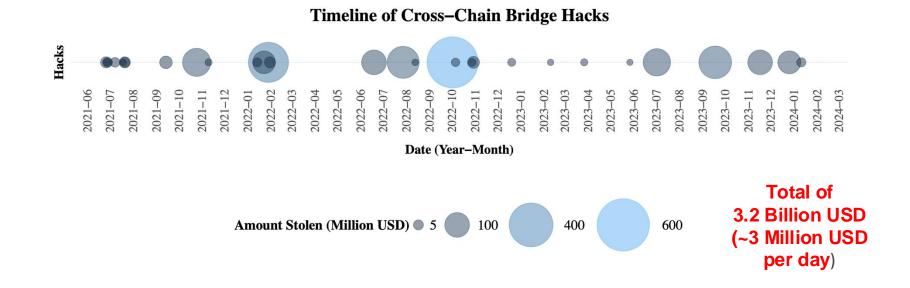
André Augusto, INESC-ID, Técnico Lisboa Rafael Belchior, INESC-ID, Blockdaemon

DAY 5 - February 14th, 2025

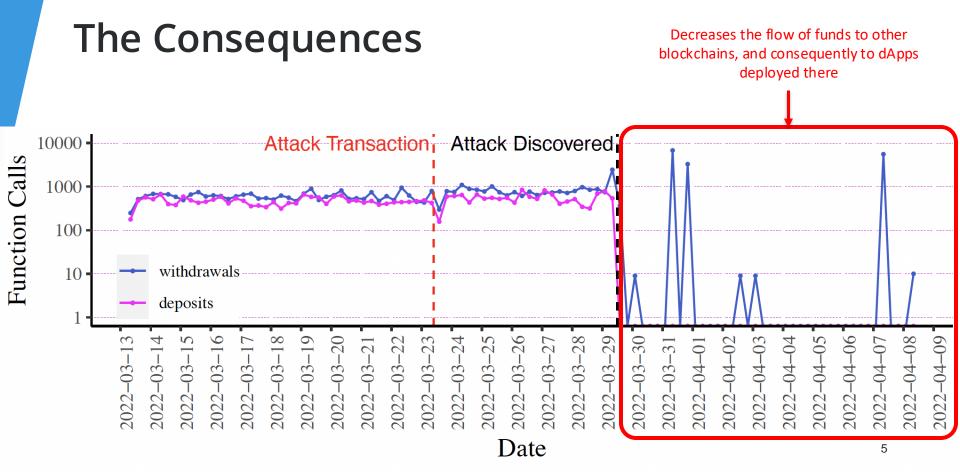
BIG – enhancing the research and innovation potential of Técnico - Lisbon through Blockchain technologies and design Innovation for social Good Grant agreement: 952226

Why should we study Interoperability Mechanisms in Blockchain?



+3.2 BILLION USD

Stolen from cross-chain bridges since 2021



A Recurrent Problem...

Augusto, R. Belchior, M. Correia, A. Vasconcelos, L. Zhang and T. Hardjono, "SoK: Security and Privacy of Blockchain Interoperability," 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2024, pp. 3840-3865,

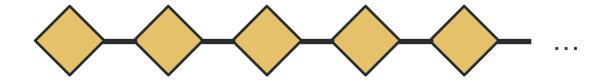
Why is Blockchain Interoperability needed?

The Blockchain Trilemma

Security

Decentralization

Connect Different Ecosystems


• #	Coin		Price	1h	24h	7d	24h Volume	Market Cap		,	S	Polygon		Monero
合 1	Bitcoin BTC	Buy	\$68,389.59	▼ 0.3%	▼ 1.0%	▲ 3.3%	\$13,663,947,240	\$1,347,551,070,887			-	MATIC	M	XMR
습 2	Ethereum	Buy	\$3,841.93	• 0.3%	▲ 2.7%	^ 25.1%	\$12,470,262,478	\$461,028,760,320	•	2	*	IMX Mantle	a	Arweave AR
습 4	BNB BNB	Buy	\$598.73	• 0.0%	v 0.4%	▲ 4.4%	\$429,266,868	\$92,207,772,331	•	4	***	MNT Stacks		Sui
습 5	Solana SOL	Buy	\$162.62	• 0.5%	• 2.7%	• 4.3%	\$2,032,605,702	\$72,884,782,988	•	5		STX ARBITRUM	0	SUI
습 10	Toncoin	Buy	\$6.32	▲ 0.5%	▼ 1.1%	← 0.1%	\$124,426,607	\$21,956,332,740	•	6		ARB Synthetix Network	Ŵ	Injective INJ
☆ 11	Cardano ADA	Buy	\$0.4578	▲ 0.2%	- 0.4%	▼ 2.1%	\$200,474,590	\$16,169,141,159	¥	7	0	StarkNet Token	Ø	Fantom
습 12	Avalanche AVAX	Buy	\$36.77	▲ 0.1%	▼ 3.2%	• 2.5%	\$232,265,046	\$14,427,629,064	¥	8	Ø	Metis Token METIS	B	FTM

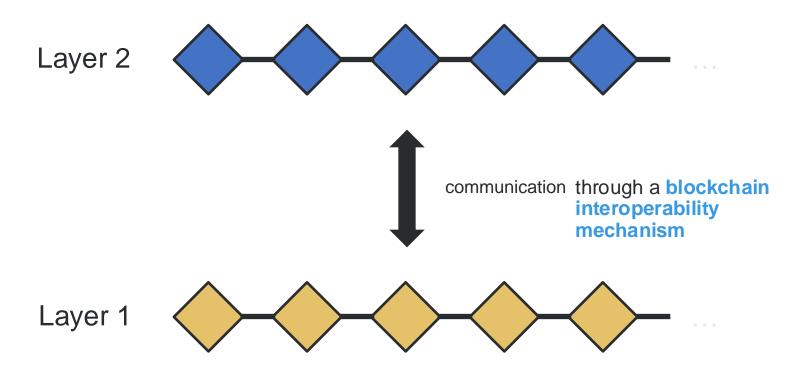
The Scalability Problem of Blockchains

Limited number of transactions in each block High transaction fees

...

Scaling Blockchains

Layer 2 (execution)

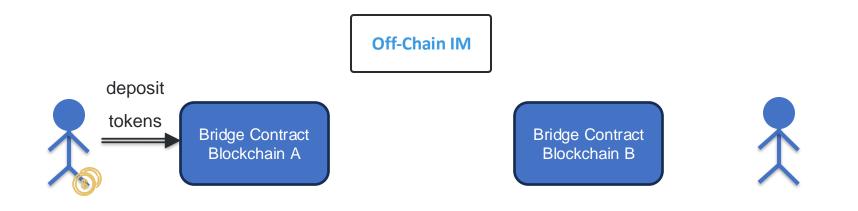

> Offload computation to another layer (L2) and publish new state roots into the L1. May be accompanied by computation proofs (as in the case of zk-rollups)

. . .

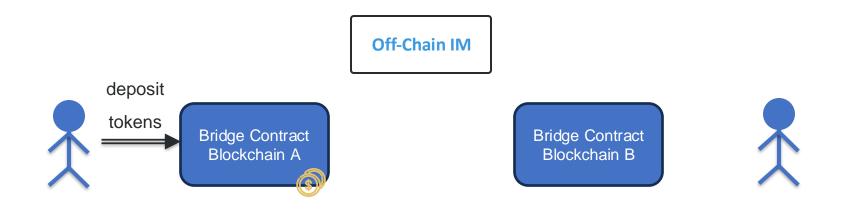
Layer 1 (settlement)

Scaling Blockchains

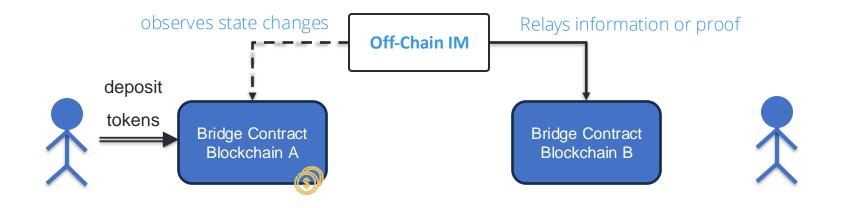
What about connecting L2s?

