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Abstract—Blockchain aggregators play an instrumental role
in the evolution of blockchain technology, serving as pivotal
enablers of interoperability, efficiency, and user accessibility in an
increasingly decentralized digital world. However, the literature
on this emerging technology is scarce and is not systematized,
making it harder for practitioners and researchers to understand
the field. In this paper, we systematize bridge aggregators, a type
of blockchain aggregators. We present an exhaustive analysis
of a diverse array of token and message aggregators, each
distinguished by its unique architecture. Our research delves
into critical aspects of these aggregators, encompassing their
functionality, security measures, pricing models, and latency. This
research aims to provide readers, users, and developers with
insightful and actionable information, facilitating informed navi-
gation through the complex landscape of blockchain aggregators.
We explore our findings and compare them with our intuitive
expectations. We show that there is a value in centralizing token
aggregators. Message aggregators are found to be more powerful
but less efficient in transaction cost and latency. Finally, we
propose a set of future research directions for practitioners.

Index Terms—Blockchain, DLT, Cross-chain bridge, Interop-
erability, Aggregators

I. INTRODUCTION

Efforts to address blockchain interoperability [1], [2], such
as cross-chain bridges, Decentralized Exchanges (DEXes) [3],
[4], off-chain API-based protocols, and on-chain oracle ser-
vices [5], [6], fall short in providing an integrated experience
to users, as there is a lack of abstractions that unify disparate
protocols and blockchains. Decentralized Finance (DeFi) is
currently a highly competitive field, with token values fluc-
tuating in seconds, so users trying to maximize their trade
values-aggregators need to move fast. Otherwise, they may
get undercut by competitors or exploited by Miner Extractable
Value (MEV) bots [7], [8]. With the wide variety of DeFi
protocols deployed in a substantial amount of blockchains,
user resources get fragmented across these platforms. The
unification of fragmented resources is nothing new. The early
stages of the internet had a similar problem with e-commerce.
Internet aggregators, such as Amazon, Booking, and Uber,
consolidated these scattered resources, thereby enhancing user
experience and becoming indispensable in everyday life. There
are even aggregators that operate at the protocol level, e.g., the
Dynamic Host Configuration Protocol (DHCP) [9].

Recognizing the significance of such aggregators in stream-
lining and enhancing user and developer experiences, this
paper analyzes similar aggregation structures within the
blockchain ecosystem used as an approach to the interoperabil-
ity problem. This article focuses specifically on bridge aggre-
gators, exploring their potential to revolutionize the blockchain
landscape [1]. Aggregators can substantially augment the func-

tionality and accessibility of blockchain technologies for both
seasoned and novice users. A vital attribute of an aggregator
is its capacity to conduct routing analyses on behalf of the
user, thereby optimizing multi-protocol or chain transactions
based on various parameters such as gas costs, trade values,
security, and transaction speed.

A. Problem

The contemporary landscape of blockchain technology is
marked by significant fragmentation and a lack of compre-
hensive abstraction layers. Users must individually establish
connections and networks, adding to the already extensive
list of prerequisites for effective blockchain interaction, not
to mention the necessity to abide by local laws and reg-
ulations [10]. Aggregators present a viable solution to the
interoperability challenge by unifying fragmented resources,
thereby improving user experience and facilitating smoother
blockchain interactions. Aggregators improve liveness by way
of redundancy through fragmented resources.

However, the practical and theoretical analysis of cross-
chain aggregators is a cumbersome task for developers, and
even more so for users of such protocols, given the multitude
of protocols that require thorough and strategic examination.
This complexity diverts user resources from other critical
activities, such as conducting security reviews, developing new
features, or expediting product launches.

B. Contributions

The primary objective of this paper is to empirically analyze
bridge aggregator archetypes. As bridge aggregators are in
their infancy [11], there is a lack of literature on the subject,
but also several aggregator archetypes to investigate.

