
XChainWatcher: Identifying Anomalies in Cross-Chain Bridges
André Augusto

INESC-ID & IST, University of Lisbon
Lisbon, Portugal

Rafael Belchior
INESC-ID & Blockdaemon

Dublin, Ireland

Jonas Pfannschmidt
Blockdaemon
Dublin, Ireland

André Vasconcelos
INESC-ID & IST, University of Lisbon

Lisbon, Portugal

Miguel Correia
INESC-ID & IST, University of Lisbon

Lisbon, Portugal

Abstract
Cross-chain bridges are a type of middleware for blockchain in-
teroperability that supports the transfer of assets and data across
blockchains. However, several of these bridges have vulnerabilities
that have caused 3.2 billion dollars in losses since May 2021. Some
studies have revealed the existence of these vulnerabilities, but there
is little quantitative research available and there are no safeguard
mechanisms to protect bridges from such attacks. Furthermore, no
studies are available on the practices of cross-chain bridges that can
cause financial losses. We propose XChainWatcher (Cross-Chain
Watcher), a modular and extensible logic-driven anomaly detector
for cross-chain bridges. It operates in three main phases: (1) decod-
ing events and transactions from multiple blockchains, (2) building
logic relations from the extracted data, and (3) evaluating these
relations against a set of detection rules. Using XChainWatcher, we
analyze data from two previously attacked bridges: the Ronin and
Nomad bridges. XChainWatcher was able to successfully identify
the transactions that led to losses of $611M and $190M (USD) and
surpassed the results obtained by a reputable security firm in the
latter. We not only uncover successful attacks, but also reveal other
anomalies, such as 37 cross-chain transactions (cctx) that these
bridges should not have accepted, failed attempts to exploit Nomad,
over $7.8M worth of tokens locked on one chain but never released
on Ethereum, and $200K lost by users due to inadequate interaction
with bridges. We provide the first open dataset of 81,000 cctxs across
three blockchains, capturing more than $4.2B in token transfers.

CCS Concepts
• Security and privacy→ Intrusion detection systems; • Com-
puter systems organization → Dependable and fault-tolerant
systems and networks.

Keywords
Blockchain, Interoperability, Cross-Chain, Anomaly Detection

1 Introduction
In recent years, there has been a remarkable adoption of blockchain
interoperability through the use of cross-chain mechanisms [8, 16].
The most popular mechanisms are cross-chain bridges (or simply
bridges). Bridges serve as an essential middleware in the blockchain
ecosystem, connecting decentralized applications across various
blockchains, and facilitating the transfer and exchange of assets.

In the Ethereum ecosystem, numerous bridges connect Ethereum
to other blockchains, such as rollups and sidechains. Native bridges
support rollups – Layer 2 solutions designed to enhance Ethereum’s

Attack Transaction Attack Discovered

1

10

100

1000

10000

20
22

−
03

−
13

20
22

−
03

−
14

20
22

−
03

−
15

20
22

−
03

−
16

20
22

−
03

−
17

20
22

−
03

−
18

20
22

−
03

−
19

20
22

−
03

−
20

20
22

−
03

−
21

20
22

−
03

−
22

20
22

−
03

−
23

20
22

−
03

−
24

20
22

−
03

−
25

20
22

−
03

−
26

20
22

−
03

−
27

20
22

−
03

−
28

20
22

−
03

−
29

20
22

−
03

−
30

20
22

−
03

−
31

20
22

−
04

−
01

20
22

−
04

−
02

20
22

−
04

−
03

20
22

−
04

−
04

20
22

−
04

−
05

20
22

−
04

−
06

20
22

−
04

−
07

20
22

−
04

−
08

20
22

−
04

−
09

Date

F
un

ct
io

n
C

al
ls

withdrawals

deposits

Figure 1: Number of function calls to withdraw and deposit
funds into/from the Ronin blockchain through the Ronin
bridge. The attack was only discovered six days later, causing
deposit calls to drop to zero. Each data point represents the
total function calls in periods of 6 hours.

scalability while inheriting its security (e.g., [10, 30, 42, 49]). In con-
trast, non-native bridges connect Ethereum to sidechains, which
employ an independent consensus mechanism and do not inherit
Ethereum’s security guarantees. Despite these differences, the pri-
mary goal remains the same: enabling decentralized applications on
Ethereum to expand to faster and more cost-efficient blockchains.

The cross-chain ecosystem is growing. During 2023, cross-chain
protocols raised more than $500 million (USD) in investment rounds
[18, 22, 24, 44, 51, 65], and processed millions of cross-chain trans-
actions (cctx) daily [23]. In November 2024, non-native cross-chain
bridges had a total value locked (TVL) of around $11 billion [67]
and native bridges $39 billion, highlighting the growing interest
in the technology, despite its numerous hacks: from May 2021 to
August 2024, hackers stole a staggering amount of $3.2 billion in
cross-chain bridges [8], and have indirectly caused losses of several
tens of millions in other Decentralized Finance (DeFi) protocols
due to on-chain activity and token valuations plummeting [56].

Not even extensively audited bridges are immune to vulnera-
bilities [23]. In fact, several bridges have been exploited multiple
times [7, 12, 43, 54, 55, 59–62, 68]. Moreover, protocols take too long
to react to an attack [11, 59, 61], suggesting that teams may not be
sufficiently prepared to address integrity breaches, possibly due to
lack of prior awareness, observability, monitoring, or good
SecOps practices [8]. In 2022, the Ronin Bridge was attacked, but
the team discovered the attack only 6 days later (cf. Figure 1). In the
most recent attack, which also targeted the Ronin bridge in August
2024, the team reported that the bridge was paused only about 40
minutes after the first malicious on-chain activity was detected [62].
Even if attacks cannot be reversed, it is possible to work on swift
detection and protocol stoppage to avoid further exploitation (in

ar
X

iv
:2

41
0.