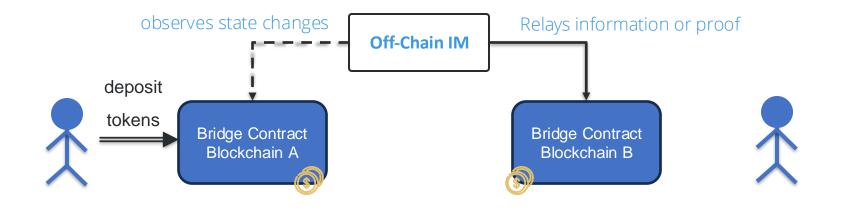


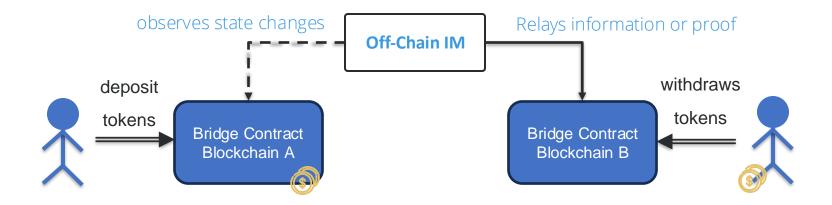
What about connecting L1s?



Layer 1 $\diamond \diamond \diamond \diamond \diamond \leftarrow \leftarrow$ Layer 1 $\diamond \diamond \diamond \diamond \diamond \diamond \leftarrow \leftarrow$

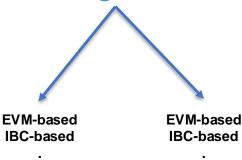






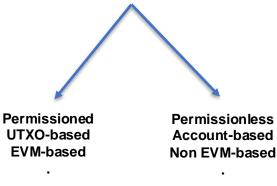
There are multiple modes:

- Lock-mint (in the diagram)
- Burn-mint
- Lock-unlock



"the ability of a source blockchain to change the state of a target blockchain (or vice-versa), enabled by cross-chain or cross-blockchain transactions, spanning across a composition of homogeneous and heterogeneous blockchain systems"

Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. 2021. A Survey on Blockchain Interoperability: Past, Present, and Future Trends. ACM Comput. Surv. 54, 8, Article 168 (November 2022), 41 pages. https://doi.org/10.1145/3471140²⁰


"the ability of a source blockchain to change the state of a target blockchain (or vice-versa), enabled by cross-chain or cross-blockchain transactions, spanning across a composition of *homogeneous* and heterogeneous blockchain systems"

Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. 2021. A Survey on Blockchain Interoperability: Past, Present, and Future Trends. ACM Comput. Surv. 54, 8, Article 168 (November 2022), 41 pages. https://doi.org/10.1145/3471140²¹

"the ability of a source blockchain to change the state of a target blockchain (or vice-versa), enabled by cross-chain or cross-blockchain transactions, spanning across a composition of homogeneous and heterogeneous blockchain systems"

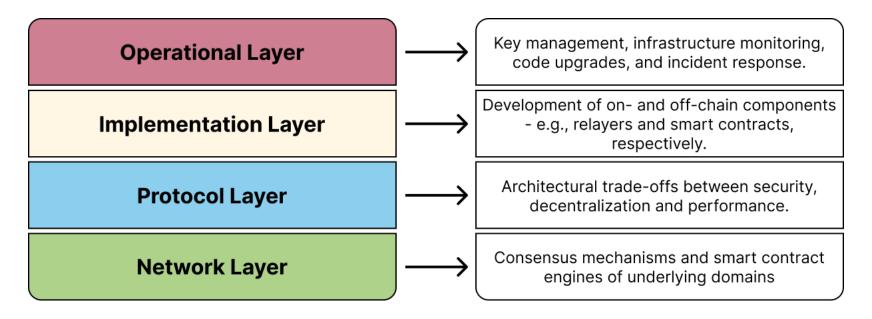
Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. 2021. A Survey on Blockchain Interoperability: Past, Present, and Future Trends. ACM Comput. Surv. 54, 8, Article 168 (November 2022), 41 pages. https://doi.org/10.1145/3471140²²

In a Nutshell... Interoperability:

Enables connectivity between Homogeneous or Heterogeneous platforms

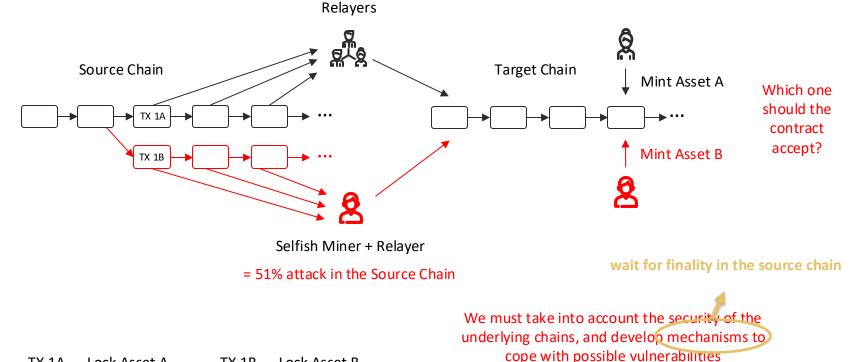
Reduces liquidity fragmentation across DeFi protocols in multiple blockchains (L1s or L2s)

The Core Idea: Enables the seamless flow of assets and data across platforms The Core Idea: Enables the seamless flow of value across platforms


Outline

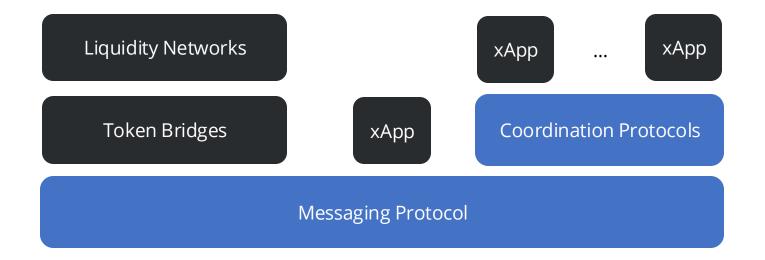
Motivation (Why?, How?, What?)

- Blockchain Interoperability and Interoperability Mechanisms
- Security and Privacy of Interoperability Mechanisms
- Securing interoperability solutions: Hephaestus and XChainWatcher
- Future Research Directions


Building Blocks to Make It Work

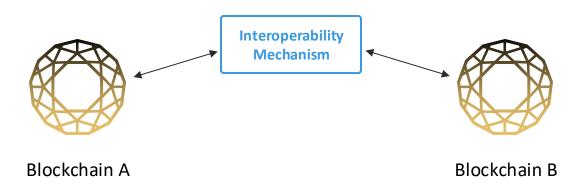
A. Augusto, et al., "SoK: Security and Privacy of Blockchain Interoperability," in 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2024 pp. 3840-3865. doi: 10.1109/SP54263.2024.00255

Example: the importance of the network layer

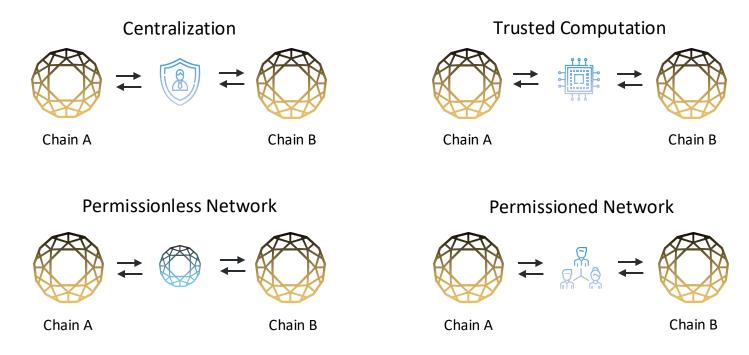


TX 1A — Lock Asset A

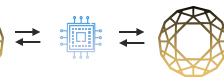
TX 1B — Lock Asset B



The Protocol Layer


Source: Abebe, E., Robinson, P., Chand, A., Murdock, M., & Hyland-Wood, D. Crosschain Risk Framework. https://crosschainriskframework.github.io/

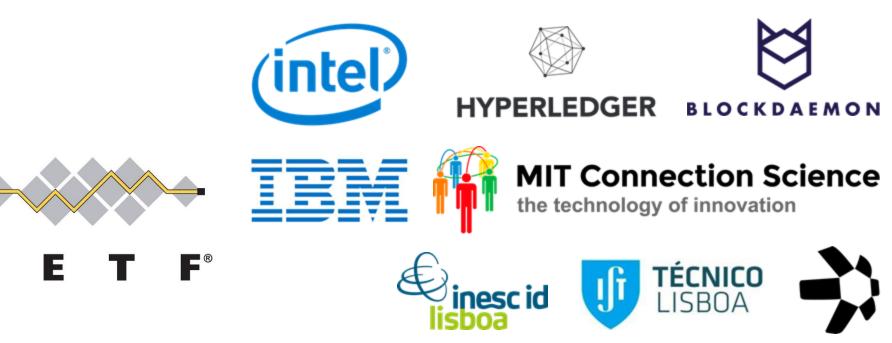
Architectures



Architectures

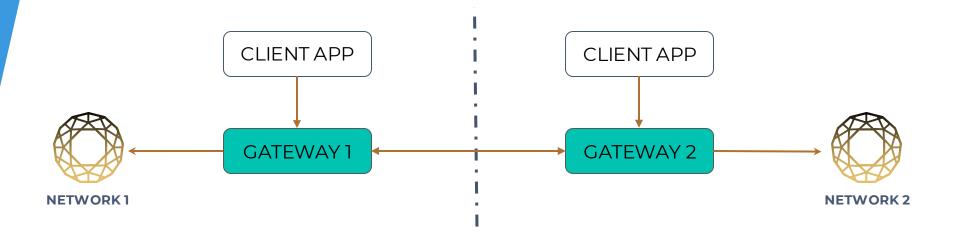
Validity Proofs (e.g., SNARKs)