Our study dissects the various elements that compose an ag-
gregator and evaluates them. We examine the diverse architec-
tures and design choices, highlighting the different trade-offs.
This research provides valuable insights to prospective users
who intend to utilize these protocols and future researchers
and developers who will design and implement cross-chain
solutions. We consider different parameters such as system
architecture, supported features, openness, decentralization,
latency for completion, total cost, fallback model, and ease of
use. We also suggest use cases for each type of aggregator. In
addition to this theoretical analysis, we rigorously benchmark
token aggregators, making our artifacts open-source. The data
and code are available on GitHub, accessible at the following
URL: https://github.com/hyperledger-labs/benchmarking-cro
ss-chain-bridges/tree/main.

https://github.com/hyperledger-labs/benchmarking-cross-chain-bridges/tree/main
https://github.com/hyperledger-labs/benchmarking-cross-chain-bridges/tree/main


II. OVERVIEW OF AGGREGATORS

We define an aggregator as a mechanism that allows users to
interact with one or more services by abstracting the individual
protocol handlers. We classify aggregators into three types, in
which each one allows:

1) users to interact with different blockchains by reading
data and issuing transactions.

2) smart contracts to interact with smart contracts on other
blockchains.

3) for multi-protocol DeFi.
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Fig. 1: Aggregator Black Box

The interaction flow of an aggregator is depicted in Figure 1.
Different protocols are represented by pink, green, and blue
rectangles, and different blockchains by the orange rectangle.
Any protocol that provides a similar service can be plugged
into this architecture, even if hosted on different blockchains.

The aggregator feeds the transaction parameters into the
protocols. The routes generated by these protocols are then
ordered based on the optimization parameters (transaction
speed, token value, or security) and returned to the user. The
blockchain aggregators involved with on-chain state change
are called Bridge Aggregators and are the focus of this paper,
as we dive into their types and functionalities in the following
section.

A. System Model and Actors

We classify bridge aggregators based on their architectures,
composed of their user interaction model and the open-source
nature of the code base. An aggregator generally lies within
a spectrum between open-source and user-run to proprietary
and API-based.

Bridge aggregators can function either as Token or Message
Aggregators. Token aggregators perform token swapping and
bridging across protocols (e.g., 0x), DEXes (e.g., Uniswap),
and bridges (e.g., Jumper). These aggregators tend to be to
some extent closed-source, to protect their proprietary routing
algorithms. On the other hand, message aggregators allow for
arbitrary cross-chain transactions to be sent across chains and
are more functional due to their generalized message-passing
capabilities.

B. Bridge Aggregator Architecture
We present a generic architecture of a bridge aggregator

in Figure 2. It contains components from the API Based
Aggregators (in blue), Open Sourced Model Aggregators (in
red), and the Cross-Chain Protocol Agents (in yellow). This
section provides an overview of an aggregator transaction and
an in-depth explanation of its components, starting from the
top-left of the figure:

User: Takes care of user interaction with the aggregator.
SDKs translate user input into an aggregator-specific language
and query the aggregator for routes.

Routing API: Decomposes user input into parameters and
feeds them to an algorithm to generate routes.

Source Chains 1 & 2: Contains smart contracts with which
the user interacts. There are router contracts that emit events
about the transaction state for cross-chain protocol agents.

Cross-chain Protocol Agents (Phase 1): In the first phase,
agents (also called relayers) listen to events emitted by the
router contract on the source chain. If there exist multiple
relayers, these run a consensus algorithm to decide on the
validity of the transaction. Relayers are informed of an in-
complete source transaction that is yet to have a transaction
on the destination chain. After consensus, the transaction is
finalized and distributed to the blockchain nodes’ mempool.
Transaction builders create the destination transactions along
with validity proofs and submit them to the destination chain.

Cross-chain Protocol Agents (Phase 2): In the second phase,
the transaction on the destination chain is executed on the
router contract. Similarly to Phase 1, relayers listen for events
on the destination network, and update the global state to
reflect the transaction data.

Destination/Target Chain: The transaction on the destination
chain interacts with the target address and events are logged.

User run Cross-chain Protocol: Here, the routing software
is open-sourced and run by the user. The user acts as the val-
idators and relayers, and issue transactions on both networks.

C. Parts of an Aggregator Transaction
We separate the parts involved in an aggregator transaction

into components and parameters. Components are the data
generated by aggregators and users, such as routes and queries.
Parameters are factors that influence generated data.

1) Components: Components are non-standard data gener-
ated by aggregators, users, and the benchmarking tool:

1) User Quote Query: Contains user-generated transaction
parameters such as tokens, value, chains, and payload.

2) Aggregator Quote: The quote object returned by an
aggregator which contains the aggregator route.

3) Aggregator Route: Contains the transaction path and
information about the protocols.