02
02

9v
3

 [
cs

.C
R

]
 8

 S
ep

 2
02

5

https://arxiv.org/abs/2410.02029v3

Trovato et al.

Section 5.2.5 we show that there were 382 attacking transactions in
the Nomad bridge attack). Developing effective incident response
frameworks is crucial for efficient attack identification and response
to malicious activity, with the great potential of minimizing losses.

Some authors have studied cross-chain security, listing and sys-
tematizing vulnerabilities and attacks across the relevant cross-
chain layers [8, 25, 35, 69, 72, 73]. However, quantitative studieswith
real-world data are still lacking. Variations in contract implemen-
tations, security models [8], bridging models [13] (e.g., lock-mint,
burn-mint, lock-unlock), and token types across different chains
make it difficult to monitor and safeguard these systems consis-
tently. Additionally, the use of intermediary protocols (e.g., bridge
aggregators [41, 66]) and the extraction of data from various sources
(e.g., transaction data or events emitted by contracts) increase the
technical challenges of performing these studies.

To address this gap, we present a middleware monitoring layer
that detects anomalies in cross-chain bridges and validates them
through an empirical study of real-world exploits. Many academic
works suggest that anomaly detectors can be trained automatically
from live-captured normal/good behavior. This approach proves
impractical for cross-chain bridges because they are inherently
complex systems, not formally specified, often misused, and are
constantly being attacked due to the large amounts moved. There-
fore, there is no hope of live capturing a clean and labeled dataset of
cross-chain transactions that can be used to train anomaly detection
models automatically – and there are no open-source alternatives
at the moment. In this work, to overcome this challenge, we rely on
a manual definition of cross-chain rules to characterize the expected
behavior in a cross-chain bridge. These rules form the basis of our
anomaly detection mechanism, enabling us to detect known and
undocumented anomalies. This paper, along with the open and
labeled dataset provided, establishes the first baseline for future
automated approaches to cross-chain anomaly detection.

There is a large variety of bridge solutions in the industry, so
designing an anomaly detection tool that fits every scenario is chal-
lenging. Therefore, in this paper, we focus on modeling and evalu-
ating our solution for cross-chain bridges that connect Ethereum to
its sidechains [29], the most valuable blockchain ecosystem except
for Bitcoin (Ethereum alone has a market cap of around $200 bil-
lion). The communication between Ethereum and a sidechain with
a cross-chain bridge involves two steps: users first Deposit assets
transferring tokens from Ethereum to the sidechain, and laterWith-
draw funds, transferring the assets back to Ethereum. While there
are some nuances and rules that may need fine-tuning, the ratio-
nale followed in this paper can be applied to other interoperability
projects (e.g., arbitrary message-passing protocols).

This paper provides the following contributions:

(1) XChainWatcher. The first open-source framework for per-
forming anomaly detection in cross-chain bridges, capable
of detecting known attacks and other anomalies that harm
users and protocol operators. XChainWatcher provides the
pipeline for decoding event and transaction data, building
logic relations, and evaluating them against the proposed
anomaly detection rules.

(2) Quantitative study on cross-chain security.We perform
an anomaly detection analysis on data extracted from bridge

contracts deployed on Ethereum, Gnosis, and Moonbeam –
3 EVM-based blockchains. We release the first open dataset
of cross-chain transactions, consisting of over 81,000 cctxs,
moving more than $4.2B in token transfers.

(3) New anomalies. Through the analysis of the anomaly
detection results, we identify past attacks and also new
anomalies in cross-chain bridges due to unintended behav-
ior from users and protocols.

The paper is structured as follows. Section 2 provides background
information on blockchain, smart contracts, and cross-chain bridges.
Section 3 details the design of XChainWatcher. Sections 4 and 5
present the experimental setup and the anomaly detection results.
Section 6 outlines the discussion, limitations, and future work. Fi-
nally, the related work and conclusions are given in Sections 7 and
8. All monetary values presented in this paper are in US dollars.

2 Background
We provide an overview of the necessary background to understand
the remainder of this paper.

2.1 Blockchain and Smart Contracts
Consider a blockchain 𝐵 a sequence of blocks {𝐵1, 𝐵2, ..., 𝐵𝑛}, where
𝑛 is the nth block such that each block is cryptographically linked
to the previous one. Each block contains a root of the current
state trie, which holds the state of the blockchain, represented
as key-value pairs 𝑆 (𝐵𝑥) = ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒⟩. Each key represents an
account – either an Externally Owned Account (EOA) controlled by
a cryptographic key pair or a Contract Account. The latter contains
code that enforces the so-called smart contracts that execute in
the native virtual machine of the blockchain, e.g., the Ethereum
Virtual Machine (EVM). The execution of 𝑡𝑥 in 𝐵𝑥 changes the state
𝑆 (𝐵𝑥)

tx→ 𝑆 ′ (𝐵𝑥). Examples of state changes include triggering
the execution of smart contracts or actions natively supported by
the blockchain, such as transferring native currency or triggering
internal transactions (which can recursively trigger additional state
changes). Smart contracts enable the execution of code, which can
define tokens – by following common interfaces, such as the ERC-
20 [26] or ERC-721 [27] – or arbitrary logic, such as validating
Merkle proofs or digital signatures. Code execution may emit events
that can be understood as execution logs (also called topics in the
context of transaction receipts). Events are usually representations
of state changes in a certain smart contract.

2.2 Cross-Chain Bridge Model
Contrary to most DeFi dApps, bridges span over two or more
blockchains, rather than being confined to one. Figure 2 illustrates
the components of a cross-chain bridge, showing a source chain (S)
and a target chain (T) with a one-way token deposit flow (S → T).

