Blockchain Interoperability: Theory and Practice

André Augusto (INESC-ID, Técnico Lisboa)

Rafael Belchior (INESC-ID, Blockdaemon) André Vasconcelos (INESC-ID, Técnico Lisboa) Miguel Correia (INESC-ID, Técnico Lisboa) LISBOA

IEEE International Conference on Blockchain and Cryptocurrency 2025 (ICBC'25)

Instructors

André Augusto

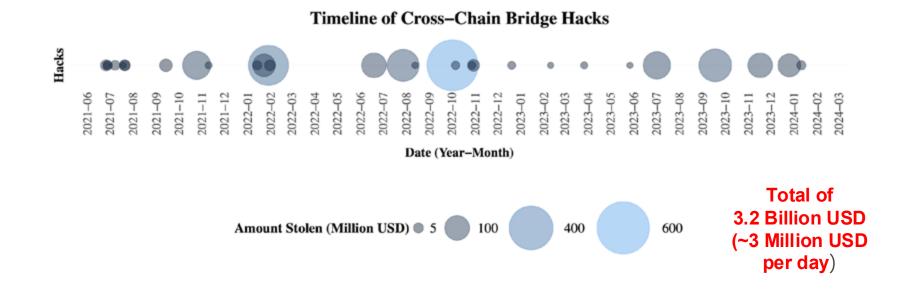
Ph.D. Candidate @ Técnico Lisboa, Portugal Early Stage Researcher at INESC-ID

Rafael Belchior

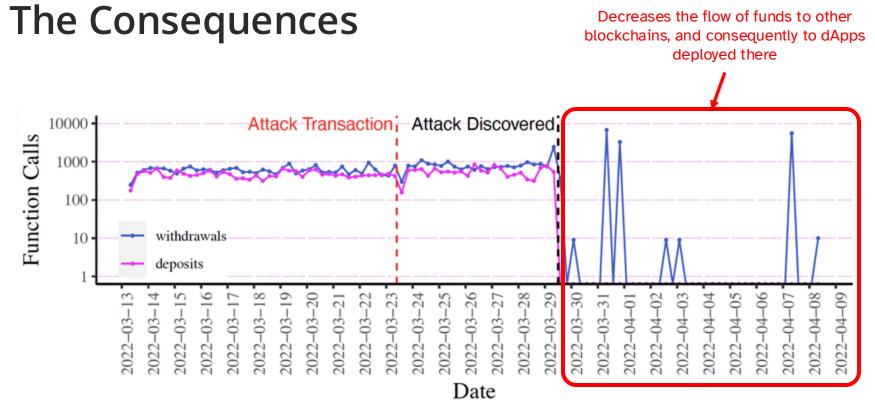
P.h.D in Information Systems and Computer Engineering @ Técnico Lisboa, Portugal

Senior Engineer @ Blockdaemon

Part 1: Theory


Why should we study Interoperability Mechanisms in Blockchain?

Stolen from cross-chain bridges since 2021



A Recurrent Problem...

Augusto, R. Belchior, M. Correia, A. Vasconcelos, L. Zhang and T. Hardjono, "SoK: Security and Privacy of Blockchain Interop ability," 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2024, pp. 3840-3865,

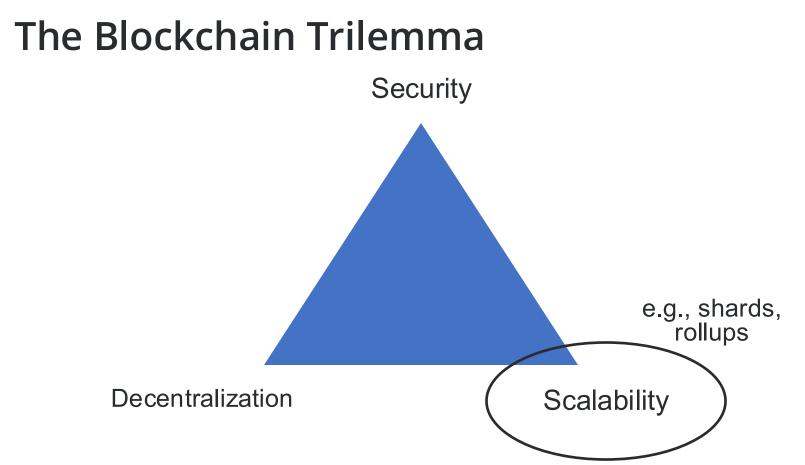
Augusto, A., Belchior, R., Pfannschmidt, J., Vasconcelos, A., & Correia, M. (2024). XChainWatcher: Monitoring and IdentifyingAttacks in Cross-Chain Bridges. arXiv preprint arXiv:2410.02029.

Why is Blockchain Interoperability needed?

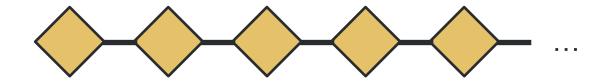
The Blockchain Trilemma

Security

Decentralization



Connect Different Ecosystems


• #	Coin		Price	1h	24h	7d	24h Volume	Market Cap		,	S	Polygon		Monero
☆ 1	Bitcoin BTC	Buy	\$68,389.59	▼ 0.3%	▼ 1.0%	▲ 3.3%	\$13,663,947,240	\$1,347,551,070,887			-	MATIC	M	XMR
☆ 2	Ethereum	Buy	\$3,841.93	• 0.3%	▲ 2.7%	▲ 25.1%	\$12,470,262,478	\$461,028,760,320	•	2	×	IMX Mantle	a	Arweave AR
습 4	BNB BNB	Buy	\$598.73	• 0.0%	→ 0.4%	• 4.4%	\$429,266,868	\$92,207,772,331	•	4	***	MNT Stacks		Sui
☆ 5	Solana SOL	Buy	\$162.62	• 0.5%	• 2.7%	• 4.3%	\$2,032,605,702	\$72,884,782,988	v	5		ARBITRUM	0	SUI
습 10	Toncoin TON	Buy	\$6.32	• 0.5%	▼ 1.1%	▲ 0.1%	\$124,426,607	\$21,956,332,740	¥	6	8	Synthetix Network	Ø	Injective INJ
☆ 11	Cardano ADA	Buy	\$0.4578	▲ 0.2%	→ 0.4%	• 2.1%	\$200,474,590	\$16,169,141,159	¥	7	0	StarkNet Token STRK	Ø	Fantom
☆ 12	Avalanche AVAX	Buy	\$36.77	• 0.1%	• 3.2%	▲ 2.5%	\$232,265,046	\$14,427,629,064	¥	8	0	Metis Token METIS	~	FTM

The Scalability Problem of Blockchains

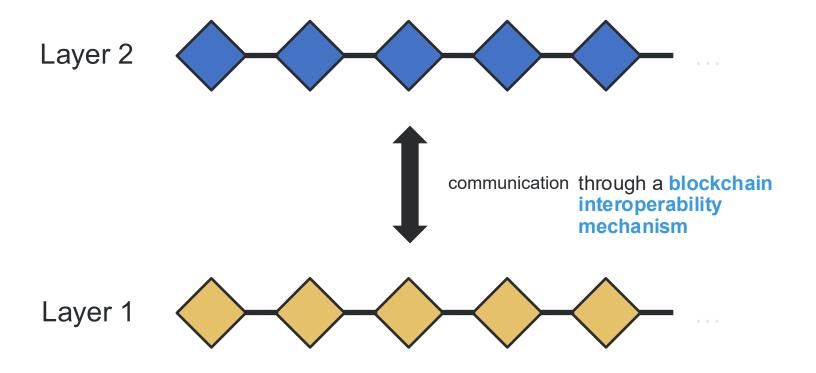
Limited number of transactions in each block High transaction fees

...

Scaling Blockchains

Layer 2 (execution)

> Offload computation to another layer (L2) and publish new state roots into the L1. May be accompanied by computation proofs (as in the case of zk-rollups)

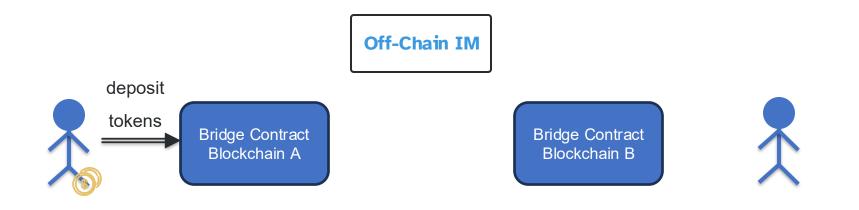

. . .

Layer 1 (settlement)

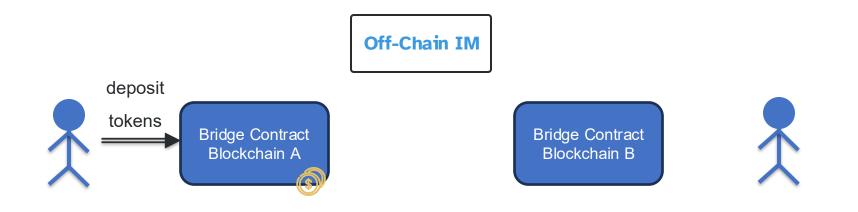
13

Scaling Blockchains

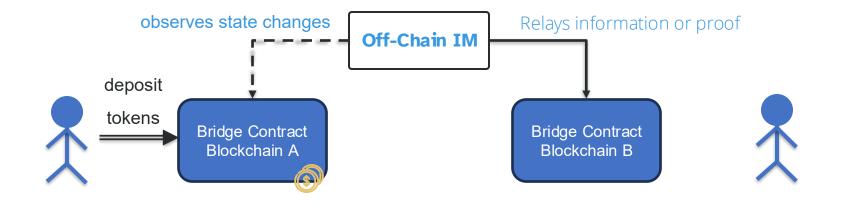
What about connecting L2s?