4) APIReport: The standardized report generated by the
benchmarker. It contains information on the networks
involved, the time of creation, the source, and destination
tokens, the aggregator used, the protocol the aggregator
uses, and the value of tokens traded.
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Fig. 2: Generic architecture of a bridge aggregator

2) Parameters: Parameters are factors that influence the
components. In this section, we explain what they are:

∙ Fees: Aggregators may charge a fee in addition to the
protocol fee, such as the withholder and bridging.

∙ Latency: There are two primary latencies and the aggre-
gator API latencies.

∙ User Interface: Protocols may have a UI. Using such a
UI can incur a fee, such as Uniswap [12]. Protocols may
also have a transaction explorer.

∙ Customizability: There may be additional services pro-
vided by protocols that allow for the customization of
transactions.

D. Proprietary Backend Model – API Based Aggregators
These aggregators offer their services through APIs. They

tend to have proprietary routing algorithms, and users may
have to create an account to use them. The functionality tends
to be limited due to a lack of generalizability. They almost
always perform cross-chain transactions.

E. Open Source Model
The users have all the components required to perform

a transaction by themselves. As the source code is open-
source, organizations can modify the code tailored to their
requirements. These protocols tend to be single-chain. The
routing algorithm relies on mathematical models and network
statistics, as there is no centralized source for processed data.
This architecture does not have a router contract or consensus
layers for a single client, however, they can be extended to
work for n-client architectures.

F. Cross-chain Protocol Agents
Allow for cross-chain messaging by use of validators and re-

layers. Aggregators may run solo relayers, for more efficiency,

but reduced decentralization. If there are several relayers, there
is a consensus phase that involves a mempool.

III. INSTANTIATIONS OF AGGREGATORS

In this section, we classify a set of aggregators based on
their archetypes and look at a few aggregators of each type. We
analyzed the most up to date version of each protocol at time
of writing this paper, in December 2023. The architectures that
we came up with are: Centralized Token Bridge Aggregators;
Decentralized Liquidity Aggregators; On-chain Pool Based
Token Swap Aggregators, and Message Aggregators. In-depth
expositions into the aggregators can be found in the extended
version of our paper [13].

A. Centralized Token Bridges:
These aggregators do not execute trades. They compute the

routes that redirect users to trade on a protocol. They only
support mainnet trades. Aggregators classified in this category:

1) LiFi Jumper v1 – Multichain DeFi Protocol Aggregator:
Jumper supports bridge, swap, and execution of cross-chain
contract calls [14]. The routing API has a powerful rate limiter
and there were several instances of protocol failures. They use
multiple protocols.

2) Socket Bungee v2 – Multichain DeFi Protocol Aggre-
gator: In addition to swap and bridge, it provides a service
called Refuel that allows users to also get native tokens on
the destination network they are swapping to [15]. The only
supported protocols are 0x and 1inch. [16]. It has a Data Layer
that is pending developer documentation that aims to achieve
chain abstraction.

3) XY Finance – Multichain Pool based aggregator: Uses
a 2-tier structure comprising XSwap (aggregator) and YPool
(liquidity pool) [17]. The pool maintains liquidity thresholds
that are shared between all chains. The fee calculation is



unclear from the documentation, as it contradicts the results
from the API and dApp.

B. Decentralized Liquidity Aggregators:

These aggregators execute trades by clients that provide
liquidity to match user trade requests. Users do not submit
on-chain transactions when interacting with these aggregators
apart from enabling token allowance. This allows users to
circumvent MEV bots and send gasless transactions.

1) CoW Swap v1 – Permissionless off-chain protocol that
Aggregates Trades on single-chain: CoW Swap uses Batch
Auctioning to establish token prices. Transactions are submit-
ted to settlers that complete partial or entire amounts of the
trade [18]. Swapping is only supported on the same chain.

2) 0x – Liquidity aggregator between Makers and Takers:
0x tries to match liquidity between those that provide it
(Makers) and those that consume it (Takers) [19]. Trades start
off-chain where a Maker and Taker arrive at a deal, then
submit the signed deal to the 0x smart contract that performs
the trade between the on-chain wallets of the Maker and Taker.