To perform a cross-chain transfer depositing tokens into an-
other blockchain, a user 𝑢𝑠 issues a transaction that is added to
the blockchain at timestamp 𝑡1, 𝑡𝑥𝑡1, on a source chain 𝑆 to escrow
tokens. This transaction can directly target a bridge contract or
an intermediary protocol that calls internally a bridge contract.
The bridge contract subsequently triggers an internal call to the
token contract 𝜏𝑠 associated with the token that 𝑢𝑠 wishes to bridge.

XChainWatcher: Identifying Anomalies in Cross-Chain Bridges

A
< / >

1. deposit(...)

Token
Smar t Contract

Br idge
Smar t Contracts

2. transfer(...)

Transfer Event

3. emit Transfer(...)

Deposi t Event

4. emit TokenDeposited(...)

Br idge
Smar t Contracts

7. transfer(...)

Transfer Event

8. emit Transfer(...)

Deposi t Event

9. emit TokenDeposited(...)
Validator s

l istens to

6. verifyProof(...)
10. accesses

5. deposit(...)

...

Source Blockchain () External Tx Internal Tx/Event Asycn Flows

...

Target Blockchain ()

A
< / >

A
< / >

A
< / >

Token
Smar t Contract

Figure 2: The flow of a token transfer from a source blockchain (S) to a target blockchain (T), using a cross-chain bridge.

This call results in the creation of a commitment 𝜋𝑆 (𝑢𝑠 , 𝜏𝑠 , 𝑞), in-
dicating that 𝑞 units (quantity) of token 𝜏𝑠 held by 𝑢𝑠 have been
escrowed. This commitment reflects either the locking or burning
of tokens, leading to a state change in 𝑆 , which will be a part of the
blockchain’s new state 𝑆𝑡2:

𝑆𝑡2 ⊇ (𝑆𝑡1 ⊕ 𝜋𝑆 (𝑢𝑠 , 𝜏𝑠 , 𝑞))

The state change triggers an event emission from the token contract
𝜏𝑠 . In this paper, we focus on the ERC20 token standard, thus, on
fungible tokens [6]. Depending on the bridging model, escrowing
tokens can be implemented by transferring tokens to a bridge-
controlled address (lock model) or to the null address (burn model).
The ability to handle this dichotomy allows this analysis to be
agnostic of the bridging model. Therefore, in a lock-unlock model,
the event can be represented as:

𝜖𝜏𝑠 ,𝑆 = Transfer(𝑢𝑠 , bridge, 𝑞)

in the form (from, to, value). In a burn-mint model, tokens are
instead burnt – i.e., transferred to the null address (0x000) – even
though not as common, this is a more secure approach because it
avoids creating a honeypot of locked assets in S. If 𝑢 is trying to
bridge native tokens in S, there is no call to the Transfer method
of an ERC20 token contract, but the commitment is in the form
of a native transfer of tokens in S – i.e., 𝑡𝑥𝑡1 .𝑣𝑎𝑙𝑢𝑒 = 𝑞. Once the
commitment is created in S, the bridge contract emits an event
with commitment data and some additional parameters, such as
a unique identifier for the deposit, the beneficiary 𝑢𝑡 (the user to
which the tokens are intended in T), and the token in T (𝜏𝑡) that
represents the same token as 𝜏𝑠 :

𝜖bridge,𝑆 =𝑇𝑜𝑘𝑒𝑛𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑 (deposit_id, 𝜋𝑆 (𝑢𝑠 , 𝜏𝑠 , 𝑞), 𝑢𝑡 , 𝜏𝑡)

This event is captured by validators (or relayers) – off-chain entities
responsible for enabling cross-chain interoperability. Upon detect-
ing an event on chain 𝑆 , validators initiate a transaction on the
target chain 𝑇 to trigger a state change, such that the commitment
is part of the new state 𝑇𝑡3:

T𝑡3 ⊇ (T𝑡2 ⊕ 𝜋T (𝑢𝑡 , 𝜏𝑡 , 𝑞))

This final commitment 𝜋T represents either the minting or unlock-
ing of tokens within 𝜏𝑡 . Similar to the source chain process, the
token contract on T emits a Transfer or Mint event. The Transfer
event can be represented as

𝜖𝜏𝑡 ,T = Transfer(bridge, 𝑢𝑡 , 𝑞)

where tokens are being unlocked (i.e., transferred from the bridge
contract). The bridge contract also emits an event accordingly:

𝜖bridge,T =𝑇𝑜𝑘𝑒𝑛𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑 (deposit_id, 𝜋T (𝑢𝑡 , 𝜏𝑡 , 𝑞)).

It is crucial that this commitment in T , and subsequent emission
of events in both contracts, is only created if (1) 𝜙 (𝜋𝑆 (𝑢𝑠 , 𝜏𝑠 , 𝑞))
holds true, where𝜙 is a commitment verification function on T that
verifies the commitment originating from 𝑆 ; and (2) 𝜋𝑆 was created
in a transaction, in a block that is k blocks deep into blockchain S
and the probability of being reverted is negligible. In this paper, we
abstract away the specific implementation details of commitments
(e.g., zero-knowledge or Merkle proofs) and focus on the observ-
able state changes. By analyzing state transitions, we can detect
anomalies in cross-chain bridges independently of their internal
logic, enabling a middleware-level system like XChainWatcher to
reason about cross-chain activity in a protocol-agnostic way.

The withdrawal flow (T → S) is the inverse but very similar,
thus not represented.The key difference is that, usually, the user
triggers the final transaction on S, instead of being the validators
managing the process (e.g., [32]). This allows the operator to mini-
mize operational costs because validators are not required to issue
Ethereum transactions for every withdrawal request.