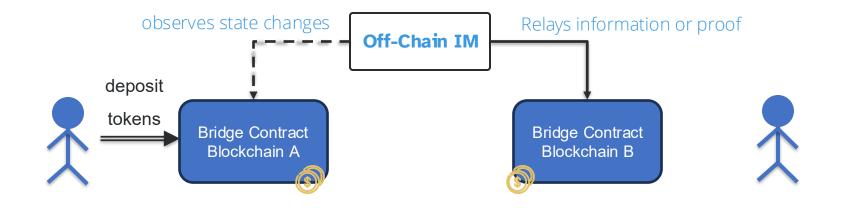


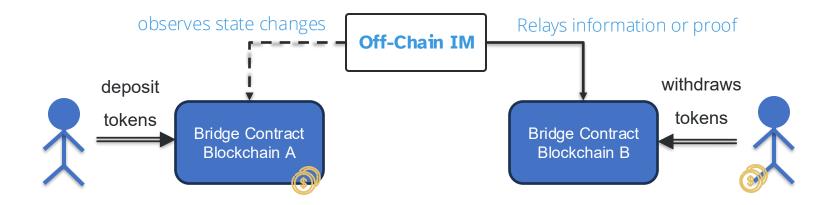
What about connecting L1s?



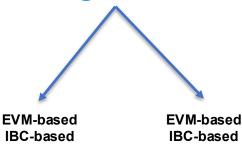
Layer 1 $\diamond \diamond \diamond \diamond \diamond \diamond \leftarrow \leftarrow$ Layer 1 $\diamond \diamond \diamond \diamond \diamond \diamond \leftarrow \leftarrow$



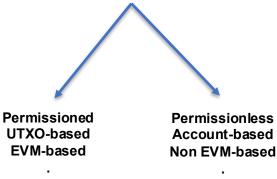




There are multiple modes:


- Lock-mint (in the diagram)
- Burn-mint
- Lock-unlock

"the ability of a source blockchain to change the state of a target blockchain (or vice-versa), enabled by cross-chain or cross-blockchain transactions, spanning across a composition of homogeneous and heterogeneous blockchain systems"



"the ability of a source blockchain to change the state of a target blockchain (or vice-versa), enabled by cross-chain or cross-blockchain transactions, spanning across a composition of homogeneous and heterogeneous blockchain systems"

"the ability of a source blockchain to change the state of a target blockchain (or vice-versa), enabled by cross-chain or cross-blockchain transactions, spanning across a composition of homogeneous and heterogeneous blockchain systems"

Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. 2021. A Survey on Blockchain Interoperability: Past, Present, and Future Trends. ACM Comput. Surv. 54, 8, Article 168 (November 2022), 41 pages. https://doi.org/10.1145/3471140

In a Nutshell... Interoperability Mechanisms:

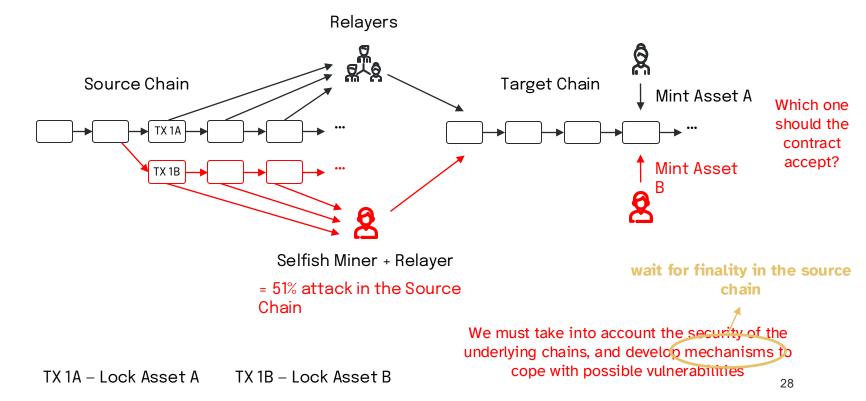
Enable connectivity between Homogeneous or Heterogeneous platforms

Reduce liquidity fragmentation across DeFi protocols in multiple blockchains (L1s or L2s)

The Core Idea: Enable the seamless flow of assets and data across platforms The Core Idea: Enable the seamless flow of value across platforms

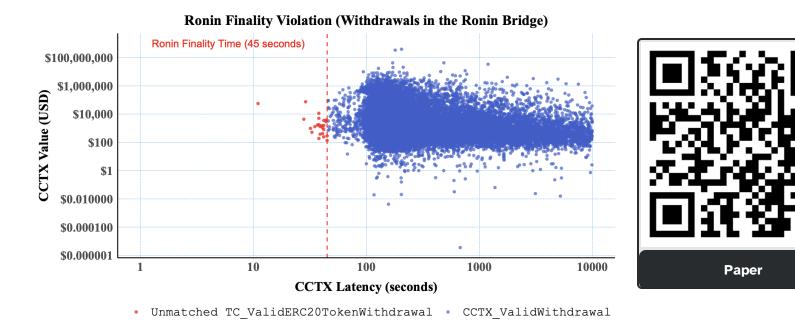
Outline

- Motivation (Why?, How?, What?)
- Blockchain Interoperability and Interoperability Mechanisms
- Security and Privacy of Interoperability Mechanisms
- Securing interoperability solutions: Hephaestus and XChainWatcher
- Future Research Directions


Building Blocks to Make It Work

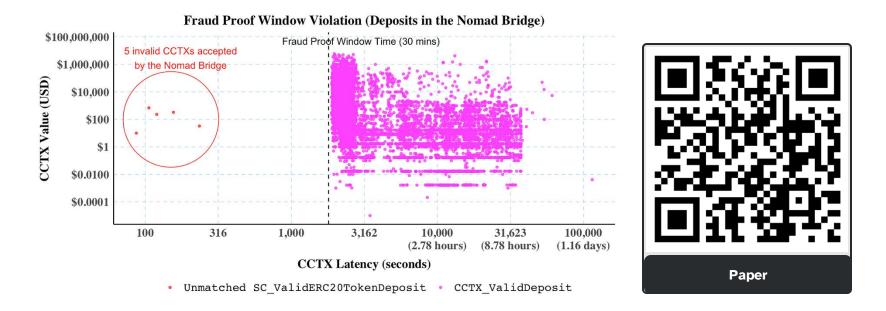
Augusto, R. Belchior, M. Correia, A. Vasconcelos, L. Zhang and T. Hardjono, "SoK: Security and Privacy of Blockchain Interoperability," 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2024, pp. 3840-3865,

Example: the importance of the network layer

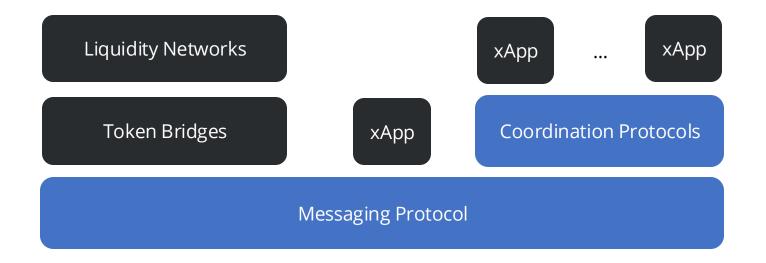


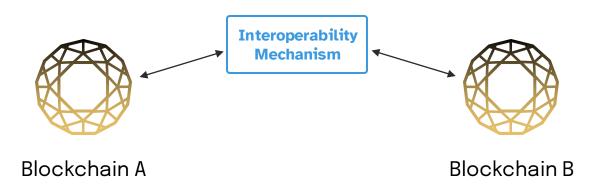
? Show of Hands

How many of you would say protocols accept transactions in the destination chain before the finality of the corresponding transaction on the source chain?


Example: source chain finality

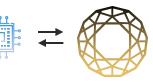
Augusto, A., Belchior, R., Pfannschmidt, J., Vasconcelos, A., & Correia, M. (2024). XChainWatcher: Monitoring and Identifying Attacks in Cross-Chain Bridges. arXiv preprint arXiv:2410.02029.


Another one: fraud-proof window violation

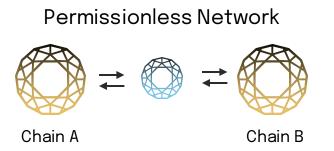

Augusto, A., Belchior, R., Pfannschmidt, J., Vasconcelos, A., & Correia, M. (2024). XChainWatcher: Monitoring and Identifying Attacks in Cross-Chain Bridges. arXiv preprint arXiv:2410.02029.

The Protocol Layer

Architectures


Chain B

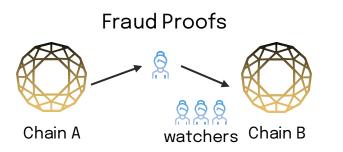
Trusted Computation

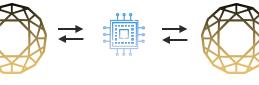

 \Rightarrow

Chain A

Chain A

Chain B





Architectures

Validity Proofs (e.g., SNARKs)

Chain A

Chain B

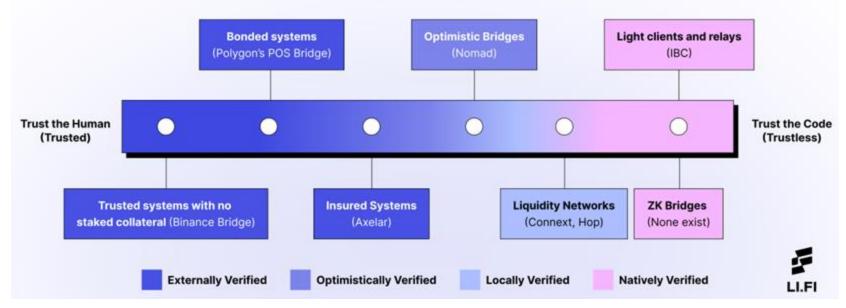
Hash and Time Locks

and more...