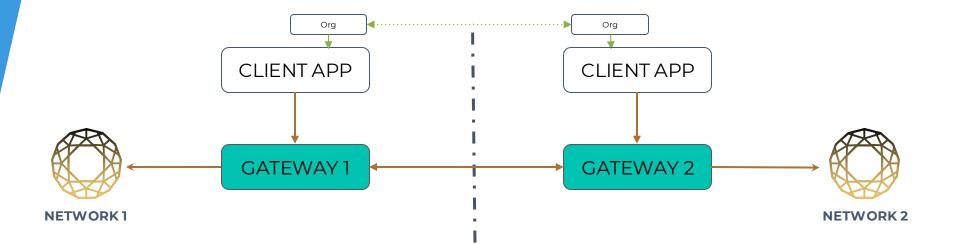
Chain A

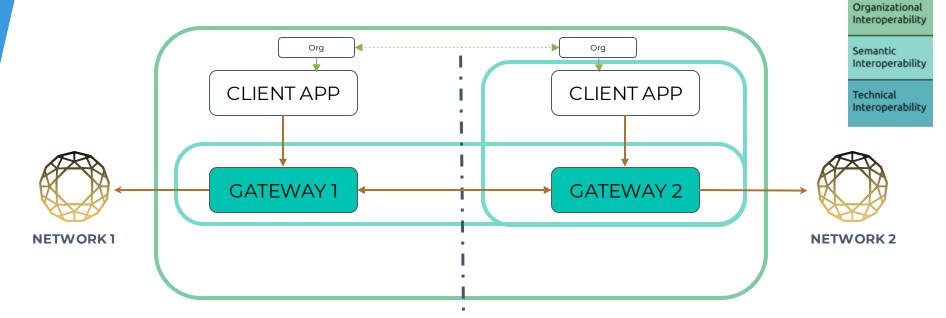

Chain B

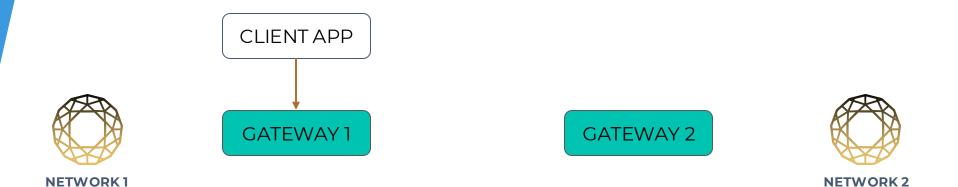
Hash and Time Locks

and more...

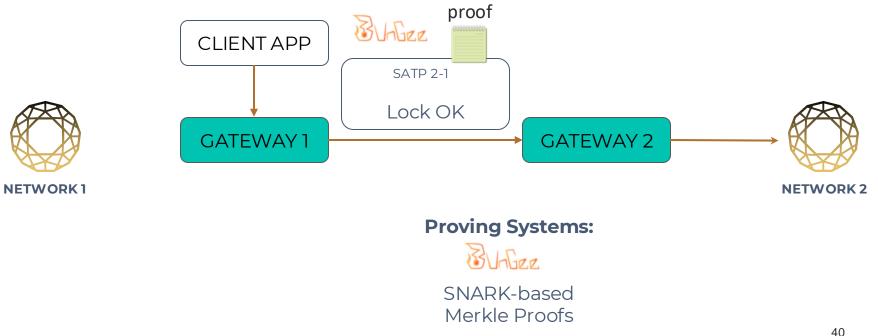


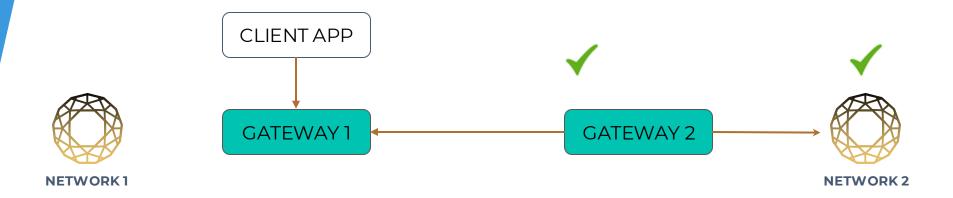




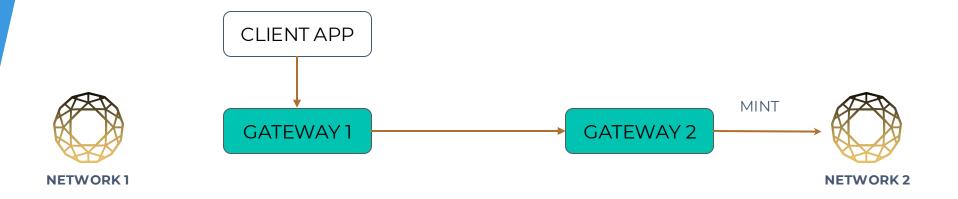


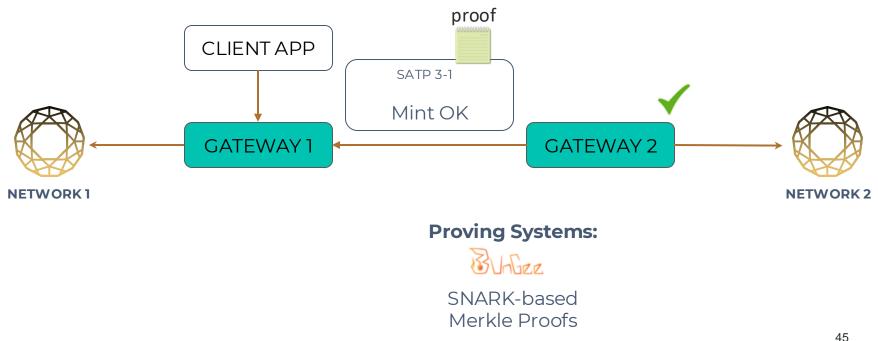
Legal Interoperability

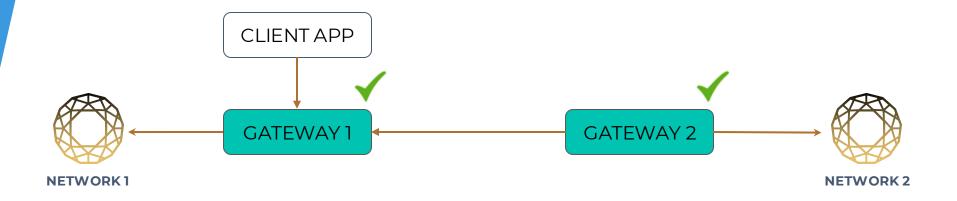




...





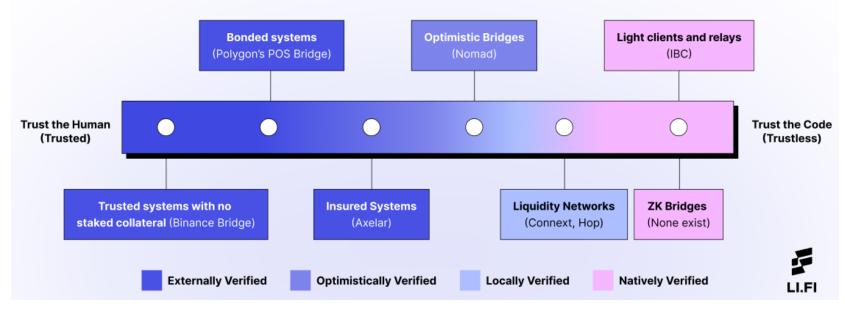

44 44

...

Outline

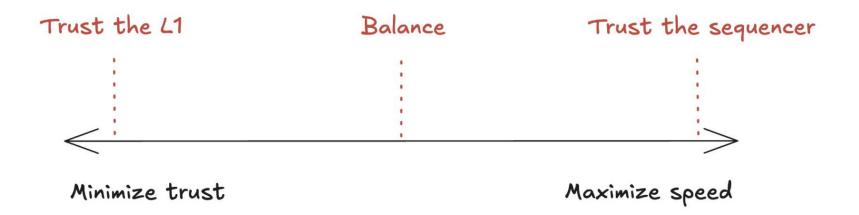
- Motivation (Why?, How?, What?)
- Blockchain Interoperability and Interoperability Mechanisms
- Security and Privacy of Interoperability Mechanisms
- Securing interoperability solutions: Hephaestus and XChainWatcher
- Future Research Directions

How to classify IMs based on security guarantees?