2.3 Attacks in Cross-Chain Bridges
Since June 2021, attackers have stolen more than 3.2 billion USD
from cross-chain bridges [8, 40]. Hackers target smart contracts
that have permission to lock, unlock, mint, or burn tokens. If an
attacker gains control of a critical contract – through a bug or
a compromised private key [8] – they can execute unauthorized
token operations. In a lock-unlock model, attackers exploit bridges
in two main ways:

(1) Steal funds held by the bridge contract on S. Those funds
represent the current total value locked by users.

(2) Steal existing funds (liquidity) on T that support the un-
locking process.

In the burn-mint or lock-mint models, instead of stealing existing
funds, attackers mint (create) tokens out of thin air and transfer
them to their addresses. These attacks are classified in the litera-
ture into two categories based on the direction of the invalid state
changes:

Trovato et al.

(1) Forged Deposit Attack: Attackers claim funds – either
unlocking existing tokens or minting new ones – on T
without locking or burning tokens on S.

(2) Forged Withdrawal Attack: Attackers withdraw funds
on S – similarly, unlocking existing tokens or minting new
ones – without previous burn or lock operations on T .

3 XChainWatcher
XChainWatcher∗ is a logic-based monitoring system for cross-chain
bridges, built as an open-source framework using Souffle [37] – a
high-performance Datalog-inspired engine.

The workflow of XChainWatcher is presented in Figure 3. There
are three phases: 1) decoding event and transaction data from
blockchains, 2) building a set of logic relations based on the data
extracted, and 3) evaluating relations using a set of detection rules.
We design XChainWatcher to be generic and extensible so that any-
one can integrate support for any bridge. Additionally, the logical
rules can be fine-tuned for each supported bridge.

3.1 Logical Relations
We model cross-chain operations by defining a comprehensive set
of logical relations (i.e., the cross-chain model) that capture events
emitted by smart contracts and static configurations common to
bridge protocols. These logical relations form the basis for our
analysis.We derived them by thoroughly reviewing the open-source
code of cross-chain bridge protocols that connect Ethereum to
sidechains, and their documentation. We also directly interacted
with some protocols and observed the different state changes that
occurred – including Polygon [52], Ronin [63], Omnibridge [32],
xDAI Bridge [33], and theNomad Bridge [48]. These bridges connect
Ethereum to multiple sidechains, such as Ronin, Gnosis, Polygon,
and Moonbeam. The list of relations (Datalog facts) is in Listing 1.

Contract Events. The native_deposit relation records deposit
events of native currency on S through the wrapped version of
the native currency (e.g., Wrapped Ether contract on Ethereum).
The native_withdrawal relation logs native token transfers on the
target chain when initiating withdrawal of funds (T → S), also
using the contract representing the wrapped version of the native
currency. For bridge-specific events, we use sc_token_deposited

and tc_token_deposited to capture token deposits in the bridge
contract on the source and target chains, respectively. In parallel,
the tc_token_withdrew and sc_token_withdrew relations track token
withdrawal events emitted by the bridge contract from the target
and source chains. Finally, the erc20_transfer relation logs ERC20
token transfers. We also capture mined blockchain transactions
through the transaction relation.

Static Configurations. The bridge_controlled_address rela-
tion lists all addresses controlled by the bridge. The token_mapping

relation links equivalent tokens across chains – a standard practice
in the field [38, 46]. We capture each chain’s finality time in the
cctx_finality relation, modeling the necessary confirmation du-
ration in seconds. Finally, the wrapped_native_token relation iden-
tifies wrapped versions of native currencies on each chain – i.e.,
the wrapped version of Ether, the native currency of the Ethereum
blockchain, is Wrapped Ether (WETH).
∗https://github.com/AndreAugusto11/XChainWatcher

3.2 Decoders and Logic Relation Builders
The Static Configuration Loader imports static facts from the bridge
configuration file† – this is information that does not depend on
event or transaction data: bridge_controlled_address, token_mapping,
wrapped_native_token, and cctx_finality. On the other hand, the
Event and Transaction Data Decoder is designed to be bridge-specific,
where the remaining relations are extracted from the data decoded
from bridge events. This component can be fine-tuned for each
bridge allowing the extension of XChainWatcher to support any
protocol.

The input for the latter component is a set of transaction receipts.
Each receipt contains the events emitted by all contracts with which
the transaction interacted. In many cases, the transaction receipt
is sufficient to extract all the facts. In other cases, however, it is
not enough, namely, when dealing with native token transfers
or when the user uses intermediary protocols to interact with a
bridge. In the first case, the sender transfers funds natively in a
transaction (in the tx.value field). In the latter, funds are transferred
in internal transactions [5]. In both cases, the transferred value is
not accessible by the transaction receipt. In this case, we obtain the
transaction data by making a request to an RPC node using the RPC
methods eth_getTransaction or the debug_traceTransaction with the
parameter {“tracer”:“callTracer”} [34] that outputs the execution
traces and transferred values.

When decoding data and building the logical relations, each
transaction is assumed to potentially emit an unlimited number of
events, e.g., when batching operations are involved. The extraction
of data from relevant events involves extracting the first element in
the topics list of the transaction receipt, which is equal to the hash of
the event signature. For instance, topic[0] for any event with signa-
ture Deposit(address,address,uint256) is calculated with a hash-
ing function keccak256("Deposit(address,address,uint256)").

imported by produces
*.facts

*.dl Report

.facts.json

.py

produces

Anomaly 
Detector

Event and Tx
Data Decoder

Logic
Relation
Builder

consumed by

loaded into

datalog declarations
(cross-chain rules)

tx receipts

static configs

outputs

consumed by
1

Static Config
Loader

3

2

Figure 3: XChainWatcher relies on event and transaction
data decoders, logic relation builders, and a Datalog engine
to evaluate relations. TheDecoder and Logic Relation Builders
are designed to be pluggable and extensible – i.e., anyone can
extend XChainWatcher to support other protocols.