Outline

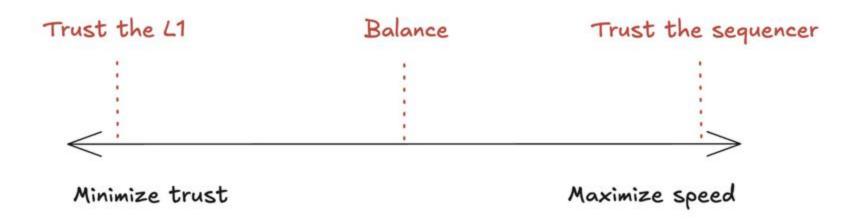
- Motivation (Why?, How?, What?)
- Blockchain Interoperability and Interoperability Mechanisms
- Security and Privacy of Interoperability Mechanisms
- Securing interoperability solutions: Hephaestus and XChainWatcher
- Future Research Directions

How to classify IMs based on security guarantees?


"There exists no asynchronous cross-chain communication protocol tolerant against misbehaving nodes without a trusted third party."

Zamyatin, A., Al-Bassam, M., Zindros, D., Kokoris-Kogias, E., Moreno-Sanchez, P., Kiayias, A., & Knottenbelt, W. J. (2021). Sok: Communication across distributed ledgers. In Financial Cryptography and Data Security: 25th International Conference, FC 2021, Virtual Event, March 1–5, 2021, Revised Selected Papers, Part II 25 (pp. 3-36). Springer Berlin Heidelberg.

Trust spectrum


The 'Trust Spectrum' in Bridges

Source: https://blog.li.fi/li-fi-with-bridges-trust-is-a-spectrum-354cd5a1a6d8

Trust spectrum (Rollups)

Is the *Trust* Spectrum Enough? NO

So...what does a secure interoperability solution look like?

A set of properties

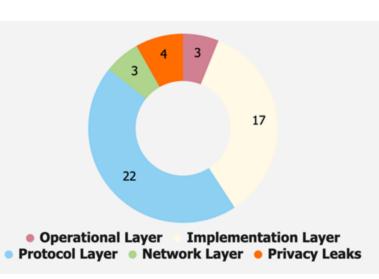
Availability

 (\mathbf{D})

(Inspired by the classic CIA triad for secure systems to define a set of properties that characterize security in blockchain interoperability)

of system to process cross-chain transactions

Augusto, R. Belchior, M. Correia, A. Vasconcelos, L. Zhang and T. Hardjono, "SoK: Security and Privacy of Blockchain Interoperability," 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2024, pp. 3840-3865,



Mitiantiana

Vulnerabilities in Interoperability

CROSS-CHAIN SYSTEMS. THE COLORED CIRCLE DENOTES THE LAYER WHERE IT CAN BE FOUND (CF. SECTION 3.1).

Vale archiliter/Look

Vulnerability/Leak	Mitigations
• \mathcal{V}_1 Honest mining assumption [45]	M_1 - M_5
• \mathcal{V}_2 Absence of identity verification [45], [71], [72]	$\mathcal{M}_8 - \mathcal{M}_{11}$
V ₃ Network isolation [38], [45], [62], [77]	$\mathcal{M}_6, \mathcal{M}_7$
• \mathcal{V}_4 Outdated light client state [45], [53], [150]	\mathcal{M}_{16}
• \mathcal{V}_5 Wrong main chain identification [6], [45], [77]	\mathcal{M}_{18}
• \mathcal{V}_6 Incorrect event verification [151]–[154]	\mathcal{M}_{12} - \mathcal{M}_{14}
• V_7 Acceptance of invalid consensus proofs [155]	\mathcal{M}_{15}
• V_8 Absence of chain identification [156]	\mathcal{M}_4
 V₉ Submission of repeated inclusion proofs [21], [45], [77], [157] 	\mathcal{M}_{17}
• \mathcal{V}_{10} Counterfeiting assets [45], [77], [158]	\mathcal{M}_{19} - \mathcal{M}_{23}
• V_{11} Involuntary timelock expiry [63], [85]	\mathcal{M}_{29} - \mathcal{M}_{30}
• \mathcal{V}_{12} Unset withdrawal limits [156], [159]	\mathcal{M}_{69}
• \mathcal{V}_{13} Action withhold [58], [61], [80], [86], [86], [94], [160]	$\mathcal{M}_8, \mathcal{M}_{27}, \mathcal{M}_{28}$
• \mathcal{V}_{14} Unspecified gas limit [161]	\mathcal{M}_{65}
• \mathcal{V}_{15} Resource exhaustion [45], [55], [57], [60], [65], [69]	\mathcal{M}_{48} - \mathcal{M}_{50}
• \mathcal{V}_{16} Single point of failure [156], [162]	$\mathcal{M}_7, \mathcal{M}_{32}, \mathcal{M}_{47}$
 V₁₇ Publicly identifiable operators [74] 	\mathcal{M}_{44} - \mathcal{M}_{46}
• \mathcal{V}_{18} Misaligned incentive mechanisms [38], [60], [65], [122]	$M_{23}, M_{31}-M_{34}$

Attacks in Cross-Chain Bridges

Project Information General Attack Mapping to 7					Theore	Theoretical Vulnerabilities					
Name & Ref SA		Date	Amount	\mathcal{V}_{44}	\mathcal{V}_{43}	\mathcal{V}_{28}	V_{27}	\mathcal{V}_{24}	\mathcal{V}_6		
[218] Ronin	SA_{22}	Mar 2022	624M	1	1	×	×	×	×		
[219] PolyBridge #1	SA_{22}	Aug 2021	611M	×	1	1	×	×	×		
[220] BNB	SA_{11}	Oct 2022	566M	×	×	×	×	1	×		
[123] Wormhole	SA_{22}	Feb 2022	326M	×	×	1	×	1	×		
[221] Nomad	SA_{33}	Aug 2022	190M	×	×	×	×	1	×		
[222] BXH	SA_{11}	Oct 2021	139M	1	1	×	×	×	×		
[223] Multichain #2	SA_{22}	Jul 2023	126M	1	1	×	×	×	×		
[224] Harmony	SA_{22}	Jun 2022	100M	1	1	×	×	×	×		
[225] Qubit	SA_{11}	Jan 2022	80M	×	×	×	1	1	×		
[226] pNetwork	SA_{33}	Sep 2021	13M	×	×	×	×	X	1		
[227] Thorchain #3	SA_{21}	Jul 2021	8M	×	×	×	×	×	1		
[223] Anyswap	SA_{22}	Jul 2021	8M	×	1	×	×	×	×		
[227] Thorchain #2	SA_{21}	Jul 2021	5M	×	×	×	×	1	1		
[219] PolyBridge #2	SA_{22}	Jul 2023	4.4M	×	1	×	×	×	×		
[228] Meter	SA_{22}	Jul 2021	4.4M	×	×	×	×	1	×		
[229] Chainswap	SA_{22}	Jul 2021	4.4M	×	×	1	×	1	×		
[223] Multichain #1	SA22	Jan 2022	3M	×	×	×	1	1	×		
[227] Thorchain #1	SA_{21}	Jun 2021	140K	×	×	X	×	×	1		
Summary		07/21 - 07/23	2.9B	22%	39%	17%	11%	44%	22%		

Augusto, R. Belchior, M. Correia, A. Vasconcelos, L. Zhang and T. Hardjono, "SoK: Security and Privacy of Blockchain Interopeability," 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2024, pp. 3840-3865,

Vulnerabilities Behind

Project Inf	ormation	Ger	General Attack Information			Incident Resp Where		re	Mapping to Theoretical Vulnerabilities					
Name & Ref	SA	Date	Amount	AT	Txs	Mix	DT	CT	VL	EL	$v_{44} = v_{43}$	\mathcal{V}_{28}	V_{27}	V_{24} V_{6}
Physical Infrastructure Backdoors	Bad key Managem	ent	Dead	code			Unsa Thirc softw	l-party		a	ack of ccess ontrol	ever	orrect nt ficatio	n

~66% used a Permissioned Network as Architecture

What about Privacy?

Privacy Brings Additional Challenges

OFFICE OF FOREIGN ASSETS CONTROL

Sesign a system that guarantees all these properties?

Well.

The Obvious Example

...and it "only" provides the unlinkability of transactions in one blockchain

Interesting Connection with Bridge Attacks

Name & Ref	Date	Amount	Mix
[193] Ronin	Mar 2022	624M	0
[194] PolyBridge #1	Aug 2021	611M	0
[195] BNB	Oct 2022	566M	0
[108] Wormhole	Feb 2022	326M	0
[196] Nomad	Aug 2022	190M	•
[197] BXH	Oct 2021	139M	O
[198] Multichain #2	Jul 2023	126M	0
[199] Harmony	Jun 2022	100M	0
[200] Qubit	Jan 2022	80M	•
[201] pNetwork	Sep 2021	13M	0
[202] Thorchain #3	Jul 2021	8M	0
[198] Anyswap	Jul 2021	8M	0
[202] Thorchain #2	Jul 2021	5M	0
[194] PolyBridge #2	Jul 2023	4.4M	0
[203] Meter	Jul 2021	4.4M	0
[204] Chainswap	Jul 2021	4.4M	•
[198] Multichain #1	Jan 2022	3M	٠
[202] Thorchain #1	Jun 2021	140K	0

14 out of 18 used Transaction Mixers, mainly Tornado Cash

Usage of Mixers (Mix)

- O Not used
- Before the attack
- After the attack
- Before and after the attack

Would a cross-chain protocol with the same level of privacy be sanctioned?

Explore the notion of *Revokable Privacy*. Is it possible to guarantee these properties if and only if there is no misbehavior?