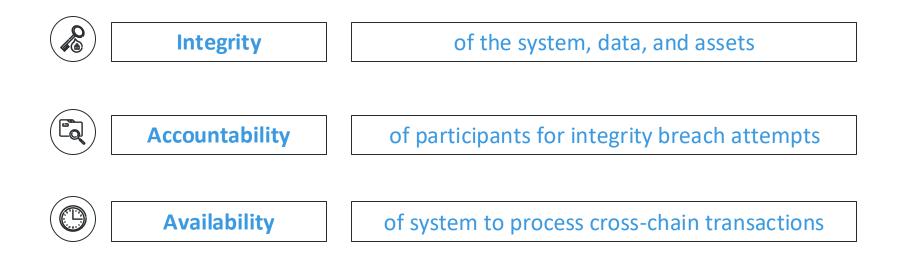
"There exists no asynchronous cross-chain communication protocol tolerant against misbehaving nodes without a trusted third party."

Trust spectrum


The 'Trust Spectrum' in Bridges

Source: https://blog.li.fi/li-fi-with-bridges-trust-is-a-spectrum-354cd5a1a6d8

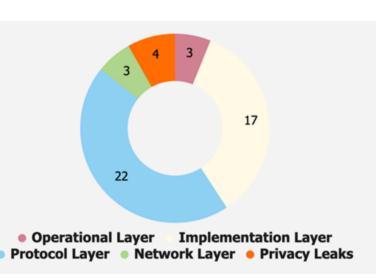
Trust spectrum (Rollups)



Is the *Trust* Spectrum Enough? No

So...what does a secure interoperability solution look like?

A set of properties


A. Augusto, et al., "SoK: Security and Privacy of Blockchain Interoperability," in 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2024 pp. 3840-3865. doi: 10.1109/SP54263.2024.00255

Vulnerabilities in Interoperability

X7.1 L'11' // 1

CROSS-CHAIN SYSTEMS. THE COLORED CIRCLE DENOTES THE LAYER WHERE IT CAN BE FOUND (CF. SECTION 3.1).

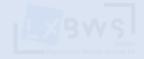
Vulnerability/Leak	Mitigations
• \mathcal{V}_1 Honest mining assumption [45]	$M_1 - M_5$
• \mathcal{V}_2 Absence of identity verification [45], [71], [72]	$\mathcal{M}_8 - \mathcal{M}_{11}$
• \mathcal{V}_3 Network isolation [38], [45], [62], [77]	$\mathcal{M}_6, \mathcal{M}_7$
• \mathcal{V}_4 Outdated light client state [45], [53], [150]	\mathcal{M}_{16}
• \mathcal{V}_5 Wrong main chain identification [6], [45], [77]	\mathcal{M}_{18}
• \mathcal{V}_6 Incorrect event verification [151]–[154]	\mathcal{M}_{12} - \mathcal{M}_{14}
• \mathcal{V}_7 Acceptance of invalid consensus proofs [155]	\mathcal{M}_{15}
• \mathcal{V}_8 Absence of chain identification [156]	\mathcal{M}_4
♥ V ₉ Submission of repeated inclusion proofs [21], [45], [77], [157]	M_{17}
• \mathcal{V}_{10} Counterfeiting assets [45], [77], [158]	\mathcal{M}_{19} - \mathcal{M}_{23}
• \mathcal{V}_{11} Involuntary timelock expiry [63], [85]	\mathcal{M}_{29} - \mathcal{M}_{30}
• \mathcal{V}_{12} Unset withdrawal limits [156], [159]	\mathcal{M}_{69}
$\circ \mathcal{V}_{13}$ Action withhold [58], [61], [80], [86], [86], [94], [160]	$\mathcal{M}_8, \mathcal{M}_{27}, \mathcal{M}_{28}$
• \mathcal{V}_{14} Unspecified gas limit [161]	\mathcal{M}_{65}
V ₁₅ Resource exhaustion [45], [55], [57], [60], [65], [69]	\mathcal{M}_{48} - \mathcal{M}_{50}
• \mathcal{V}_{16} Single point of failure [156], [162]	$\mathcal{M}_7, \mathcal{M}_{32}, \mathcal{M}_{47}$
• \mathcal{V}_{17} Publicly identifiable operators [74]	\mathcal{M}_{44} - \mathcal{M}_{46}
• \mathcal{V}_{18} Misaligned incentive mechanisms [38], [60], [65], [122]	$M_{23}, M_{31}-M_{34}$

55

Attacks in Cross-Chain Bridges

Project Informat	tion	Gene	General Attack			Mapping to Theoretical Vulnerabilities							
Name & Ref SA		Date	Amount	\mathcal{V}_{44}	\mathcal{V}_{43}	\mathcal{V}_{28}	V_{27}	V_{24}	\mathcal{V}_6				
[218] Ronin	SA_{22}	Mar 2022	624M	1	1	×	×	×	×				
[219] PolyBridge #1	SA_{22}	Aug 2021	611M	×	1	1	×	×	×				
[220] BNB	SA_{11}	Oct 2022	566M	×	×	×	×	1	×				
[123] Wormhole	SA_{22}	Feb 2022	326M	×	×	1	×	1	×				
[221] Nomad	SA_{33}	Aug 2022	190M	×	×	×	×	1	×				
[222] BXH	SA_{11}	Oct 2021	139M	1	1	×	×	X	×				
[223] Multichain #2	SA_{22}	Jul 2023	126M	1	1	×	×	×	×				
[224] Harmony	SA_{22}	Jun 2022	100M	1	1	×	X	×	×				
[225] Qubit	SA_{11}	Jan 2022	80M	×	×	×	1	1	×				
[226] pNetwork	SA_{33}	Sep 2021	13M	×	×	×	×	X	1				
[227] Thorchain #3	SA_{21}	Jul 2021	8M	×	×	×	×	×	1				
[223] Anyswap	SA_{22}	Jul 2021	8M	×	1	×	×	×	X				
[227] Thorchain #2	SA_{21}	Jul 2021	5M	×	×	×	×	1	1				
[219] PolyBridge #2	SAm	Jul 2023	4.4M	×	1	×	×	×	X				
[228] Meter	SA_{22}	Jul 2021	4.4M	×	×	×	×	1	×				
[229] Chainswap	SA_{22}	Jul 2021	4.4M	×	×	1	X	1	×				
[223] Multichain #1	SA_{22}	Jan 2022	3M	×	×	×	1	1	×				
[227] Thorchain #1	SA_{21}	Jun 2021	140K	×	×	×	X	×	1				
Summary		07/21 - 07/23	2.9B	22%	39%	17%	11%	44%	22%				

A. Augusto, et al., "SoK: Security and Privacy of Blockchain Interoperability," in 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2024 pp. 3840-3865. doi: 10.1109/SP54263.2024.00255


Vulnerabilities Behind

Project Inf	ormation	Ge	neral Attack I	Information		tion		Incident Resp		re	Mapping to Theoretical Vulnerabilit			ies	
Name & Ref	SA	Date	Amount	AT	Txs	Mix	DT	CT	VL	EL	V_{44} V_{43}	\mathcal{V}_{28}	V_{27}	\mathcal{V}_{24}	\mathcal{V}_6
Physical Infrastructure Backdoors	Bad key Managem	ent	Dead c	ode			Unsa party softw		d-		ack of access contro	olever	orrect nt ficatio	on	

~66% used a *Permissioned Network* as Architecture

What about Privacy?

Privacy Brings Additional Challenges

OFFICE OF FOREIGN

ASSETS CONTROL

design a system that guarantees all these properties?

Well...

The Obvious Example

...and it "only" provides the unlinkability of transactions in one blockchain

Interesting Connection with Bridge Attacks

Name & Ref	Date	Amount	Mix
[193] Ronin	Mar 2022	624M	0
[194] PolyBridge #1	Aug 2021	611M	0
[195] BNB	Oct 2022	566M	Ð
[108] Wormhole	Feb 2022	326M	O
[196] Nomad	Aug 2022	190M	0
[197] BXH	Oct 2021	139M	O
[198] Multichain #2	Jul 2023	126M	0
[199] Harmony	Jun 2022	100M	0
[200] Qubit	Jan 2022	80M	0
[201] pNetwork	Sep 2021	13M	0
[202] Thorchain #3	Jul 2021	8M	0
[198] Anyswap	Jul 2021	8M	0
[202] Thorchain #2	Jul 2021	5M	0
[194] PolyBridge #2	Jul 2023	4.4M	0
[203] Meter	Jul 2021	4.4M	0
[204] Chainswap	Jul 2021	4.4M	
[198] Multichain #1	Jan 2022	3M	
[202] Thorchain #1	Jun 2021	140K	0

14 out of 18 used Transaction Mixers, mainly Tornado Cash

Usage of Mixers (Mix)

- O Not used
- Before the attack
- After the attack
- Before and after the attack

Would a cross-chain protocol with the same level of privacy be sanctioned?