3.3 Cross-Chain Rules
Overview.We model the expected behavior of bridges (anomaly-
based intrusion detection) instead of modeling specific attacks
†An example of configuration file is at https://github.com/AndreAugusto11/XChain
Watcher/blob/main/cross-chain-rules-validator/utils/ronin_env.py

https://github.com/AndreAugusto11/XChainWatcher
https://github.com/AndreAugusto11/XChainWatcher/blob/main/cross-chain-rules-validator/utils/ronin_env.py
https://github.com/AndreAugusto11/XChainWatcher/blob/main/cross-chain-rules-validator/utils/ronin_env.py

XChainWatcher: Identifying Anomalies in Cross-Chain Bridges

.decl native_deposit(tx_hash , chain_id , event_index , from , to, amount).

.decl native_withdrawal(tx_hash , chain_id , event_index , from , to, amount).

.decl sc_token_deposited(tx_hash , event_index , deposit_id , beneficiary , dst_token , orig_token , dst_chain_id , amount).

.decl tc_token_deposited(tx_hash , event_index , deposit_id , beneficiary , dst_token , amount).

.decl tc_token_withdrew(tx_hash , event_index , withdrawal_id , beneficiary , orig_token , dst_token , dst_chain_id , amount).

.decl sc_token_withdrew(tx_hash , event_index , withdrawal_id , beneficiary , dst_token , amount).

.decl erc20_transfer(tx_hash , chain_id , event_index , contract , from , to, amount).

.decl transaction(timestamp , chain_id , tx_hash , from , to, value , status , fee).

.decl bridge_controlled_address(chain_id , bridge_address).

.decl token_mapping(source_chain_id , target_chain_id , source_chain_token , target_chain_token).

.decl cctx_finality(chain_id , finality_seconds)

.decl wrapped_native_token(chain_id , token).

Listing 1: Definition of the logical relations built by XChainWatcher.

(signature-based intrusion detection) using cross-chain rules [9].
This approach allows us to identify anomalies that have not yet
been discovered and that are under the hood of the complexity of
analyzing cross-chain data. Each rule enforces a set of validations
to determine the validity of events within one or more blockchains.
Rules are classified as isolated (I) or dependent (D). An isolated rule
concerns only one blockchain, such as the deposit of tokens in S. In
contrast, a dependent rule relies on prior state changes on another
blockchain, such as the deposit of tokens in T , which depends on
tokens being deposited in S. Each rule is also prefixed with SC, TC,
or CCTX to indicate whether it is a check on S, T , or both chains,
respectively‡.

Rule 1 (I). SC_ValidNativeTokenDeposit ensures a valid deposit
of native tokens by the user in S. This rule specifies a relationship
between the transaction issued by the user, the event emitted by the
bridge contract, and the event emitted by the contract represent-
ing the wrapped version of the native currency. In more detail, the
checks are: (1) a bridge contract must emit a Deposit event; (2) there
is a non-reverting transaction that transfers the same amount of to-
kens natively in tx.value; (3) there is an event emitted by the token
contract asserting the creation of a wrapped version of the native
currency through a deposit event (4) the token contract provided is
indeed a version of the native currency of S; (5) the validity of the
token mappings (i.e., if users are trying to deposit tokens into T
using a different token than what they are using in S); and finally
(6) the order of the events emitted by each contract (events emitted
by token contracts precede events emitted by bridge contracts –
cf. Figure 2). In check (2) we do not check whether the transaction
targets a bridge contract, as it may target an intermediary protocol
contract (e.g., a bridge aggregator [66]), which in turn issues an
internal transaction to the bridge. We only verify that the deposit
event from the token contract must escrow tokens to a valid bridge
contract, asserted using bridge_controlled_address. This rule en-
sures that bridge contracts do not emit events asserting the deposit
of tokens if the corresponding value was not effectively sent to the
bridge – and the other way around. An attack that would have been
identified using this rule is [58].
SC_ValidNativeTokenDeposit(...args...) :-
sc_token_deposited(tx_hash, bridge_evt_idx, _, _, dst_token,

src_token, dst_chain_id, amount), (1)
sc_deposit(tx_hash, token_evt_idx, sender, bridge_address, amount), (3)
transaction(_, src_chain_id, tx_hash, _, sender, _, amount, 1, _), (2)
token_mapping(src_chain_id, dst_chain_id, src_token, dst_token), (5)
wrapped_native_token(src_chain_id, src_token), (4)

‡The complete definition of all rules in the form of Horn Clauses is in https://gi
thub.com/AndreAugusto11/XChainWatcher/blob/main/cross- chain- rules-
validator/datalog/acceptance-rules.dl

bridge_controlled_address(src_chain_id, bridge_address),
bridge_evt_idx > token_evt_idx. (6)

Rule 2 (I). SC_ValidERC20TokenDeposit ensures that a valid deposit
of ERC20 tokens on the bridge is subject to a series of checks.
Specifically, this rule defines a bidirectional relationship 𝜖𝜏𝑠 ,𝑆 ⇐⇒
𝜖bridge,𝑆 for ERC20 tokens. This means that whenever a state change
involves the transfer of ERC20 tokens, the bridge contract must
emit an event corresponding to the commitment described by the
initial event, and vice versa. The remaining checks presented in
Rule 1 are also enforced.