Outline

- Motivation (Why?, How?, What?)
- Blockchain Interoperability and Interoperability Mechanisms
- Security and Privacy of Interoperability Mechanisms
- Securing interoperability solutions: Hephaestus and XChainWatcher
- Future Research Directions

A Prominent Problem

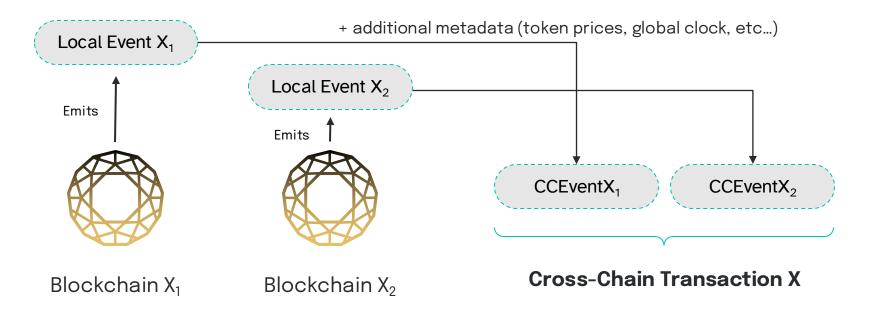
TABLE 5. CLASSIFICATION OF MOST PROFIVABLE CROSS-CHAIN BRIDGE HACKS GROUPED BY USD. THE CELLS WITH THE VULNERABILITY NUMBER ARE FILLED WITH THE COLOR ACCORE WE ADD A "SUMMARY" ROW THAT AGGREGATES INFORMATION. SPECIFICALLY, WE USE CELL EACH VULNERABILITY WAS FOUND.

Project Informat	tion	Gene	Inc. dent Resp					
Name & Ref SA		Date	An ount	AT	Txs	Mix	DT	CT
[218] Ronin	SA_{22}	Mar 2022	624M		0	•	6d	•
[219] PolyBridge #1	SA_{22}	Aug 2021	611M		0	0	-	0
[220] BNB	SA_{11}	Oct 2022	566M		0	0	-	•
[123] Wormhole	SA_{22}	Feb 2022	326M		0	0	-	0
[221] Nomad	SA_{33}	Aug 2022	190M		•	•	-	۰
[222] BXH	SA_{11}	Oct 2021	139M		0	0	-	0
[223] Multichain #2	SA_{22}	Jul 2023	126M		0	0	-	•
[224] Harmony	SA_{22}	Jun 2022	100M		0	0	-	•
[225] Qubit	SA_{11}	Jan 2022	00111		O	•	-	0
[226] pNetwork	SA_{33}	Sep 2021	13M		0	0	13m	0
[227] Thorchain #3	SA_{21}	Jul 2021	8M		0	•	-	-
[223] Anyswap	SA22	Jul 2021	8M		0	0	-	•
[227] Thorchain #2	SA_{21}	Jul 2021	5M		•	•	-	0
[219] PolyBridge #2	SA22	Jul 2023	4.4M		0	0	7h	•
[228] Meter	SA_{22}	Jul 2021	4.4M		0	•	-	۰
[229] Chainswap	SA_{22}	Jul 2021	4.4M		•	•	-	0
[223] Multichain #1	SA_{22}	Jan 2022	3M		-	•	-	•
[227] Thorchain #1	SA_{21}	Jun 2021	140K		-	0	5m	-
Summary		07/21 - 07/23	2.9B					

Communication Time (CT)]0; 2] hours [2; 4] hours 14: 6] hours 16: 241 hours >= 6 days

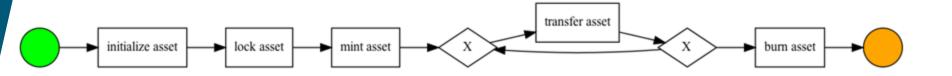
Attacks stole between 140K

USD and ~620M USD

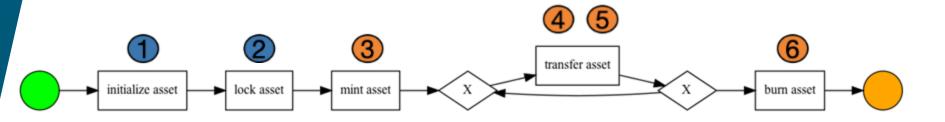

Defi Protocol LI.FI Struck by \$11M Exploit

The exploit is reported to be related to the LI.FI bridge.

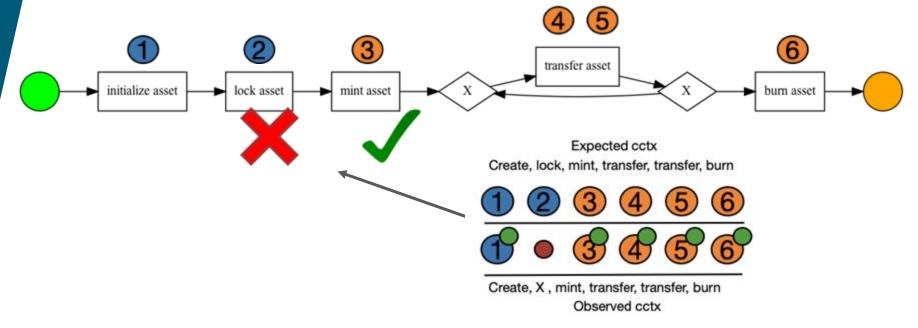
By Oliver Knight 🕓 Jul 16, 2024 at 2:30 p.m. Updated Jul 16, 2024 at 8:45 p.m.

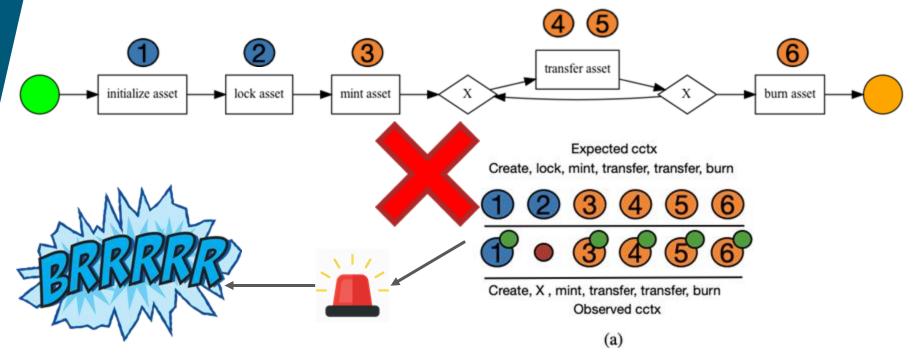


The Solution: Cross-Chain Modelling



Belchior, R., Somogyvari, P., Pfannschmidt, J., Vasconcelos, A., & Correia, M. (2023). Hephaestus: Modeling, analysis, and performance evaluation of cross-chain transactions. *IEEE Transactions on Reliability*.

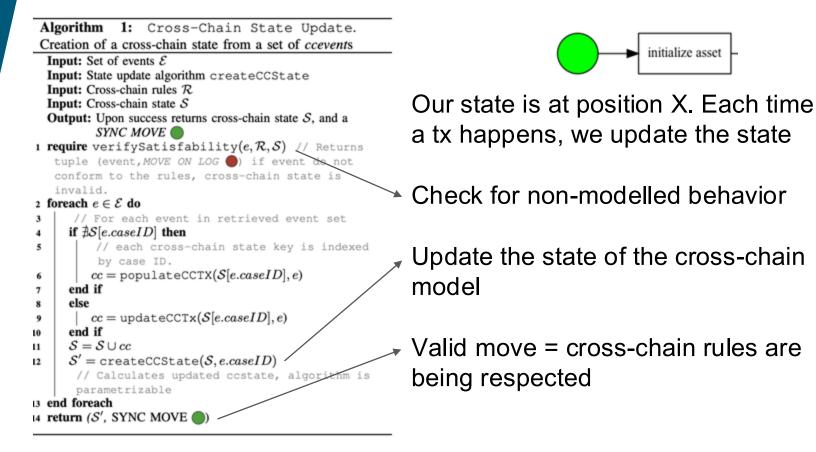




Algorithm 1: Cross-Chain State Update. Creation of a cross-chain state from a set of *ccevents* Input: Set of events \mathcal{E} Input: State update algorithm createCCState Input: Cross-chain rules R Input: Cross-chain state SOutput: Upon success returns cross-chain state S, and a SYNC MOVE 1 require verifySatisfability(e, R, S) // Returns tuple (event, MOVE ON LOG) if event do not conform to the rules, cross-chain state is invalid. 2 foreach $e \in \mathcal{E}$ do // For each event in retrieved event set 3 if $\nexists S[e.caseID]$ then 4 // each cross-chain state key is indexed 5 by case ID. $cc = \text{populateCCTX}(\mathcal{S}[e.caseID], e)$ 6 end if 7 else 8 cc = updateCCTx(S[e.caseID], e)9 end if 10 $S = S \cup cc$ 11 S' = createCCState(S, e.caseID)12 // Calculates updated ccstate, algorithm is parametrizable 13 end foreach 14 return (S', SYNC MOVE)

Our state is at position X. Each time a tx happens, we update the state

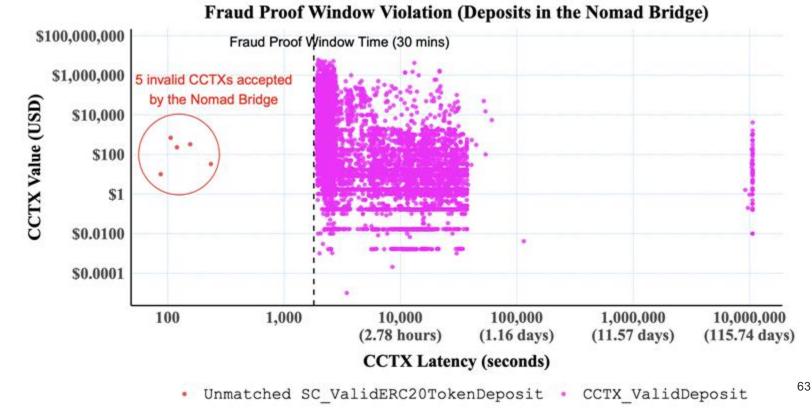
Algorithm 1: Cross-Chain State Update. Creation of a cross-chain state from a set of *ccevents* Input: Set of events \mathcal{E} Input: State update algorithm createCCState Input: Cross-chain rules R Input: Cross-chain state SOutput: Upon success returns cross-chain state S, and a SYNC MOVE 1 require verifySatisfability(e, R, S) // Returns tuple (event, MOVE ON LOG) if event do not conform to the rules, cross-chain state is invalid. 2 foreach $e \in \mathcal{E}$ do // For each event in retrieved event set 3 if $\nexists S[e.caseID]$ then 4 // each cross-chain state key is indexed 5 by case ID. $cc = \text{populateCCTX}(\mathcal{S}[e.caseID], e)$ 6 end if 7 else 8 cc = updateCCTx(S[e.caseID], e)9 end if 10 $S = S \cup cc$ 11 S' = createCCState(S, e.caseID)12 // Calculates updated ccstate, algorithm is parametrizable 13 end foreach 14 return (S', SYNC MOVE)