C. On-chain Pool Based Token Swap Aggregators:

When interacting with aggregators of this class, users may
generate routes locally and then send transactions to the
blockchains. This allows for 100% availability if the token
pools on-chain have tokens. They are also the quickest to
complete, as they only involve a single transaction. They
usually support only same-chain trades. Aggregators:

1) Uniswap – Decentralized AMM and off-chain trading
protocol: Despite the debate about the open sourcedness of
the Uniswap code due to the licensing [20], Uniswap does not
contain proprietary code. It offers two aggregative services:
AlphaRouter and UniversalRouter. AlphaRouter allows for
multiple hops between Uniswap pools to try to find the best
route. UniversalRouter also aggregates trades across proto-
cols [21]. While using Uniswap on-chain does not incur a
fee, using the Uniswap Trading Application on the website
does charge a 0.15% fee [22]. Users can avoid the “UI fee”
by interacting with the protocol through an SDK.

2) 1inch – Decentralized AMM and P2P trading: The
1inch aggregator protocols provide users with multi-protocol
aggregation and P2P aggregation where users directly trade
ERC20 [23]. Users can take part in a cowswap-like auction
trading by being resolvers or price aggregators. They have
different services that offer user protection from front-run
attacks and sandwich attacks.

D. Message Aggregators

Message aggregators aggregate blockchains to send mes-
sages across. They come in different flavors – some are block
header verifiers, some are decentralized, and some are cen-
tralized for the benefit of efficiency. They can execute generic
blockchain transactions and are not restricted in functionality.
These aggregators support testnets and mainnets.

1) Hyperlane v2 – Modular Interoperability Protocol:
Hyperlane is developer-focused, comes with prebuilt modules,
and is customizable [24]. The on-chain customizability allows
developers to create their own security modules. The protocol
fee is collected in native tokens after the destination transaction
is sent. Cross-chain transactions are quick due to the central-
ized backend, with stages of the transaction being constant
time 1. Transactions are created from by users.

2) CCIP – Chainlink’s cross-chain messaging protocol:
CCIP has a decentralized backend which contributes to slower
transactions due to the consideration of block finality on the
source chain [25]. Users can pay the fee as Native or Link. The
fee is paid when the source transaction is created. Transactions
are issued through smart contracts.

3) Hashi v1 – Redundant Array of Independent Oracles:
Inspired by RAID, this protocol collects block headers from
different sources and validates them on-chain at each des-
tination network [26]. Using this protocol is expensive and
slow due to the amount of on-chain computation, the tradeoff
gives the highest security among the discussed aggregators.
Developers are required to validate transactions within the
validated blocks. This protocol is under development and the
documentation is not complete [27].

E. Aggregator Summary Framework

Our benchmark framework overviews the Aggregator com-
ponents II-C1 and parameters II-C2 for each of the aggregators
benchmarked III:

∙ Type: The main type of aggregator — token or messaging
∙ Design Model: The user interaction model and the aggre-

gator backend architecture
∙ No Setup: Configuration required to use the aggregator,

such as deploying aggregator-specific contracts, sending
transactions to join a validator list

∙ Block Explorer: To help users visualize transactions
∙ Functionality: The core component of the architecture that

settles the transactions
∙ Optimize Transaction On: The parameters that the user

can choose to optimize on
∙ Customizability: The changes to the base configuration

such as implementing user-specific rules
∙ Open Source: We consider the open-sourcedness of smart

contracts, backend code, and documentation.
∙ Target Audience: The end user.

IV. BENCHMARKS

In order to analyze bridge aggregators, we designed a
benchmarking tool [28] that generates routes for aggregators,
implements contracts, executes routes, and executes cross-
chain transactions. We break down the analysis of the aggrega-
tors into theoretical analysis and practical tests obtained from
benchmarking experiments, explained in Section II-C1.

1http://tinyurl.com/hyperlane-tx



LiFi Socket XY CoW 0x Uniswap 1inch Hyperlane CCIP Hashi

Type Token Bridge,
Token Pool

Token Bridge,
Token Pool

Token Bridge,
Token Pool

Liquidity
Aggregator

Liquidity
Aggregator

On-Chain Pool
Aggregator

On-Chain Pool
Aggregator

Token,
Messaging

Token
Messaging Messaging

Design Model API
Relays

API
Relays

API
Pools

Off-chain
Auctions

Off-chain
Auctions

On-chain
Token Pools

On-chain
Token Pools

On-chain
Centralized Oracles

On-chain
Decentralized Oracles

On-chain
3rd Party Oracles

No Setup ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Block Explorer ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗

Core Architecture Asset Router Asset Router Private Settlement
Chain

Off-chain
Auctions

Off-chain
Auctions

Interactable
Pools, Auctions

Interactable
Pools, Auctions

User transactions
initiated

Smart contract
initiated

Block
Validation
Framework

Optimize
Transaction On

Speed,
Value

UX,
Value

Multichain Token,
Value

Token
Value

Token
Value

Token
Value

Token
Value

Developer
Choice Predefined Security

Customizability ✗ ✗ ✗ ◑ ◑ ◑ ◑ ● ● ●

Open Sourcedness ◑ ◑ ◑ ● ● ● ● ● ● ●

Target Audience
Traders

and
Bridgers

Traders
and

Bridgers

Traders
and

Bridgers
Traders Traders Traders Traders dApps Protocol Devs,

Bridges
High-Security

Protocols, DAOs

TABLE I: Summary of Token Aggregator Frameworks

A. Setup

The experiments were executed on a machine with 8
cores@1.9 GHz base clock CPU and 32 GB RAM. The storage
used was 29 MB for 360 runs that generated 2250 aggregator-
specific quotes and APIReports. The Coingecko pricing for
360 quotes was 1.6 MB. We used network pairs that were
supported by most aggregators. For token aggregators, we used
Ethereum to Ethereum/Polygon. For message aggregators, we
chose Sepolia and Polygon Mumbai, as they all supported
cross-chain. RPC URLs were provided by Alchemy. We used
the SDK or API provided by each aggregator, and Coingecko2

pricing API to collect token price data.

B. Benchmark Process

We collected results over a two-day window, polling a new
route every 20 minutes. This gave us 360 batches of token
aggregator quotes. The collection window was from 2023-12-
08, 18:33 UTC to 2023-12-11, 14:02 UTC. A single batch ran
for about 41 seconds.

Message aggregators were statically benchmarked, where
we only logged the reports generated by the scripts on a single
run. This was possible due to the metrics generated by the
message aggregators, such as the deployment cost, message
cost, and gas fee, being dependent on mathematical equations.

To benchmark message aggregators, we created a simple
number storage script that could work with an aggregator. At
the time of benchmarking, the following were the token prices:
1 DAI / 0.9985 USD; 1 ETH / 2,234.26 USD; 1 MATIC /
0.8556 USD. / Although the codebase is configured to execute
trades and monitor the latency, we were unable to execute
token aggregator quotes as they did not support cross-chain
trades on testnets. We believe that testing latencies is more
a DEX benchmark, and does not truly isolate the aggregator
which is what we are trying to evaluate.

C. Hypotheses

Before benchmarking, the following were our hypotheses:

2https://www.coingecko.com/api

1) API-based aggregators have tighter bounds on the rela-
tion between aggregator quote value and the actual value
of a token, quoted by coin gecko.

2) Open source aggregators have higher variance in the
token pricing and more latency.

3) The fee involved is a function of the gas price on the
destination network.

4) Gas estimates to be a function of the network they are
executing on.

5) DEXs are more secure than CEXs due to their decen-
tralized nature.

V. RESULTS

In this section, we present the benchmarking results gener-
ated by the benchmarking tool in the experiments.

A. Fees and Gas Price:

We present aggregator net fees collected over constant
parameters, including network conditions. Figure 3 depicts
net fee charged (in blue), against the source and destination
chain gas prices (in grey). We also present Table II with the
measurements of the mean and variance of the net fee. For
message aggregators we list the operations performed, the gas
price of the network, the gas used, and the amount in USD to
create a standard comparison across aggregators. We did the
above for both versions of CCIP in Table III, Hyperlane in
Table IV, and Hashi in Table V.

Takeaway 1: XY and Socket do not charge a fee (Table II).
Takeaway 2: Ignoring gas fee when computing net fee, only

the destination chain gas price affects the net fee. (cf. Figure 3
- (b), (c)) show the blue lines (aggregator fee) tightly following
the destination network gas price.

Takeaway 3: When accounting for the gas fee, the source
chain also has an impact, although minor (cf. Figure 3 - (a),
(b), (c)) show the aggregator fee move in a similar pattern to
the source chain gas price.

Takeaway 4: Cross-chain transactions incur more fee than
same chain transactions (see Table II).

Takeaway 5: Table II shows that Open Source Protocols
(CoW Swap and Uniswap) have the best variance-mean ratio.



