lamarckian evolution. Apparently,
processes occurring in an organism due to environmental factors, such as the
activation or silencing of some genes, can be passed to the next generation, in-
fluencing their gene expression and consequently their phenotype (Pray, 2004).
Additionally, the recent discovery of a new mechanism named RNA interference
(RNAi) puts to doubt the central dogma itself (Henikoff, 2002), since small
fragments of RNA can interfere with genes, creating a feedback system of gene
expression control (Novina and Sharp, 2004). The function of junk DNA is still
unknown but recently several hypotheses concerning its vital role were proposed
(Pearson, 2004). Other authors suggest that ribosome does not represent a pas-
sive role, being a key molecule in all the cell’s processes (Barbieri, 1985). All
these aspects show the continuous progress of fundamental concepts, far from
being totally established.

These facts suggest that in the future bioinformatics will develop in the direc-
tion of the integration of multi-object and relational information from different
source types. The expected trend will be of the conjugation of new techniques
based on the transcriptome —denoting the transcribed elements of genomes,
which includes mRNA, proteome and regulatory network analysis, as increas-
ingly framed by the field of systems biology. Although this research will incor-
porate diverse levels of information, biological sequence analysis will ultimately
be the key, at a lower hierarchical level, for uncovering the complex control
networks known to be present in all living cells and will also be a fundamental
issue to understand the phenomena of the cell.
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