Our state is at position X. Each time a tx happens, we update the state

Check for non-modelled behavior

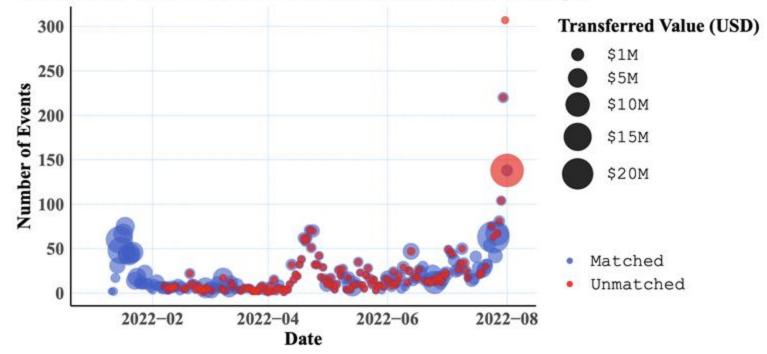
Algorithm 1: Cross-Chain State Update. Creation of a cross-chain state from a set of *ccevents* initialize asset Input: Set of events \mathcal{E} Input: State update algorithm createCCState Input: Cross-chain rules R Our state is at position X. Each time Input: Cross-chain state SOutput: Upon success returns cross-chain state S, and a a tx happens, we update the state SYNC MOVE 1 require verifySatisfability(e, R, S) // Returns tuple (event, MOVE ON LOG) if event do not conform to the rules, cross-chain state is invalid. Check for non-modelled behavior 2 foreach $e \in \mathcal{E}$ do // For each event in retrieved event set 3 if $\nexists S[e.caseID]$ then 4 // each cross-chain state key is indexed 5 Update the state of the cross-chain by case ID. $cc = \text{populateCCTX}(\mathcal{S}[e.caseID], e)$ 6 model end if 7 else 8 cc = updateCCTx(S[e.caseID], e)9 end if 10 $S = S \cup cc$ 11 S' = createCCState(S, e.caseID)12 // Calculates updated ccstate, algorithm is parametrizable 13 end foreach 14 return (S', SYNC MOVE)

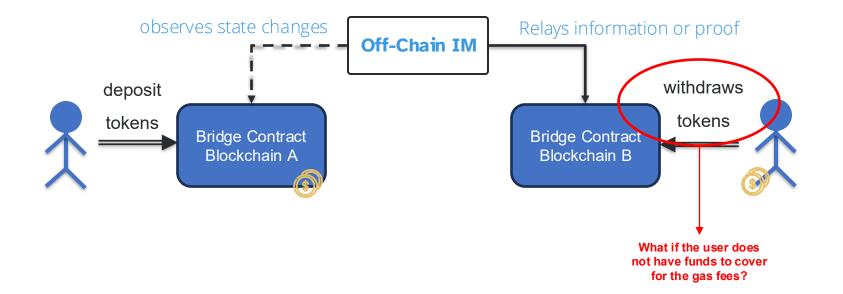
Capabilities of a Cross-Chain Model


Finding anomalies in cross-chain protocols through cross-chain rules.

Example: defining what a valid deposit of tokens should look like

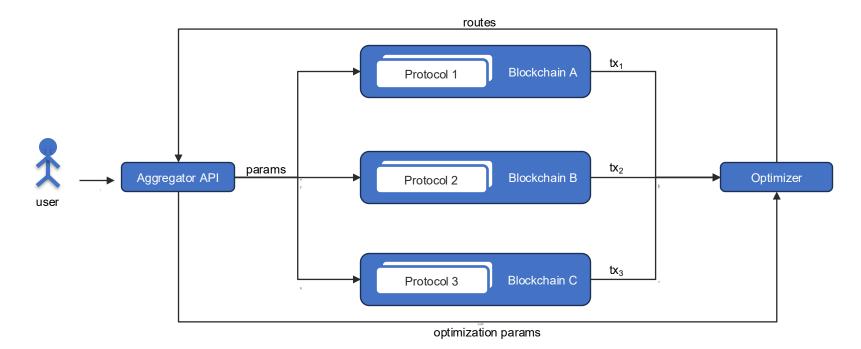
```
// Rule 4 (D)
CCTX_ValidDeposit(orig_chain_id, orig_timestamp, orig_tx_hash, dst_chain_id, dst_tim
    orig_token, dst_token, sender, benef, amount) :-
    TC_ValidERC20TokenDeposit(dst_timestamp, dst_tx_hash, deposit_id, benef, dst_toke
    (
        SC_ValidERC20TokenDeposit(orig_timestamp, orig_tx_hash, deposit_id, sender, _,
        orig_chain_id, dst_chain_id, _, amount);
        SC_ValidNativeTokenDeposit(orig_timestamp, orig_tx_hash, deposit_id, sender, _,
        orig_chain_id, dst_chain_id, _, amount)
    ),
    cctx_finality(orig_chain_id, orig_chain_finality),
    orig_timestamp + orig_chain_finality < dst_timestamp.</pre>
```



Anomaly 1


Anomaly 2

Matched vs. Unmatched Withdrawal Events in T (Nomad Bridge)

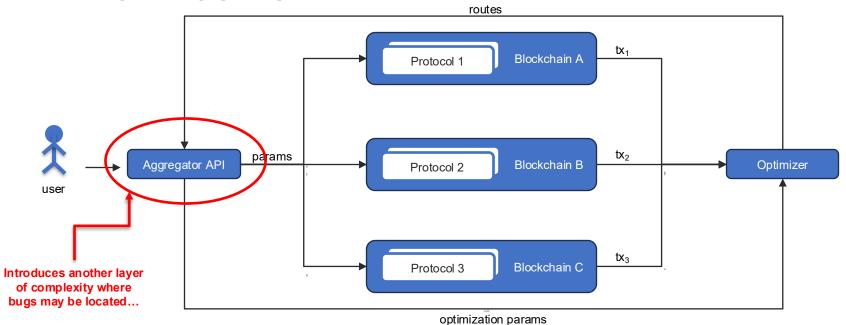
Example: how does a token bridge work?



Outline

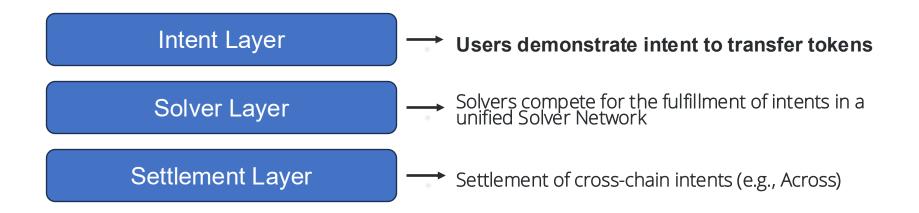
- Motivation (Why?, How?, What?)
- Blockchain Interoperability and Interoperability Mechanisms
- Security and Privacy of Interoperability Mechanisms
- Securing interoperability solutions: Hephaestus and XChainWatcher
- Future Research Directions

Bridge Aggregators



Bridge Aggregators (Example)

D Ø BLOCKDAEMON DEFI APP 0 Accounts Home Home ۵ + @ Swap You get ₽ Swap Wallets \sim From То Ending Lending CONTRACTION OPTIMISM 26.574 ETH on Ethereum (\$) SquidRouter 0xf2...2Ced \$1,522.63 Tokens 0 ≈ \$2.3346 © 2 Min 0×79...051A 0×79... \$0.00 You pay 26.599 (\$)• 0,01 on Ethereum max 0.543 **Optimism Gateway** 0xfB...055c \$0.00 ₽ ≈ \$0.8844 © 2 Min 0xf4...E75b * Send to wallet \$0.00 25.262 Oxf27...2Ced Mayan (Swift) **D**s ≈ \$2.424 O 1 Min


Bridge Aggregators

ERC-7683 Cross-Chain Intents

Focus on user experience, fulfilling immediately users' orders Shift risk to a 'Network of Solvers'

Current Interoperability Challenges

Weak monitoring of cross-chain solutions

Layer 2s are majorly centralized

Sometimes large time windows to withdraw funds (e.g., 7 days)

Awful user experience when interacting with cross-chain protocols

Standardization Efforts

EEA Distributed Ledger Technology Interoperability Specification Version 1.0

EEA Publication 19 September 2024

This Version:

https://entethalliance.org/specs/dlt-interop/v1/

ISO/CD TS 23516

Blockchain and Distributed Ledger Technology — Interoperability Framework


Under development

A draft is being reviewed by the committee.

Understudied Interoperability Layers

Materials for further studying

Hyperledger Cacti workshop (3h) - <u>https://www.youtube.com/watch?v=TM-dnP2yzRM&t=4410s</u>

DLT Interoperation: Implementing IETF Secure Asset Transfer Protocol in Hyperledger Cacti: https://www.youtube.com/watch?v=hmkK2lxhhFw

R. Belchior et al., "A Brief History of Blockchain Interoperability" Communications of the ACM (CACM), 2024 - https://dl.acm.org/doi/pdf/10.1145/3648607

M. Hargreaves et al., "Secure Asset Transfer Protocol (SATP)", Internet Engineering Task Force Internet Draft draft-ietf-satp-core-04, May 2024 - IETF draft

References

Belchior, R., Riley, L., Hardjono, T., Vasconcelos, A., & Correia, M. (2023). Do you need a distributed ledger technology interoperability solution?. *Distributed Ledger Technologies: Research and Practice*, *2*(1), 1-37.