Aggregator Source Chain Dest Chain Net Fee (𝜎) Net Fee (𝜇)

CoW Swap Ethereum Ethereum 8.88 11.30
LiFi Ethereum Ethereum 9.85 28.80
LiFi Ethereum Polygon 15.69 40.90
Socket Ethereum Ethereum 7.03 12.61
Socket Ethereum Polygon 6.08 11.32
Uniswap Ethereum Ethereum 0.98 1.38
XY Ethereum Ethereum 0.00 0.09
XY Ethereum Polygon 0.60 1.63

TABLE II: Average net fees for each aggregator, source-chain,
and dest-chain combination.

Operation Network Gas Price Tx Gas Amount

Message Fee (ETH) Sepolia 126.512107387 29081 8.220
Message Fee (LINK) Sepolia 126.512107387 47732 13.491
Deploy Sender Sepolia 126.512107387 864548 244.373
Deploy Counter Mumbai 3.000000032 498019 0.001
Send Txs (ETH) Sepolia 126.533233854 230984 65.301
Send Txs (LINK) Sepolia 126.533233854 237100 67.030

TABLE III: CCIP v1.2.0 Cost to Use. Amounts are in USD
and Gas Prices are in gwei.
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Fig. 3: Net Fee

Takeaway 6: Chainlink CCIP and Hyperlane use transparent
and deterministic protocol fee computation. The data used in
the computation is updated by a selected committee 3 [29].

Takeaway 7: Hashi sources block headers from several
independent oracles [30].

3http://tinyurl.com/ccip-evm2evmonramp

Operation Network Gas Price Tx Gas Amount

Deploy Counter Tx Mumbai 3.000000032 222699 0.001
Send Tx to Counter Goerli 3.000000206 74685 0.501
Send Tx to Counter Sepolia 113.57621251 67081 17.022
Interchain Gas Paymaster Fee 1 Sepolia 113.57621251 224289 56.913

1 Retrieved Tx Gas from a ETHEREUM to POLYGON transaction on the
Hyperlane Explorer due to testnet transactions not having fees

TABLE IV: Hyperlane v2 Cost to Use. Amounts are in USD
and Gas Prices are in gwei.

Operation Network Gas Price Tx Gas Amount

Deploy Yaho Goerli 3.000000804 1004278 6.731
Deploy Yaru Gnosis 16.52392343 953260 0.016
Deploy AMBRelay Goerli 3.00000081 480194 3.218
Deploy AMBAdapater Gnosis 15.962067614 1082831 0.017
Deploy Counter Gnosis 15.962067614 212871 0.003

TABLE V: Hashi Cost to Use. Amounts are in USD and Gas
Prices are in gwei.

Takeaway 8: Hyperlane does not charge a fee on testnets. We
used an identical mainnet transaction to get the fee charged.
(cf. Table IV).

Takeaway 9: Contract deployment is a large part of the cost
in CCIP and Hyperlane. CCIP requires a sender contract that
Hyperlane does not (cf. Table III and Table IV).

Takeaway 10: Sending CCIP transactions with native tokens
is cheaper than with LINK (cf. Table III).

Takeaway 11: CCIP estimates computation and fees on-
chain while Hyperlane does not [29].

B. Aggregator Quote vs. Coingecko
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Fig. 4: Aggregator Quote vs Coingecko Quote

We use Coingecko API as a common source to compare
all the aggregator quotes, due to its reputation within the
community. Not needing the creation of accounts or API keys
was a key decision point. The aggregators were instructed to
maximize trade value. Figure 4 shows the movement of the
aggregator quote price (in blue) against the Coingecko price
(in yellow). In Table VI, we compare the deviation between
the aggregators and Coingecko’s values.

Takeaway 12: Table VI shows that API-based aggregator
quotes tend to match Coingecko Quotes and have higher
variance.

Takeaway 13: There is more variance in the quotes when
the aggregator quotes under Coingecko than when they quote
over Coingecko pricing Table VI.

Takeaway 14: Table VI shows that API aggregators may
not have 100% availability and can go down, or not produce
a route when there exists a route.