Explore the notion of *Revokable Privacy*. Is it possible to guarantee these properties if and only if there is no misbehavior?

Outline

- Motivation (Why?, How?, What?)
- Blockchain Interoperability and Interoperability Mechanisms
- Security and Privacy of Interoperability Mechanisms
- Securing interoperability solutions: Hephaestus and XChainWatcher
- Future Research Directions

A Prominent Problem

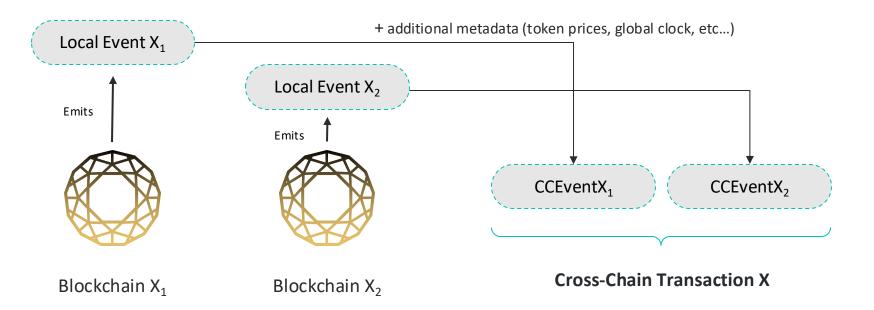
TABLE 5. CLASSIFICATION OF MOST PROFI ABLE CROSS-CHAIN BRIDGE HACK'S GROUPED BY USD. THE CELLS WITH THE VULNERABILITY NUMBER ARE FILLED WITH THE COLOR ACCORE WE ADD A "SUMMARY" ROW THAT AGGREGALES INFORMATION. SPECIFICALLY, WE USE CELL EACH VULNERABILITY VAS FOUND.

Project Informat	Gene	Inc. lent Resp						
Name & Ref	SA	Date	An ount AT		Txs	Mix	DT	CT
[218] Ronin	SA_{22}	Mar 2022	624M		0	•	6d	٠
[219] PolyBridge #1	SA_{22}	Aug 2021	611M		0	0	-	0
[220] BNB	SA_{11}	Oct 2022	566M		O	0	-	•
[123] Wormhole	SA22	Feb 2022	326M		0	0	-	0
[221] Nomad	SA_{33}	Aug 2022	190M		•	•	-	۰
[222] BXH	SA11	Oct 2021	139M		0	0	-	•
[223] Multichain #2	SA22	Jul 2023	126M		0	0	-	•
[224] Harmony	SAm	Jun 2022	100M		0	0	-	•
[225] Qubit	SA_{11}	Jan 2022	00111		O	•	-	0
[226] pNetwork	SA_{33}	Sep 2021	13M		0	0	13m	0
[227] Thorchain #3	SA_{21}	Jul 2021	8M		0	•	-	-
[223] Anyswap	SA22	Jul 2021	8M		0	0	-	•
[227] Thorchain #2	SA_{21}	Jul 2021	5M		•	0	-	•
[219] PolyBridge #2	SA22	Jul 2023	4.4M		0	0	7h	•
[228] Meter	SA_{22}	Jul 2021	4.4M		0	0	-	O
[229] Chainswap	SA22	Jul 2021	4.4M		•	•	-	0
[223] Multichain #1	SA22	Jan 2022	3M		-	•	-	
[227] Thorchain #1	SA_{21}	Jun 2021	140K		-	0	5m	-
Summary		07/21 - 07/23	2.9B					

Communication Time (CT)]0; 2] hours [2; 4] hours 14; 6] hours 16: 24] hours >= 6 days

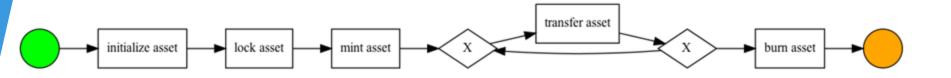
Attacks stole between 140K

USD and ~620M USD

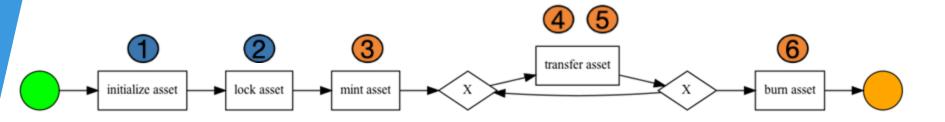

Defi Protocol LI.FI Struck by \$11M Exploit

The exploit is reported to be related to the LI.FI bridge.

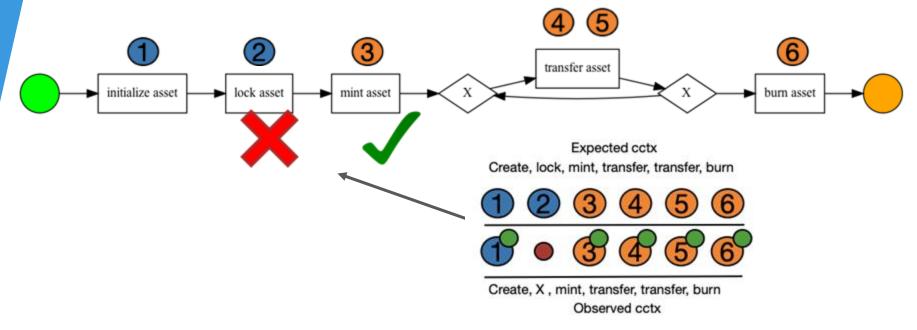
By Oliver Knight 🕓 Jul 16, 2024 at 2:30 p.m. Updated Jul 16, 2024 at 8:45 p.m.

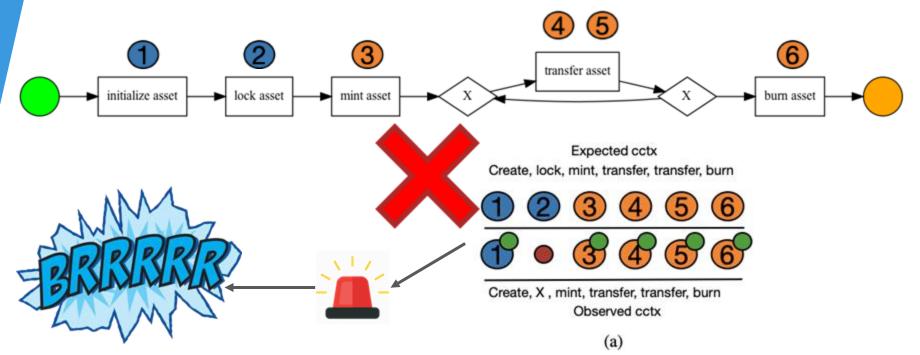


The Solution: Cross-Chain Modelling



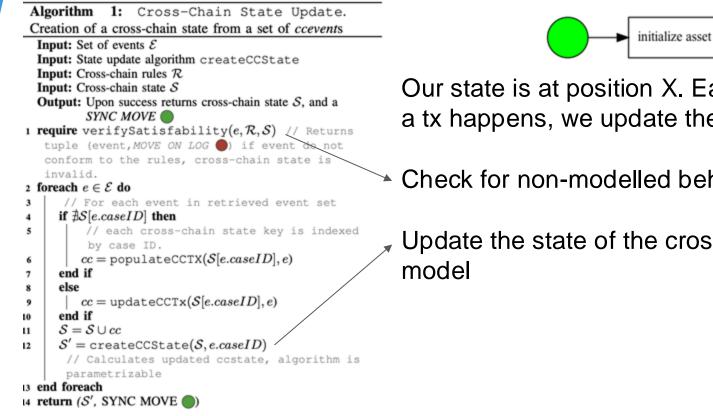
Belchior, R., Somogyvari, P., Pfannschmidt, J., Vasconcelos, A., & Correia, M. (2023). Hephaestus: Modeling, analysis, and performance evaluation of cross-chain transactions. *IEEE Transactions on Reliability*.