Belchior, R., Vasconcelos, A., Correia, M., & Hardjono, T. (2022). Hermes: Fault-tolerant middleware for blockchain interoperability. Future Generation Computer Systems, 129, 236-251.

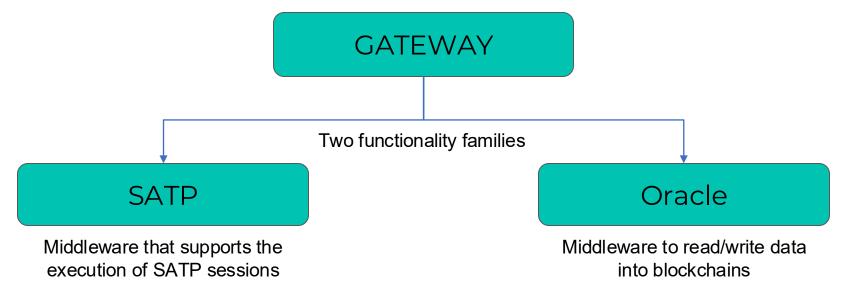
Belchior, R., Dimov, D., Karadjov, Z., Pfannschmidt, J., Vasconcelos, A., & Correia, M. (2023). Harmonia: Securing cross-chain applications using zero-knowledge proofs. Authorea Preprints.

Belchior, R., Somogyvari, P., Pfannschmidt, J., Vasconcelos, A., & Correia, M. (2023). Hephaestus: Modeling, analysis, and performance evaluation of cross-chain transactions. *IEEE Transactions on Reliability*.

Belchior, R., Vasconcelos, A., Guerreiro, S., & Correia, M. (2021). A survey on blockchain interoperability: Past, present, and future trends. Acm Computing Surveys (CSUR), 54(8), 1-41.

Augusto, A., Belchior, R., Correia, M., Vasconcelos, A., Zhang, L., & Hardjono, T. (2024, May). Sok: Security and privacy of blockchain interoperability. In *2024 IEEE Symposium on Security and Privacy (SP)* (pp. 3840-3865). IEEE.

Augusto, A., Belchior, R., Pfannschmidt, J., Vasconcelos, A., & Correia, M. (2024). XChainWatcher: Monitoring and Identifying Attacks in Cross-Chain Bridges. *arXiv preprint arXiv:2410.02029*.

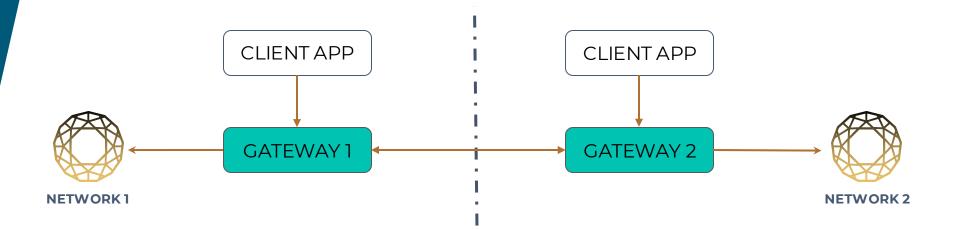

Subramanian, S., Augusto, A., Belchior, R., Vasconcelos, A., & Correia, M. (2024, August). Benchmarking blockchain bridge aggregators. In 2024 IEEE International Conference on Blockchain (Blockchain) (pp. 37-45). IEEE.

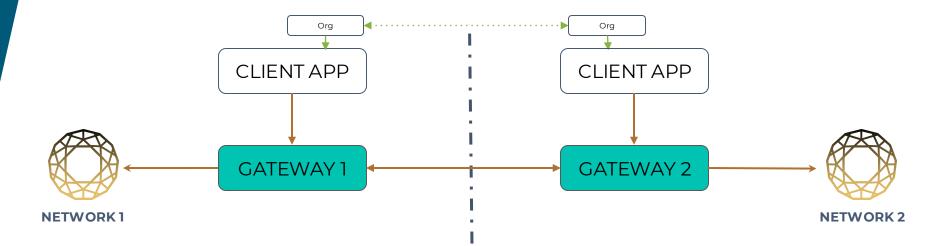
Part 2: Practice

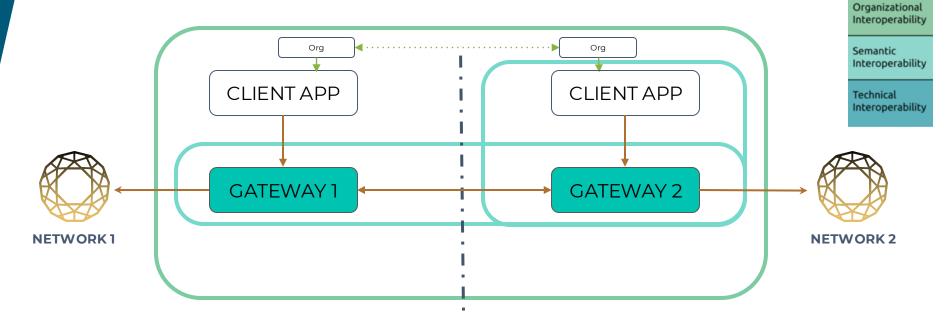
We will use...

Docker image: aaugusto11/cacti-satp-hermes-gateway:215ad342b-2025-05-29

Implementation in: https://github.com/hyperledger-cacti/cacti/tree/4a9e5dab04ca59367208bdab33a42cf5671547da