Name Source Chain Destination Chain Over (𝜇) Over (𝜎) Under (𝜇) Under (𝜎) Diff (𝜇) Diff (𝜎) Count

CoW Swap Ethereum Ethereum 0.00 0.00 11.35 9.20 -11.35 9.20 360
LiFi Ethereum Ethereum 13.53 11.93 35.20 43.28 -29.59 43.77 304
LiFi Ethereum Polygon 0.00 0.00 48.11 39.94 -48.11 39.94 305
Socket Ethereum Ethereum 5.63 4.20 7.13 11.05 -1.16 10.66 359
Socket Ethereum Polygon 6.25 5.01 7.86 12.04 -0.81 11.61 358
Uniswap Ethereum Ethereum 6.88 5.65 16.71 27.57 -9.45 25.58 341
XY Ethereum Ethereum 5.97 4.23 6.34 8.61 1.36 8.63 360
XY Ethereum Polygon 7.02 4.85 7.31 12.21 2.49 10.35 359

TABLE VI: Price differences of Aggregator Quote (USD) vs Coingecko (USD)

Takeaway 15: Figure 4 shows that CoW Swap was un-
affected by the “12-11 00” price drop across all the API
aggregators and Uniswap.

C. Latency
We measure the mean and standard deviation of the latency

of an aggregator quote.
Takeaway 16: API latency of cross-chain transactions is

about 2x to 10x longer than same chain trades (cf. Table VII
– LiFi, Socket, and LiFi).

Takeaway 17: Variance in cross-chain transactions is about
2x that of the same chain (cf. Table VII — LiFi, and Socket).

Takeaway 18: API aggregators tend to have lower variances
in latency than the Open Source Model Aggregators (cf.
Table VII – CoW Swap and Uniswap).

Takeaway 19: We order each aggregator latency-wise from
the fastest to slowest: API-based aggregators (same-chain) <
CoW Swap < Uniswap < API based aggregators (cross-chain)
(cf. Table VII).

VI. DISCUSSION

A. Token aggregators
Our hypotheses (1,2, and 5) presented in Section IV-C are

based on the centralization gains experienced by API Aggre-
gators due to their architectures. Hypothesis (3,4) were based
on the involvement of aggregators in cross-chain messages by
spending their own tokens on gas fees. We expected most
aggregators to pick the same protocol, the one that provides
maximal trade value, which was not the case. The trade value
generally moves with Coingecko’s USD quote of ETH (Figure
4), with a bias of quoting lower. Cross-chain transactions use
gas paid by the protocol, which explains Takeaways 2 and 3.

Open-source aggregators simply optimize and match the
given inputs. The generated trade values can slip, as seen in
Table VI. However, Cow Swap provided the best trade values
across all aggregators.

Takeaway 15 shows that aggregators have recovery strate-
gies to correct errors when protocols produce incorrect quotes.
It also appears that many protocols were linked to the pricing
quoted by Uniswap, inferrable from the Uniswap slippage
impacting quotes from all aggregators except CoW Swap.
As aggregator quotes vary drastically from Coingecko quotes,
we recommend having different thresholds to prevent being
affected by slippage when using automated trading.

B. Message Aggregators
From Takeaway 5, deterministic fee computation is strongly

influenced by the message length and networks involved4.
Additionally, Takeaway 9 shows that deploying Contracts on
the networks seems to influence the cost to use a protocol
the most, with CCIP requiring a sender and receiver contract,
while Hyperlane and Hashi only require one. This is due to the
difference in architectures where CCIP can be automated on-
chain to send cross-chain messages and is more of a protocol
than Hyperlane which is an application.

C. Security
Aggregators allow for more attack vectors than standalone

protocols due to infinite allowances, change in msg.sender, etc.
Token Allowance exploits are the most common attacks.

Consider the following scenario – an aggregator generates
a route on protocol 𝑃 with token allowance value greater
than the trade value to prevent future allowance updating
transactions, a common practice to save gas. As aggregators
often provide users with unsigned transactions to approve
allowance, users tend to execute them and not know the value
being allowed, which could be infinite. Now, when 𝑃 or
any aggregator that contains a route to interacting with 𝑃
is hacked, the attacker can drain that wallet. This is what
happened with Socket [31]. As Socket was centralized and
pausable, the developers quickly paused trading on the socket
contract. The attack was from a prototype and smart contract
deployed on mainnet. Lifi Jumper also faced an exploit due to
an unchecked external call that led to an approval exploit [32].

Additionally, protocols should no longer rely on
msg.sender as a proof of validity because the protocol
relayer and the routing contracts are consistent across all
destination chain transactions. This means that should a user
approve a protocol router, then anyone can send an arbitrary
cross-chain transaction to that destination chain executing a
trade from the spender to the hacker. This would always pass
as the msg.sender would be either the approved protocol
relayer or routing contract, while the tx.origin would be
the relayer.