Failure to comply with Rule 1 or 2 suggests that a user has de-
posited tokens in the bridge without the bridge recognizing the
deposit. Conversely, if a token transfer event occurs, but no corre-
sponding event is emitted by the bridge contract (or value trans-
ferred in the transaction), it could signal an attack, where an attacker
bypasses the cross-chain logic and steals funds. Examples of attacks
that would have been identified using this rule are [1, 2, 68]. Rules
1 and 2 guarantee that the flow 1 – 4 (in blue) in Figure 2 is valid
for native and ERC20 tokens, respectively.
SC_ValidERC20TokenDeposit(...args...) :-
sc_token_deposited(tx_hash, bridge_event_index, _, _, dst_token,

src_token, dst_chain_id, amount),
erc20_transfer(tx_hash, src_chain_id, token_event_index, src_token,

_, bridge_addr, amount),
transaction(timestamp, src_chain_id, tx_hash, _, from, _, "0", 1, _),
token_mapping(src_chain_id, dst_chain_id, src_token, dst_token),
bridge_controlled_addr(src_chain_id, bridge_addr),
bridge_event_index > token_event_index.

Rule 3 (I). TC_ValidERC20TokenDeposit outputs valid token de-
posits in T . It captures the valid relation between the event emitted
by the bridge contract and the respective token contract in which
tokens are being unlocked/minted. Similarly to Rules 1 and 2, there
is a bidirectional relationship 𝜖𝜏𝑡 ,𝑇 ⇐⇒ 𝜖bridge,𝑇 . In this instance,
tokens are always transferred in the context of a token contract
and never natively, thus, we do not need a rule for native token
transfers. These events must match variables such as the sender,
beneficiary, token, amount being transferred, and order of events.
This rule guarantees that flow 5 – 9 (in green) in Figure 2 is valid
for any token that is deposited.
TC_ValidERC20TokenDeposit(...args...) :-
tc_token_deposited(tx_hash, bridge_event_index, deposit_id,

beneficiary, dst_token, amount),
erc20_transfer(tx_hash, chain_id, token_event_index, dst_token,

bridge_addr_2, beneficiary, amount),
transaction(_, chain_id, tx_hash, _, _, bridge_addr_1, "0", 1, _),
bridge_controlled_addr(chain_id, bridge_addr_1),
bridge_controlled_addr(chain_id, bridge_addr_2),

https://github.com/AndreAugusto11/XChainWatcher/blob/main/cross-chain-rules-validator/datalog/acceptance-rules.dl
https://github.com/AndreAugusto11/XChainWatcher/blob/main/cross-chain-rules-validator/datalog/acceptance-rules.dl
https://github.com/AndreAugusto11/XChainWatcher/blob/main/cross-chain-rules-validator/datalog/acceptance-rules.dl

Trovato et al.

bridge_event_index > token_event_index.

Rule 4 (D). CCTX_ValidDeposit correlates events from both S and
T , cross-referencing token deposit events across these chains to
generate a list of valid cctxs. A valid cross-chain transaction for a
deposit requires that all parameters from events on both chains be
consistent (e.g., token amounts, sender, beneficiary). Furthermore,
the causality between these events must be preserved (e.g., the
transaction on T occurs after the transaction on S). Formally, there
is a dependency between the commitment on T and the commit-
ment onS, as well as the corresponding events: 𝜖bridge,𝑇 ⇐= 𝜖bridge,𝑆 .
Since this rule spans multiple blockchains, we must consider their
finality times, which we enforce through the cctx_finality fact.
Failure to comply with this rule indicates, for example, that tokens
were moved on only one side of the bridge, such as in the Forged
Deposit Attack. This rule would have identified cross-chain hacks
such as [3, 7, 21, 54, 57]. This rule guarantees that the entire flow
of Figure 2 is valid.
CCTX_Deposit(...args...) :-
TC_ValidERC20TokenDeposit(...args...),
(

SC_ValidERC20TokenDeposit(...args...) ;
SC_ValidNativeTokenDeposit(...args...)

),
cctx_finality(src_chain_id, src_chain_finality),
token_mapping(src_chain_id, dst_chain_id, src_token, dst_token),
src_chain_ts + src_chain_finality <= dst_chain_ts.

We also model the token withdrawal process (T → S). Given
its similarity to the deposit of tokens, we do not provide a detailed
explanation of the related rules. Instead, we briefly overview their
goal and definitions. Rule 5 (I). TC_ValidNativeTokenWithdrawal en-
sures that native token withdrawals on the target chain T are
valid. Specifically, a withdrawal must correspond to a Withdraw
event emitted by the bridge contract and a non-reverting trans-
action locking or burning funds. This rule is essentially the in-
verse of Rule 1, applying similar checks but in the withdrawal
context. Rule 5 would have identified one attack [12]. Rule 6 (I).
TC_ValidERC20TokenWithdrawal applies to ERC20 tokenwithdrawals
onT , ensuring that anywithdrawal event emitted by the bridge con-
tract matches a corresponding Transfer event for the ERC20 tokens
being withdrawn. This rule is analogous to Rule 2, and would have
identified one attack [55]. Rule 7 (I). SC_ValidERC20TokenWithdrawal
extends these checks to ERC20 withdrawals on the source chain
S, mirroring Rule 3’s checks in the reverse direction. Finally, Rule
8 (D). CCTX_ValidWithdrawal links withdrawal events on T and S,
verifying that all parameters across the chains match and enforcing
the correct causal relationship between events, similar to Rule 4
for deposits but in reverse. Rule 8 would have identified multiple
attacks such as the Forged Withdrawal Attack [11, 31, 59–61].

While it is impossible to design generic rules that allow for
every existing bridge, we highlight that these rules can be easily
extended/fine-tuned to find anomalies in other bridges.

4 Evaluation Methodology
We evaluate XChainWatcher using the cross-chain rules presented
in the last Section and detail the anomaly detection analysis in the
Ronin and Nomad bridges.