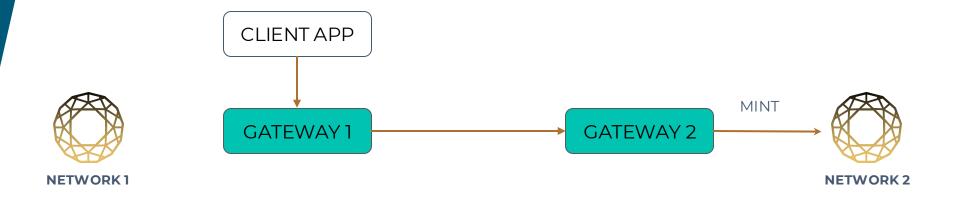


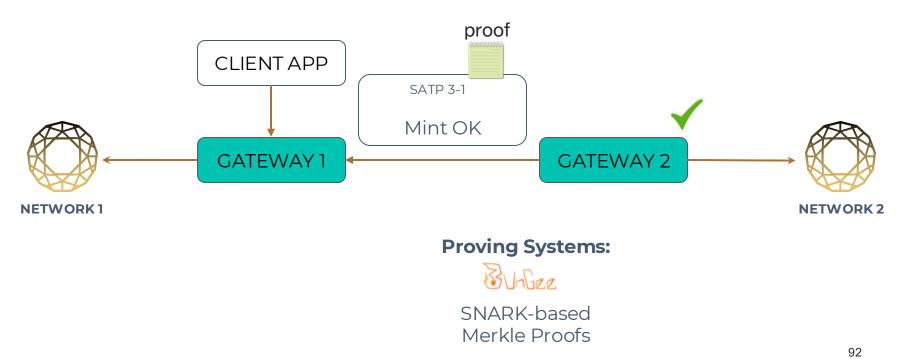


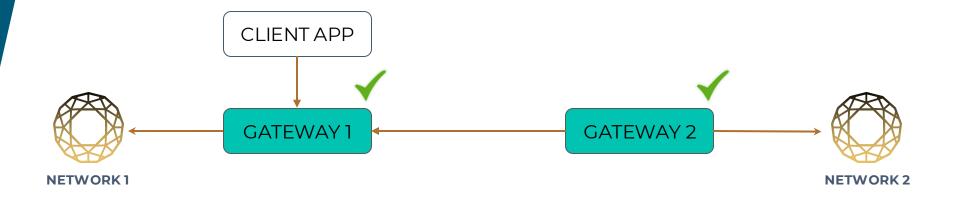


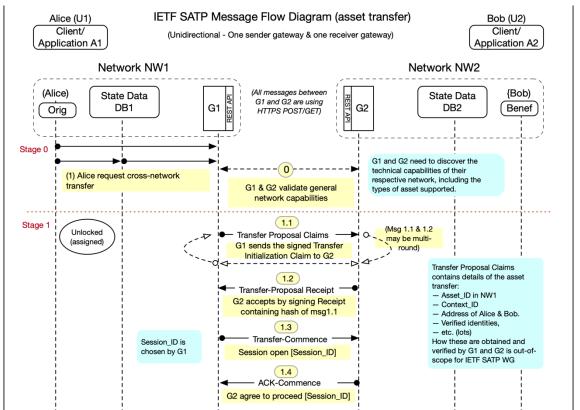
Legal Interoperability

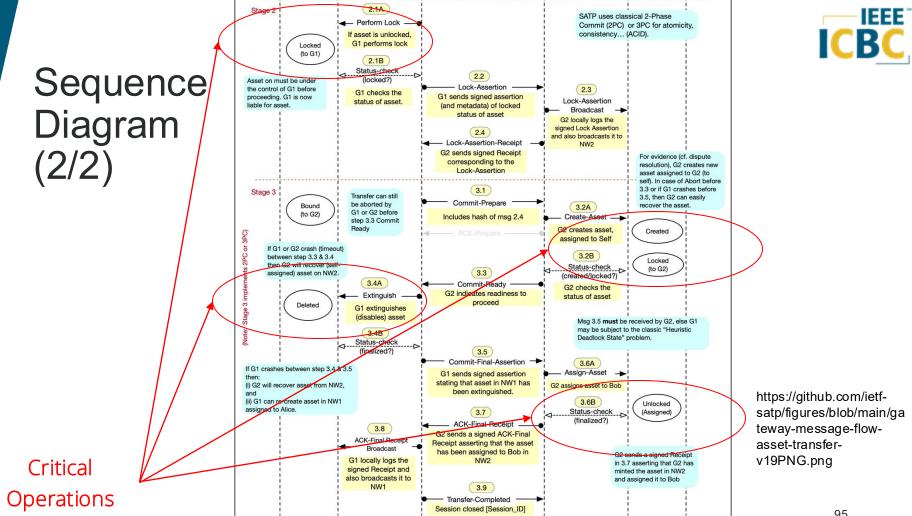
84



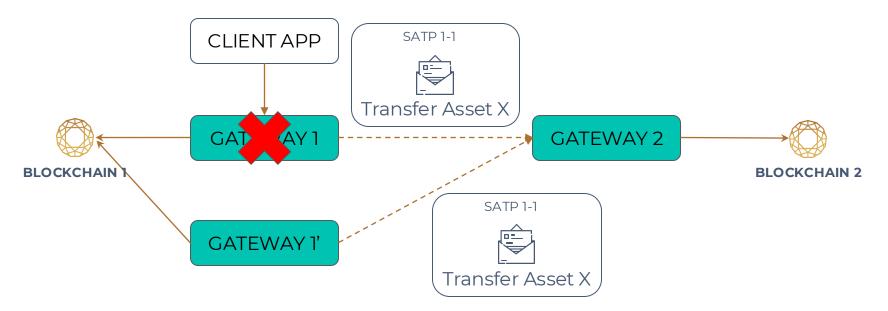








Sequence Diagram (1/2)


https://github.com/ietfsatp/figures/blob/main/ga teway-message-flowasset-transferv19PNG.png

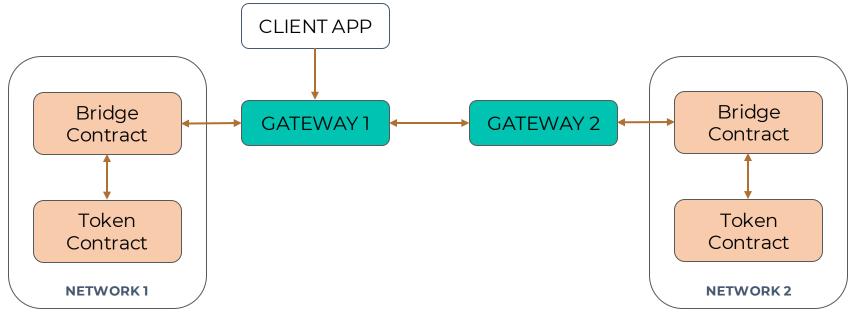
Thomas Hardjono / hardjono@mit.edu / Thu Jun 22 2023 / file: gateway-message-flow-asset-transfer-v19.graffle

Crash Recovery Protocol

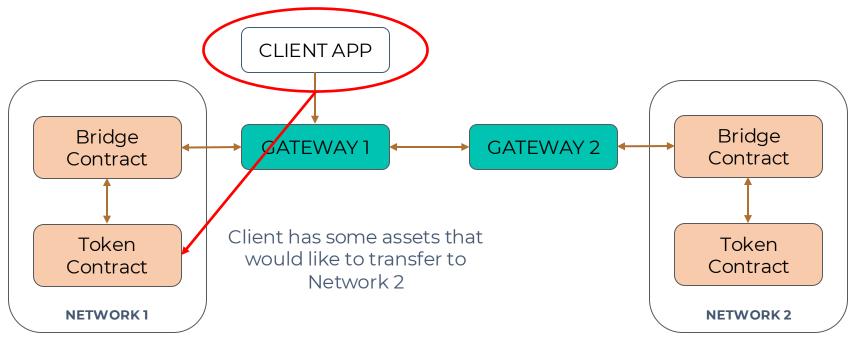
Gateway Configuration File (1/2)

```
{
  // configuration for the gateway to be created
  "gid": {
    <GATEWAY_CONFIG>
  },
  "logLevel": "TRACE",
  "counterPartyGateways":
   // configuration for other existing gateways, such that they can communicate with one another
    <COUNTERPARTY_GATEWAY_1_CONFIG>,
    <COUNTERPARTY GATEWAY 2 CONFIG>,
    . . .
  ],
  "localRepository": {
   // configuration for the local database used to store logs from the execution of SATP
    <DB_CONNECTION_1>,
  },
  "remoteRepository": {
    // configuration for the remote database used to store logs from the execution of SATP
    <DB_CONNECTION_2>,
```

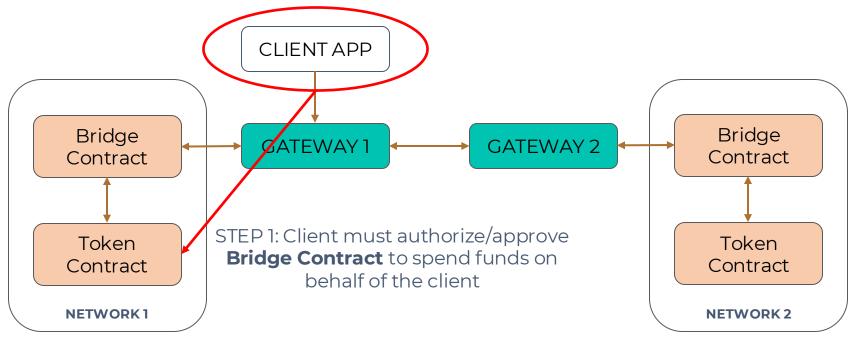

Gateway Configuration File (2/2)


```
. . .
```

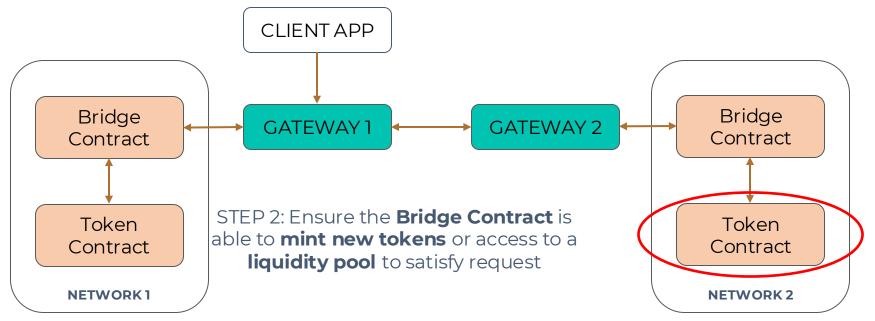
```
"ccConfig": {
  "bridgeConfig": [
   // configuration for the usage of SATP related endpoints
   <NETWORK CONFIG 1>,
    <NETWORK_CONFIG_2>,
    . . .
  ],
  "oracleConfig": [
   // configuration for the usage of Oracle related endpoints
   <NETWORK_CONFIG_1>,
    <NETWORK_CONFIG_2>,
    . . .
},
"environment": "development",
"enableCrashRecovery": false,
"ontologyPath": "/opt/cacti/satp-hermes/ontologies"
```

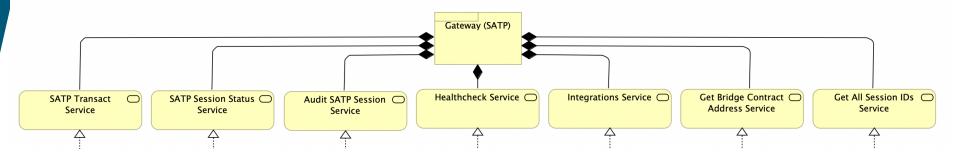
On-Chain Implementation



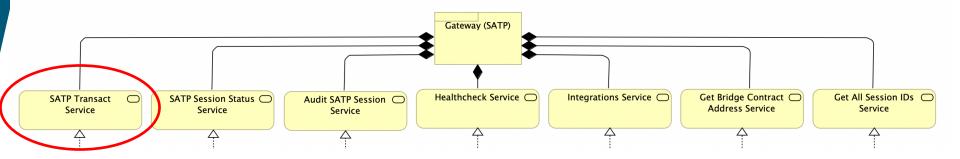
Protocol Requirements



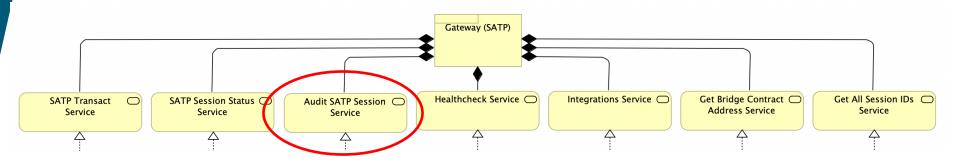
Protocol Requirements (Step 1)



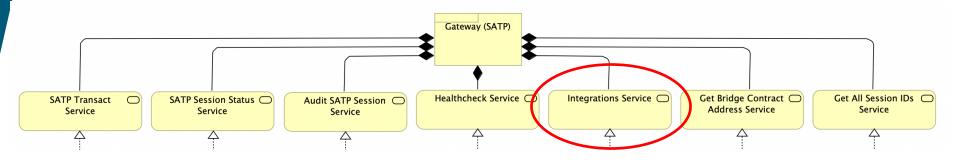
Protocol Requirements (Step 2)



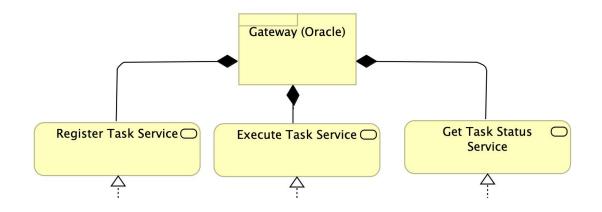
...so, what are exactly the services offered by the gateway?