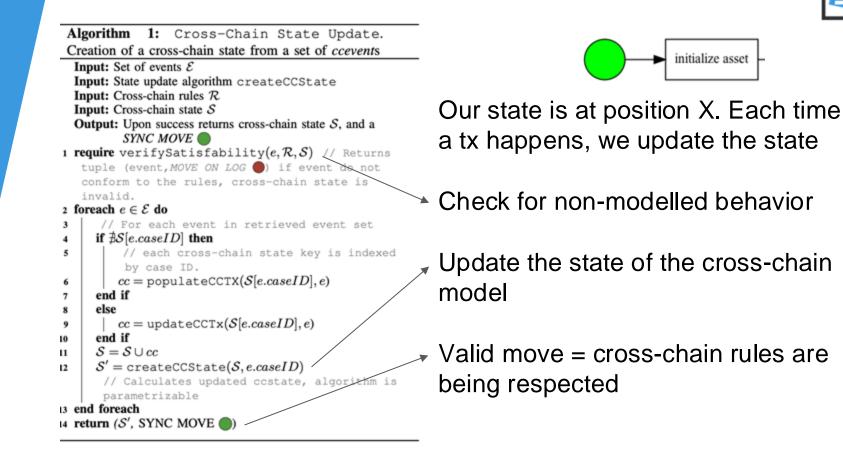
Algorithm 1: Cross-Chain State Update. Creation of a cross-chain state from a set of ccevents Input: Set of events \mathcal{E} Input: State update algorithm createCCState Input: Cross-chain rules R Input: Cross-chain state SOutput: Upon success returns cross-chain state S, and a SYNC MOVE 1 require verifySatisfability(e, R, S) // Returns tuple (event, MOVE ON LOG) if event do not conform to the rules, cross-chain state is invalid. 2 foreach $e \in \mathcal{E}$ do // For each event in retrieved event set 3 if $\nexists S[e.caseID]$ then 4 // each cross-chain state key is indexed 5 by case ID. $cc = \text{populateCCTX}(\mathcal{S}[e.caseID], e)$ 6 end if 7 else 8 cc = updateCCTx(S[e.caseID], e)9 end if 10 $S = S \cup cc$ 11 S' = createCCState(S, e.caseID)12 // Calculates updated ccstate, algorithm is parametrizable 13 end foreach 14 return (S', SYNC MOVE)

Our state is at position X. Each time a tx happens, we update the state


Algorithm 1: Cross-Chain State Update. Creation of a cross-chain state from a set of *ccevents* Input: Set of events \mathcal{E} Input: State update algorithm createCCState Input: Cross-chain rules R Input: Cross-chain state SOutput: Upon success returns cross-chain state S, and a SYNC MOVE 1 require verifySatisfability(e, R, S) // Returns tuple (event, MOVE ON LOG) if event do not conform to the rules, cross-chain state is invalid. 2 foreach $e \in \mathcal{E}$ do // For each event in retrieved event set 3 if $\nexists S[e.caseID]$ then 4 // each cross-chain state key is indexed 5 by case ID. $cc = \text{populateCCTX}(\mathcal{S}[e.caseID], e)$ 6 end if 7 else 8 cc = updateCCTx(S[e.caseID], e)9 end if 10 $S = S \cup cc$ 11 S' = createCCState(S, e.caseID)12 // Calculates updated ccstate, algorithm is parametrizable 13 end foreach 14 return (S', SYNC MOVE)

Our state is at position X. Each time a tx happens, we update the state

Check for non-modelled behavior



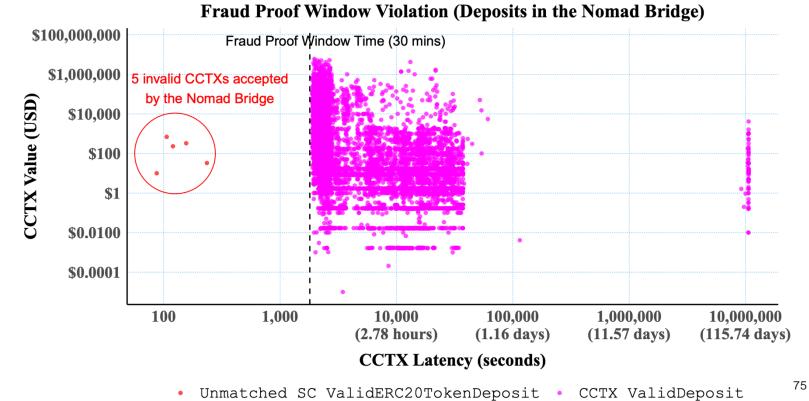
Our state is at position X. Each time a tx happens, we update the state

Check for non-modelled behavior

Update the state of the cross-chain

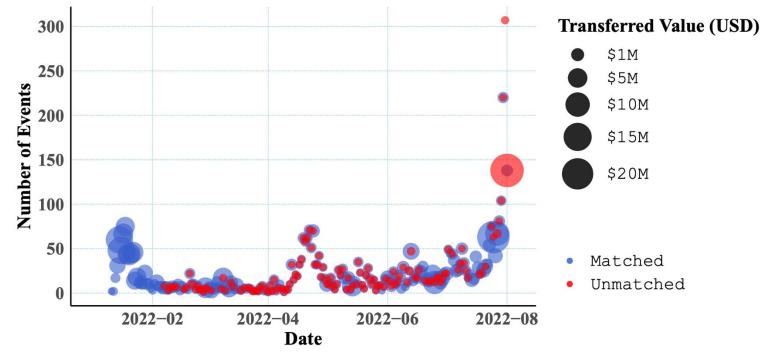
Capabilities of a Cross-Chain Model

Finding anomalies in cross-chain protocols through cross-chain rules.


Example: defining what a valid deposit of tokens should look like

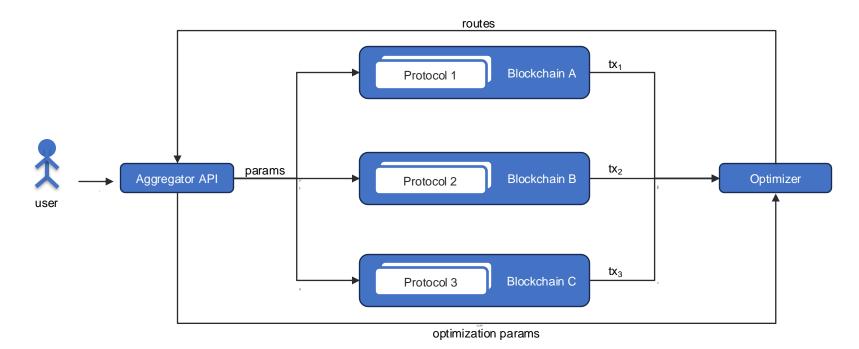
```
// Rule 4 (D)
CCTX_ValidDeposit(orig_chain_id, orig_timestamp, orig_tx_hash, dst_chain_id, dst_tim
    orig_token, dst_token, sender, benef, amount) :-
    TC_ValidERC20TokenDeposit(dst_timestamp, dst_tx_hash, deposit_id, benef, dst_toke
    (
        SC_ValidERC20TokenDeposit(orig_timestamp, orig_tx_hash, deposit_id, sender, _,
        orig_chain_id, dst_chain_id, _, amount);
        SC_ValidNativeTokenDeposit(orig_timestamp, orig_tx_hash, deposit_id, sender, _,
        orig_chain_id, dst_chain_id, _, amount)
    ),
    cctx_finality(orig_chain_id, orig_chain_finality),
    orig_timestamp + orig_chain_finality < dst_timestamp.</pre>
```

Augusto, A., Belchior, R., Pfannschmidt, J., Vasconcelos, A., & Correia, M. (2024). XChainWatcher: Monitoring and Identifying Attacks in Cross-Chain Bridges. *arXiv preprint arXiv:2410.02029*.