4.1 Data Sources
We selected two previously exploited bridges to analyze the ca-
pabilities of XChainWatcher and the cross-chain rules: the No-
mad bridge and the Ronin bridge. This selection allows us to
test XChainWatcher against bridges that have suffered attacks
and whose architecture and security assumptions differ (§4.1.2
and §4.1.3). We used Blockdaemon’s Universal API [19] to retrieve
blockchain data from the Ethereum mainnet. We implemented a
fallback to native RPC methods when the API could not provide the
necessary data (namely eth_getLogs and eth_getTransactionReceipt).
Additionally, we used these methods to extract data from Moon-
beam and Ronin blockchains that are not supported by the API.
We gathered addresses of interest, including various versions of de-
ployed contracts through documentation and analysis of the source
code of each bridge§.

4.1.1 Time Frames. Since we adopt an anomaly-based intrusion
detection approach (instead of signature-based), which tends to
have a high false positive rate [9], we choose to evaluate protocols
over smaller time frames. This approach enables us to analyze each
flagged anomaly individually, determining whether it results from
a modeling error or represents a previously unidentified anomaly
in cross-chain bridges. Additionally, we want to study particular at-
tacks and their consequences – involving bigger timeframes would
involve significantly more data, without necessarily providing ad-
ditional relevant insights. Table 1 lists the timestamps used for data
extraction. We select an interval of interest for both bridges that
includes the attack dates, denoted [𝑡1; 𝑡2]. To avoid missing cross-
chain transactions occurring near the start and end of the interval
of interest, we incorporate additional intervals before and after that
interval ([𝑡0, 𝑡1 [and]𝑡2, 𝑡3]). This is relevant, for example, when
there is a deposit of tokens in S near 𝑡2 and the corresponding
transaction in T falls outside [𝑡1; 𝑡2] (within]𝑡2; 𝑡3]).

Table 1: Timeframes of Relevance for Data Extraction

𝑡0 𝑡1 𝑡2 𝑡3

Nomad Bridge – Jan 11, 2022
(1641905876)

Dec 15, 2022
(1671062400)

Jul 31, 2024
(1722441775)

Ronin Bridge Sep 13, 2021
(1631491200)

Jan 1, 2022
(1640995200)

Apr 28, 2022
(1651156446)

Jul 31, 2024
(1722441775)

Note: The interval of interest is [𝑡1, 𝑡2]. The table presents dates and corresponding
Unix timestamps in parentheses. The Nomad and Ronin bridges were attacked on
Aug 2, 2022 and Mar 22, 2022, respectively.

To analyze the Nomad bridge, we extracted 20,551 transactions
from Ethereum, 16,737 transactions from Moonbeam, and 20,308
transactions from/to other blockchains, which were only used for
data analysis. In the additional period, we collected additional 1,774
transactions on Ethereum, from the latest versions of the deployed
bridge contracts. On the Ronin bridge, we extracted 72,820 trans-
actions from Ethereum and 75,102 from Ronin. In the additional
period, we collected additional 516,657 and 151,325 transactions
on Ethereum and Ronin, respectively. The data collection totaled
875,274 transactions across the studied bridges and blockchains.

§an example for the Nomad bridge is in https://anonymous.4open.science/r/XChain
Watcher-B5F1/cross-chain-rules-validator/utils/nomad_env.py

https://anonymous.4open.science/r/XChainWatcher-B5F1/cross-chain-rules-validator/utils/nomad_env.py
https://anonymous.4open.science/r/XChainWatcher-B5F1/cross-chain-rules-validator/utils/nomad_env.py

XChainWatcher: Identifying Anomalies in Cross-Chain Bridges

4.1.2 Nomad Bridge. The Nomad bridge supports six blockchains.
We select the most active blockchains in terms of bridge usage:
Ethereum (S) and Moonbeam (T). The bridge operates based on
fraud proofs [48] – i.e., a set of relayers transfers state proofs be-
tween blockchains, and the watchers (which are off-chain parties)
have a predefined time window to challenge the relayed data. The
data is optimistically accepted if no challenge is received within
this window. According to the project documentation, this time
window was set to 30 minutes [47] during the selected time frame.
The main bridge contract on Moonbeam was deployed on Janu-
ary 11, 2022 (𝑡1). Since we start our analysis on this date, there
is no 𝑡0 (𝑡0 = 𝑡1). The Nomad bridge was exploited on August 2,
2022, causing the bridge contracts to be paused until December 15,
2022. After this date, new transactions depositing tokens into the
bridge on Ethereum started being reissued. In]𝑡2; 𝑡3] we only col-
lect withdrawals in Ethereum to match all the withdrawal requests
performed on Moonbeam in [𝑡1; 𝑡2] that did not complete.

4.1.3 Ronin Bridge. The Ronin bridge connects Ethereum (S) and
the Ronin blockchain (T) and operates based on amulti-signature of
trusted validators [63] – i.e., deposits and withdrawals are executed
when a threshold of validators attests the validity of the action on
the origin blockchain (be it a lock or burn of tokens). The Ronin
bridgewas deployed in early 2021, and the attack occurred onMarch
22, 2022. The interval of interest spans approximately four months,
from the start of 2022 to April 28, 2022, when the main bridge
contract on Roninwas paused (0xe806...19fd). To capture incomplete
withdrawals on T before the attack, we analyze additional data on
Ethereum between]𝑡2; 𝑡3]. This required scanning for events in the
newer version of the main bridge contract (0x6419...af08), which
was deployed on Ethereum after the attack on June 22, 2022. Finally,
based on the same logic as above, we also captured additional
deposits in Ethereum to capture cross-chain transactions initiated
in [𝑡0; 𝑡1 [, whose deposit in Ronin is at the beginning of [𝑡1; 𝑡2].