SATP-Related Functionalities/Services

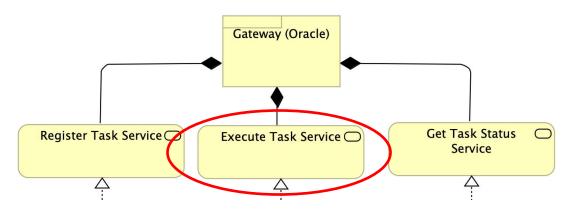
Executes SATP based on the source and destination networks, and source and destination tokens


SATP-Related Functionalities/Services

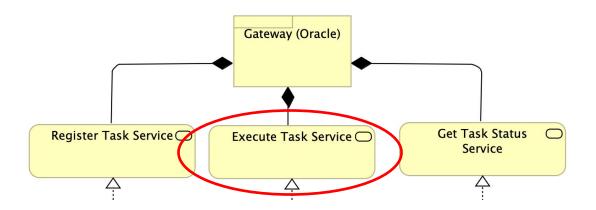
Retrieves all data from all sessions executed in the selected interval


SATP-Related Functionalities/Services

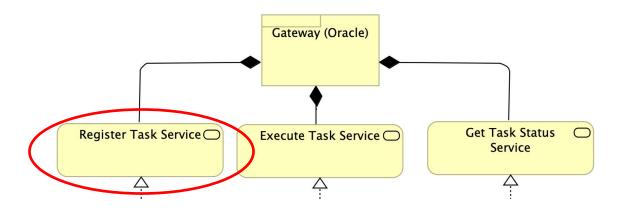
Retrieves all networks to which the gateway instantiated is connected to

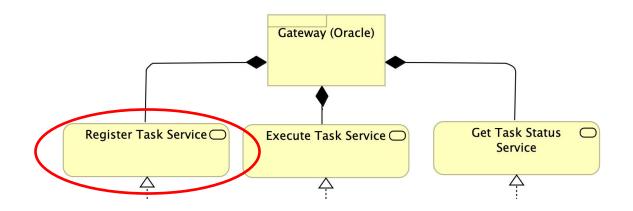


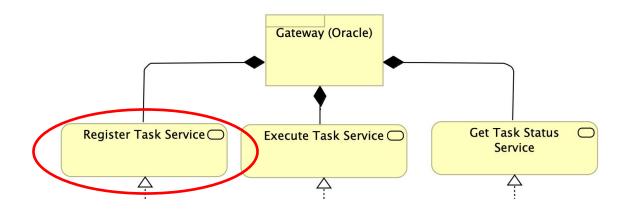
Oracle-Related Functionalities/Services



Oracle-Related Functionalities/Services


Executes READ, UPDATE, or/and READ_AND_UPDATE tasks in one or more smart contracts


READ_AND_UPDATE tasks allow for reading data from one blockchain and writing in the other automatically – i.e., the gateway manages the whole process


Allows registering a periodic task that is executed when some condition is met. Currently, we have POLLING and EVENT_LISTENING modes.

POLLING: The task is executed every *pollingInterval* seconds

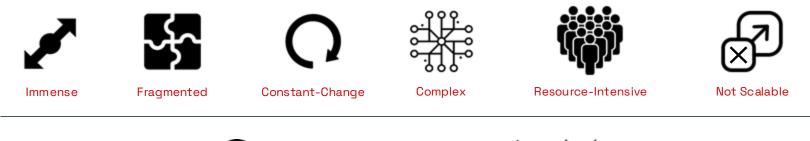
EVENT_LISTENING: The task is executed whenever an event with eventSignature is emitted in a contract

SATP Experiment (Case 1)

- 1. Set up two Ethereum test networks
- 2. Create a configuration file for each gateway
- 3. Spin up both gateways (that will deploy automatically the **Bridge Contracts**
- 4. Deploy Token Contracts on both networks and mint some tokens to the user
- Issue a transaction from the user to the Token Contract authorizing (*approve*) the Bridge Contract on the source blockchain to spend the amount to be transferred on behalf of the user
- 6. Create a request from the **Client Application** to one of the gateways, triggering the cross-chain transaction. The protocol will be executed!!

Oracle Experiment (Case 4)

- 1. Set up two Ethereum test networks
- 2. Create a configuration file for each gateway
- 3. Spin up both blockchains
- 4. Deploy the Oracle Contract on both networks
- 5. Register a task that sets up a listener for a certain event signature on the contract on the source network, and writes the "data" parameter to the destination network.
- 6. Create a request from the **Client Application** to the gateway, writing data to the source blockchain, which causes the event listener to trigger the write on the destination blockchain.

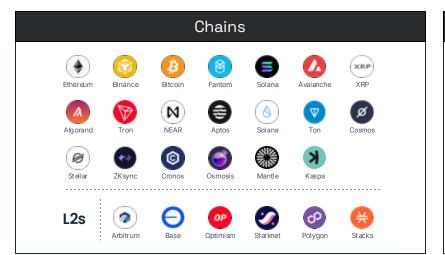


Try it ourselves

The Problem: Connecting to Web3 is...

The Solution: **Sexpand.network** | By 🕅 **BLOCKDAEMON**

All Digital Asset Users



170+ Endpoints				
Chains	DEXs	Lending Protocols	RWAs	
On-Chain Data	DEX Aggregators	Yield Aggregators	Stablecoins	
Oracles	Fungible Tokens	NFTs	Staking	
Bridges	Perpetuals	Synthetics	Algos	

Chain & Protocol Integrations - All of Web3 & DeFi in ONE unified API

Lending Protocols & Yield Aggregators	Bridges & Intents	Oracles Staking &	Staking & Restaking	
Aave Harvest Yearn Finance Finance	Stargate Finance Souter	Wink Link Chainlink	Benqi Jito	
Compound Pendle Morpho	Albridge Classic/Core	Pyth RedStone	B EigenLayer	

Appendix

Interoperability can take multiple forms

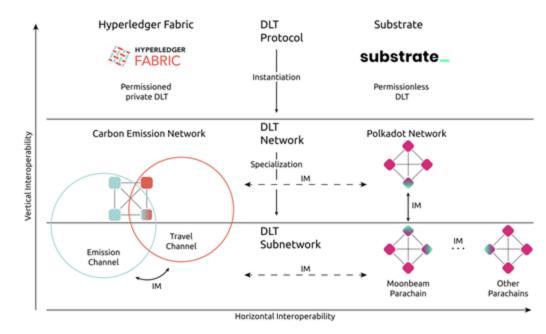
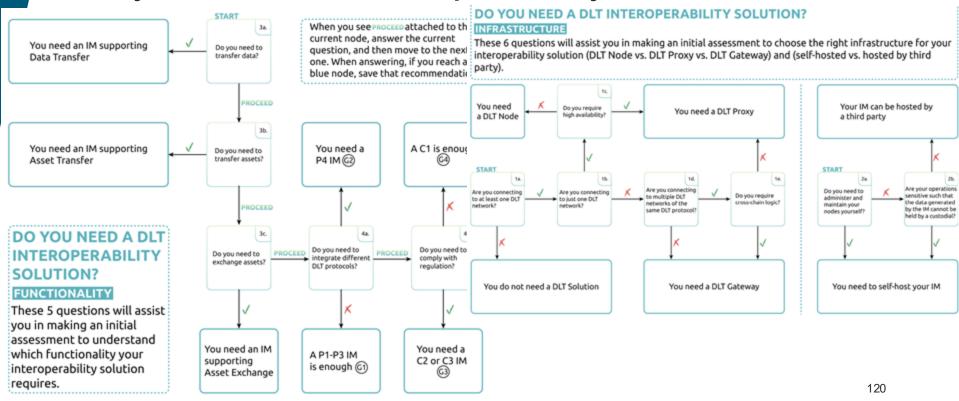



Fig. 2. DLT protocols, networks, and subnetworks.

Rafael Belchior, Luke Riley, Thomas Hardjono, André Vasconcelos, and Miguel Correia. 2023. Do You Need a Distributed Ledger Technology Interoperability Solution? Distrib. Ledger Technol. 2, 1, Article 1 (March 2023), 37 pages. https://doi.org/10.1145/3564532

Do you need an interoperability solution?

Interoperability Assessment

Table 3. DLT Interoperability Solution Assessment

Potentiality Assessment (PA)	Score (0-4)	
P1: Interoperation within the same DLT network, same subnetworks		
P2: Interoperation within the same DLT network, different subnetworks		
P3: Interoperation within different DLT networks		
P4: Interoperation within different DLT protocols		
Compatibility Assessment (CA)	Score (0-3)	
C1: Provides semantic-level interoperability (shared protocols)		
C2: Provides organization-level interoperability (shared agreements)		
C3: Provides legal-level interoperability (follow regulations)		
Performance Assessment (PeA)	Score (0-3)	
PE1: Provides acceptable cross-chain transaction end-to-end latency/throughput		
PE2: Provides acceptable cross-chain transaction end-to-end cost		
PE3: Complies with desirable energetic consumption goals		
PA + CA + PeA		
Interpretability assessment is divided into DE CA and DeA assessments A higher score corresponds to	a mara interanara	

Interoperability assessment is divided into PE, CA, and PeA assessments. A higher score corresponds to a more interoperable solution.

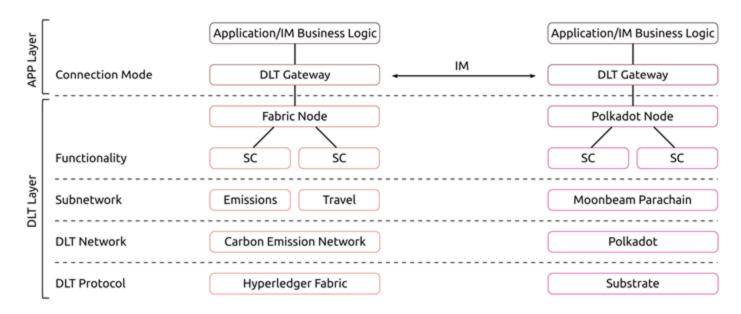


Fig. 12. Example of vertical interoperation in a Hyperledger Fabric network and the Polkadot network. Horizontal interoperability can be achieved via an IM using, for example, a DLT gateway.