Anomaly 1

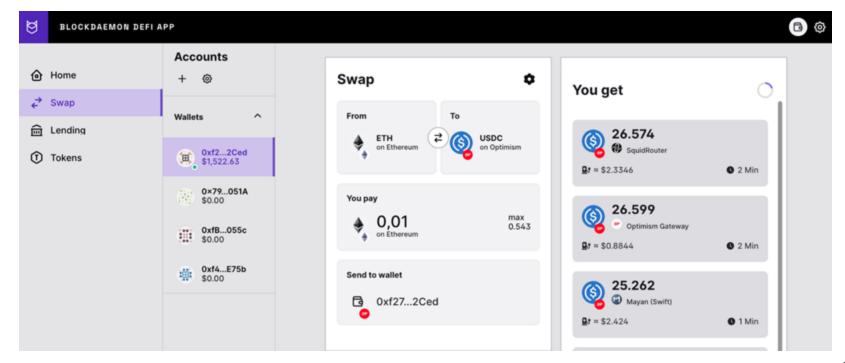
Anomaly 2

Matched vs. Unmatched Withdrawal Events in T (Nomad Bridge)

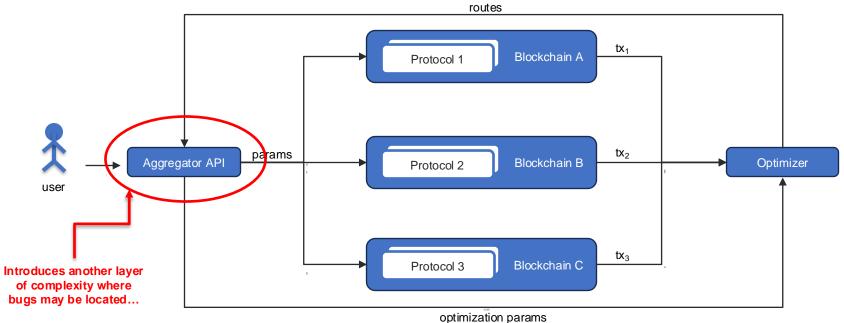


Outline

- Motivation (Why?, How?, What?)
- Blockchain Interoperability and Interoperability Mechanisms
- Security and Privacy of Interoperability Mechanisms
- Securing interoperability solutions: Hephaestus and XChainWatcher
- Future Research Directions

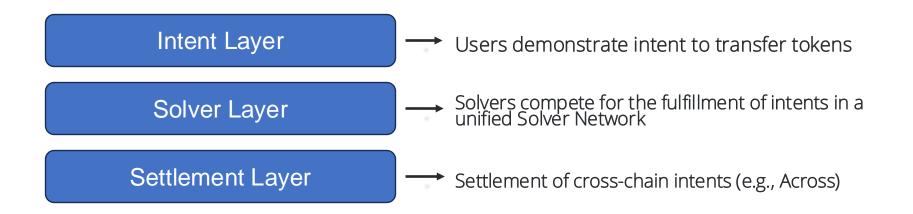

Bridge Aggregators

Subramanian, Shankar, et al. "Benchmarking blockchain bridge aggregators." 2024 IEEE International Conference on Blockchain (Blockchain). IEEE, 78 2024.



Bridge Aggregators (Example)

Bridge Aggregators



80

ERC-7683 Cross-Chain Intents

Focus on user experience, fulfilling immediately users' orders Shift risk to a 'Network of Solvers'

Current Interoperability Challenges

Weak monitoring of cross-chain solutions

Layer 2s are majorly centralized

Sometimes large time windows to withdraw funds (e.g., 7 days)

Awful user experience when interacting with cross-chain protocols

Standardization Efforts

EEA Distributed Ledger Technology Interoperability Specification Version 1.0

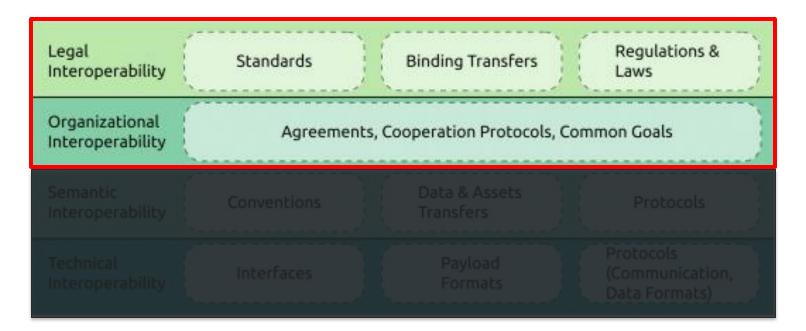
EEA Publication 19 September 2024

This Version:

https://entethalliance.org/specs/dlt-interop/v1/

ISO/CD TS 23516

Blockchain and Distributed Ledger Technology — Interoperability Framework


Under development

A draft is being reviewed by the committee.

Understudied Interoperability Layers

Materials for further studying

Hyperledger Cacti workshop (3h) - <u>https://www.youtube.com/watch?v=TM-dnP2yzRM&t=4410s</u>

DLT Interoperation: Implementing IETF Secure Asset Transfer Protocol in Hyperledger Cacti: https://www.youtube.com/watch?v=hmkK2lxhhFw

R. Belchior et al., "A Brief History of Blockchain Interoperability" Communications of the ACM (CACM), 2024 - https://dl.acm.org/doi/pdf/10.1145/3648607

M. Hargreaves et al., "Secure Asset Transfer Protocol (SATP)", Internet Engineering Task Force Internet Draft draft-ietf-satp-core-04, May 2024 - IETF draft

References

Belchior, R., Riley, L., Hardjono, T., Vasconcelos, A., & Correia, M. (2023). Do you need a distributed ledger technology interoperability solution?. *Distributed Ledger Technologies: Research and Practice*, *2*(1), 1-37.

Belchior, R., Vasconcelos, A., Correia, M., & Hardjono, T. (2022). Hermes: Fault-tolerant middleware for blockchain interoperability. Future Generation Computer Systems, 129, 236-251.

Belchior, R., Dimov, D., Karadjov, Z., Pfannschmidt, J., Vasconcelos, A., & Correia, M. (2023). Harmonia: Securing cross-chain applications using zero-knowledge proofs. Authorea Preprints.

Belchior, R., Somogyvari, P., Pfannschmidt, J., Vasconcelos, A., & Correia, M. (2023). Hephaestus: Modeling, analysis, and performance evaluation of cross-chain transactions. *IEEE Transactions on Reliability*.

Belchior, R., Vasconcelos, A., Guerreiro, S., & Correia, M. (2021). A survey on blockchain interoperability: Past, present, and future trends. Acm Computing Surveys (CSUR), 54(8), 1-41.

Augusto, A., Belchior, R., Correia, M., Vasconcelos, A., Zhang, L., & Hardjono, T. (2024, May). Sok: Security and privacy of blockchain interoperability. In *2024 IEEE Symposium on Security and Privacy (SP)* (pp. 3840-3865). IEEE.

Augusto, A., Belchior, R., Pfannschmidt, J., Vasconcelos, A., & Correia, M. (2024). XChainWatcher: Monitoring and Identifying Attacks in Cross-Chain Bridges. *arXiv preprint arXiv:2410.02029*.

Subramanian, S., Augusto, A., Belchior, R., Vasconcelos, A., & Correia, M. (2024, August). Benchmarking blockchain bridge aggregators. In 2024 IEEE International Conference on Blockchain (Blockchain) (pp. 37-45). IEEE.

Appendix

Interoperability can take multiple forms

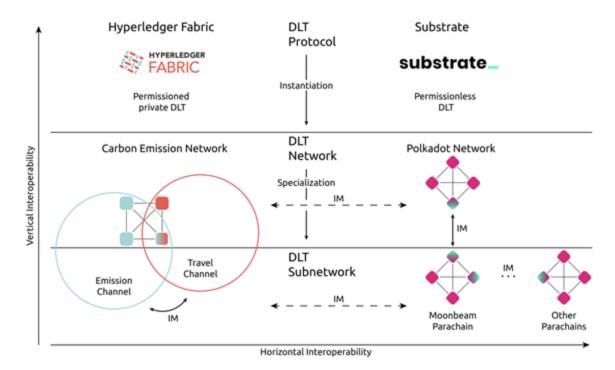
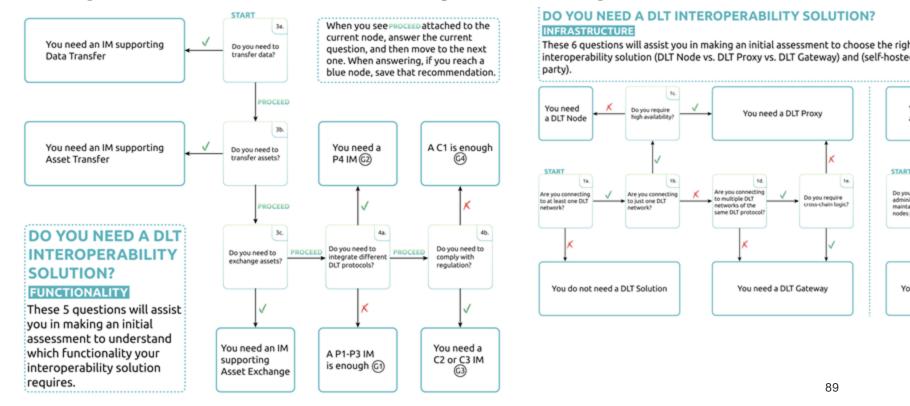


Fig. 2. DLT protocols, networks, and subnetworks.

START

Do you


admini

mainta

nodes

Yo

Do you need an interoperability solution?