In protocols that support arbitrary function calls (i.e. when
there is no required receive function enforced by the protocol),
msg.sender assertions on protocol relayers need to be

4http://tinyurl.com/ccip-priceregistry



Name Source Chain Destination Chain Over (𝜇) Over (𝜎) Under (𝜇) Under (𝜎) Latency (𝜇) Latency (𝜎)

CoW Swap Ethereum Ethereum 0.00 0.00 2568.08 1160.18 2568.08 1160.18
LiFi Ethereum Ethereum 1094.74 251.72 1118.77 342.22 1116.00 333.14
LiFi Ethereum Polygon 0.00 0.00 2793.89 623.90 2793.89 623.90
Socket Ethereum Ethereum 532.46 383.97 499.43 363.57 514.89 373.62
Socket Ethereum Polygon 6774.20 2398.20 6716.69 1833.03 6745.45 2134.59
Uniswap Ethereum Ethereum 4247.02 1309.14 4327.64 934.18 4302.82 1064.46
XY Ethereum Ethereum 2837.70 711.98 2789.60 650.32 2819.66 689.90
XY Ethereum Polygon 5698.48 1727.13 5710.53 1978.43 5698.14 1809.40

TABLE VII: Latency vs Quote Difference

avoided. Otherwise, attackers can call any function on a
contract, which gets executed as the protocol relayer.

Phishing attacks are a problem with decentralized exchanges
like the one on Uniswap [33]. Cowswap got hit with a solver
exploit, but as they do not use approvals, user funds were not
in danger [34].

D. Summary
Aggregators may not select the most optimal protocol to

trade on. API aggregators do not have 100% availability as
seen from the generated report count, and they may use the
same protocol causing another centralization issue on data
source. API-based aggregators have recovery strategies to
counter these vulnerabilities. Most aggregators quote a value
lower than Coingecko’s quote and the usual range is within +/-
10%. The same protocol on different networks may have dif-
ferent token pricing. Latencies follow the expectations across
different networks and aggregators, with different aggregators
using different security defenses such as block finality on the
source network.

While neither major archetype is free from exploits, it can
be safe to say that decentralized ones are more secure due
to shorter and independent transaction chains as compared to
the ones at centralized archetypes where in addition to single
point failures, there are longer transaction chains with more
components allowing for increased number of attack points.

VII. FUTURE RESEARCH DIRECTIONS

This paper provides the first comprehensive benchmark on
bridge aggregators. We compile a list of promising future
research directions:

∙ Extend the benchmarking framework to more aggregators
and parameters, helping practitioners choose the best
aggregator for their needs in the industry and academia.
Similarly to [35], a framework for selecting an aggregator
should be provided. We should thus test our hypothesis
on production chains (mainnets).

∙ Research on security and privacy in cross-chain technol-
ogy is still scarce, but recent developments are promis-
ing [10]. Exploring privacy mechanisms for bridge aggre-
gators and performing a comprehensive security analysis
of specific solutions using varied techniques such as cross-
chain models [36] are needed.

∙ Enterprises need connectivity to blockchains to satisfy
their needs for modernizing their financial services. For

this, enterprise-grade infrastructure providers play a piv-
otal role [37]. However, aggregators are still not ready to
be adopted by companies needing to abide by different
laws and regulations. Research to understand enterprise
needs in terms of organizational and legal interoperabil-
ity [38] is required to create a well-defined list of func-
tional and non-functional requirements for aggregators.

VIII. CONCLUSION

Aggregators are here to stay, as part of the ever-evolving
mission to make blockchain interoperability more user-
friendly. In this study, we performed the first benchmarking
study of bridge aggregators, showcasing a holistic analysis of
the evolving landscape.

Most of the expectations that came into the project were
consistent with the results. API aggregators usually had the
lowest latencies, but had more downtime, as expected from
centralized services. The decentralized and open-source mod-
els had higher latencies, but the lowest downtime. Aggregators
also tended to quote values under those of coingecko quotes.
This is expected, as the protocols with which they interact
have varying degrees of slippage on varied quote values. The
open-source aggregators had a lesser variance in their price
quotes, which was surprising. Message aggregators tend to
be larger code chunks that take longer periods to execute
while being more expensive in terms of gas and fees. This
is consistent with the expectation of a generalized messaging
service compared to that of a highly engineered single-task
service like a token aggregator.

The benchmarking results help academics and practitioners
alike to systematically reason about aggregators. We provide
future research directions, including cross-chain privacy and
studies on the feasibility of enterprise-grade aggregators.
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