Interoperability Assessment

Table 3. DLT Interoperability Solution Assessment

Potentiality Assessment (PA)	Score (0-4)
P1: Interoperation within the same DLT network, same subnetworks	
P2: Interoperation within the same DLT network, different subnetworks	
P3: Interoperation within different DLT networks	
P4: Interoperation within different DLT protocols	
Compatibility Assessment (CA)	Score (0-3)
C1: Provides semantic-level interoperability (shared protocols)	
C2: Provides organization-level interoperability (shared agreements)	
C3: Provides legal-level interoperability (follow regulations)	
Performance Assessment (PeA)	Score (0-3)
PE1: Provides acceptable cross-chain transaction end-to-end latency/throughput	
PE2: Provides acceptable cross-chain transaction end-to-end cost	
PE3: Complies with desirable energetic consumption goals	
PA + CA + PeA	Total (0-10):
Interongrability accelement is divided into PE_CA and PeA accelements. A higher score corresponds to	a more interonerab

Interoperability assessment is divided into PE, CA, and PeA assessments. A higher score corresponds to a more interoperable solution.

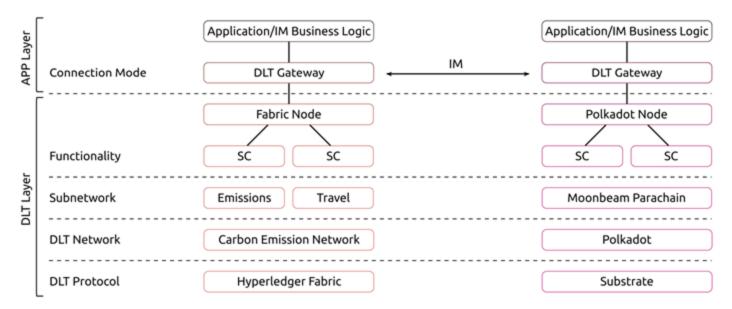
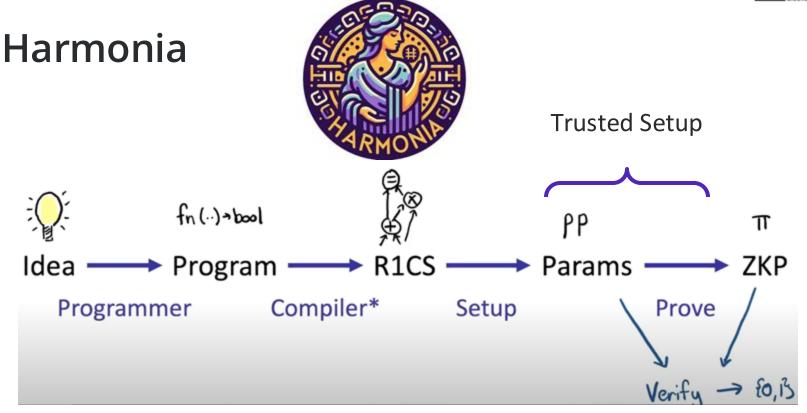
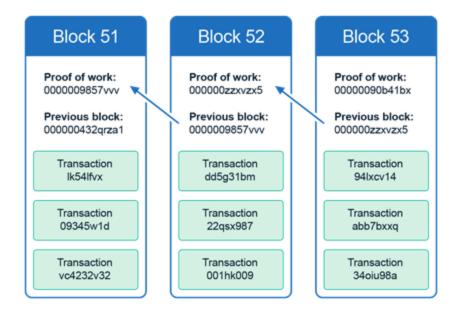



Fig. 12. Example of vertical interoperation in a Hyperledger Fabric network and the Polkadot network. Horizontal interoperability can be achieved via an IM using, for example, a DLT gateway.


source : https://www.youtube.com/watch?v=UpRSaG6iuks

Key Idea

PART 1

- 1. Obtain block of interest from the source chain
- Prove that the current block is valid according to a set of rules (generate ZKP)
- Valid block gives us a provably valid block root -> R

Key Idea

PART 2

- 1. Create a *Merkle proof* on the source chain
- 2. Propagate that proof to target chain via a relayer
- 3. Verify the merkle proof using the provably valid block root (Part 1,

R)

PART 3 (business logic, Part 1 + Part 2)

beaco	n-light-client > solidity > contracts > bridge > src > utils > 🚦 LightClientUpdateVerif
1	// SPDX-License-Identifier: MIT
	pragma_solidity_0.8.9;
	<pre>import './Verifier.sol';</pre>
	<pre> v contract LightClientUpdateVerifier is Verifier { } </pre>
	function verifyUpdate(
	uint256(2) memory a,
	uint256[2][2] memory b,
10	uint256[2] memory c,
11	bytes32 prevHeaderHash,
12	bytes32 nextHeaderHash,
13	uint256 nextHeaderSlot,
14	bytes32 finalizedHeaderRoot,
15	bytes32 executionStateRoot,
	bytes32 domain
17) internal view returns (bool) {
18	bytes memory concatenated = abi.encodePacked(prevHeaderHash, nextH
19	<pre>bytes32 commitment = sha256(concatenated);</pre>
20	
21	uint256[2] memory input;
22	IN THE STATE OF THE CONTRACT OF THE CONTRACT OF THE STATE
23	<pre>input[0] = (uint256(commitment) & (((1 << 253) - 1) << 3)) >> 3;</pre>
24	<pre>input[1] = (uint256(commitment) & ((1 << 3) - 1));</pre>
25	
26	<pre>return verifyProof(a, b, c, input);</pre>
27	0

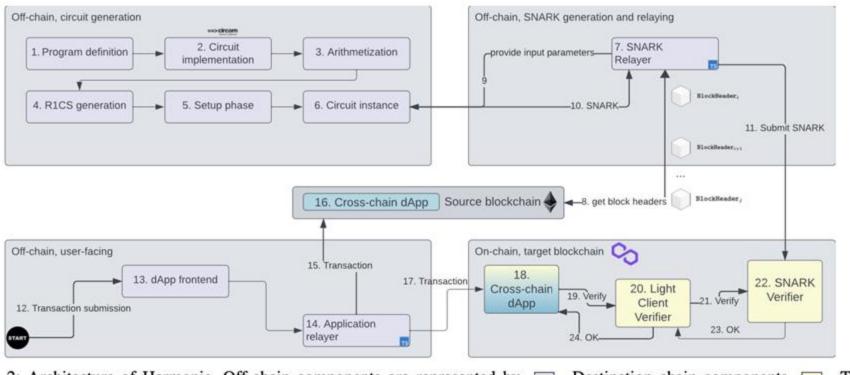


Fig. 2: Architecture of Harmonia. Off-chain components are represented by \square . Destination chain components \square . The cross-chain contract is represented by \square .

R1CS is generated by circom.

We feed the circuit into the zero knowledge proof system setup algorithm (generates public parameters). P

roofs are generated by RapidSNARK upon a certain input (previous beacon block header and a new light client update data structure).

Such proofs can be sent as a transaction to the Verifier.sol smart contract, that, upon verification, updates our light client state..

bead	on-	light-client > solidity > contracts > bridge > src > utils > 🍦 LightClientUpdateVerif
1		// SPDX-License-Identifier: MIT
2		pragma solidity 0.8.9;
		<pre>import './Verifier.sol';</pre>
	\sim	<pre>contract LightClientUpdateVerifier is Verifier {</pre>
7	×	function verifyUpdate(
8		uint256[2] memory a,
		uint256[2][2] memory b,
10		uint256[2] memory c,
11		bytes32 prevHeaderHash,
12		bytes32 nextHeaderHash,
13		uint256 nextHeaderSlot,
14		bytes32 finalizedHeaderRoot,
15		bytes32 executionStateRoot,
16		bytes32 domain
17	\sim) internal view returns (bool) {
18		bytes memory concatenated = abi.encodePacked(prevHeaderHash, nextH
19		<pre>bytes32 commitment = sha256(concatenated);</pre>
20		
21		uint256[2] memory input;
22		
23		<pre>input[0] = (uint256(commitment) & (((1 << 253) - 1) << 3)) >> 3;</pre>
24		<pre>input[1] = (uint256(commitment) & ((1 << 3) - 1));</pre>
25		
26		<pre>return verifyProof(a, b, c, input);</pre>
27)
28		}

Harmonia - Zero Knowledge Proof Generation

The program is "process a light client update by applying all light client syncing rules"

(e.g., merkle branch of finality header is valid, merkle branch of next sync committee is valid, validate aggregated BLS signatures from the light sync committee, compute certain sync committee period at slot X).

Full set of rules here: https://github.com/ethereum/consensusspecs/blob/dev/specs/altair/light-client/sync-protocol.md

if the operator can supply a proof of correct execution for a particular update, one can be certain that all the rules were followed and that the end state is indeed what the operator claims, namely:

-execution state root -finalized state root -optimistic state root

Blockchain Interoperability

André Augusto, INESC-ID, Técnico Lisboa Rafael Belchior, INESC-ID, Blockdaemon

DAY 5 - February 14th, 2025

BIG – enhancing the research and innovation potential of Técnico - Lisbon through **B**lockchain technologies and design Innovation for social **G**ood Grant agreement: 952226