4.2 Experiment Setup
We present the performance analysis of XChainWatcher, using the
rules defined in Section 3.3, in finding anomalies in the Nomad and
Ronin bridges. We divide the analysis into two main processes: 1)
decoding data and building the Datalog facts, and 2) running the
cross-chain rules to find anomalies. We computed the results on a
MacBook Pro with a 14-core M3 Max processor and 36GB of RAM.

4.2.1 Decoding and Extracting Data. Figure 4 illustrates the cumula-
tive distribution of transaction receipts processing time, differentiat-
ing between transfers of native and non-native funds in each bridge.
Additional metrics are provided in Table 2. Transactions transfer-
ring native tokens take longer because the transaction receipt is
not enough to get tx.value, thus requiring at least one extra time-
consuming RPC call. Furthermore, for native value transfers, some
transactions exhibited unusually high latencies (e.g., 6.5% exceeded
10 seconds, with one instance reaching 138.15 seconds). This delay
mainly results from the high latency of the debug_traceTransaction
method when making RPC requests to an Ethereum node [4]. Not
only is this a resource-intensive method, but multiple timeouts
caused various retries to retrieve the data. A more stable RPC node
connection – ideally hosting one alongside XChainWatcher – and

Table 2: Facts extraction latency (in seconds) per token type

Bridge Token type size min max avg median std

Ronin native 468, 997 0.18 138.15 1.82 0.35 4.70
non-native 347, 580 3.81x10−6 3.65 0.28 0.23 0.26

Nomad native 7, 656 0.16 8.78 0.89 0.78 0.46
non-native 51, 702 3.81x10−6 5.83 0.26 0.19 0.28

extending the timeout period for these resource-intensive meth-
ods would significantly reduce the latency, dropping towards the
median (0.35 and 0.78 seconds, for Ronin and Nomad, respectively).

0.00

0.25

0.50

0.75

1.00

0.01 0.10 1.00 10.00 100.00
Transaction Receipt Processing Time (seconds)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Nomad (Native): N = 7,656

Ronin (Native): N = 468,997

Nomad (Non−Native): N = 51,702

Ronin (Non−Native): N = 347,580

Figure 4: Cumulative distribution of transaction receipt pro-
cessing time, reflecting the latency of extracting all facts
from a transaction receipt for native and non-native token
transfers.

4.2.2 Executing the Cross-Chain Rules. Based on the data extracted,
we run the detection rules to identify anomalies. In addition to the
rules presented in Section 2.2, we implemented additional Datalog
rules to compare datasets and perform a more fine-grained analysis
– we created 30 logical rules in total, available in the linked reposi-
tory. The total time consists of decoding the data and building the
logic relations plus the execution of the detection rules. For the
Ronin bridge, the model processed more than 1,570,000 data tuples,
producing results, on average, in 3.58 seconds, while for the Nomad
bridge, it analyzed more than 200,000 data tuples and generated
results in 0.51 seconds¶.

4.2.3 Preliminary Findings of Cross-Chain Transactions. A byprod-
uct of our work is a dataset of cross-chain transactions captured
by rules 4 and 8 – i.e., data from two blockchains that are linkable
and represent valid cross-chain token transfers. Figure 5 presents
the latency associated with each cross-chain transaction identified
on the Nomad bridge (the Ronin bridge data was omitted for the
sake of space but provides the same insights).We call out two main
insights: 1) the dispersion of the latency of withdrawals is much
higher, which is due to the users being the ones responsible for
issuing the final transaction on the destination blockchain, contrary
to the deposit process (cf. Section 2.2) – the slowest cctx took more
than 5 months to complete (0x8afe...85bb in T and 0xdfaa...e3cb in
S); 2) all cctxs identified by XChainWatcher start at the 30-minute
mark, which alignswith our expectations, as the Nomad fraud-proof
window is set for this period enforced by cctx_finality;
¶detailed results can be found in https://anonymous.4open.science/r/XChainWatcher-
B5F1/profiler_html/ronin.html

https://app.roninchain.com/tx/0xe806b36b9f337e8512dd806a5845451232a0da52c66f2921c4f7e222bd5e19fd
https://etherscan.io/address/0x64192819ac13ef72bf6b5ae239ac672b43a9af08
https://moonscan.io/tx/0x8afeeea543a4516c279bff2748b3bbede9cc916cc535524d62433368119a85bb
https://etherscan.io/tx/0xdfaaeecb7f0dda43f02966997039b2b75169a3faa3ae5063d74a348ceb98e3cb
https://anonymous.4open.science/r/XChainWatcher-B5F1/profiler_html/ronin.html
https://anonymous.4open.science/r/XChainWatcher-B5F1/profiler_html/ronin.html

Trovato et al.

Table 3: Anomaly detection results, within [𝑡1; 𝑡2], using the cross-chain rules defined in Section 3.3

Nomad Bridge Ronin Bridge

Logical Rule (cf. Section 3.3) Captured Records Anomalies Detected Captured Records Anomalies Detected

1. SC_ValidNativeTokenDeposit 7,187 0 38,462 0
2. SC_ValidERC20TokenDeposit 4,223 39 (14 phishing attempts + 25 transfers to bridge) 5527 83 (3 phishing attempts + 80 transfers to bridge)

Total Value in Transfers to Bridge $93.86K $113.00K
3. TC_ValidERC20TokenDeposit 11,417 0 43,990 0
4. CCTX_ValidDeposit 11,404 19* 43,979 10*

5. TC_ValidNativeTokenWithdrawal 464 0 0 0
6. TC_ValidERC20TokenWithdrawal 4,846 10 (3 unparseable addresses + 7 attack attempts) 35,413 0
7. SC_ValidERC20TokenWithdrawal 4,869 2 (2 phishing attempts) 25,470 1 (1 phishing attempt)
8. CCTX_ValidWithdrawal 4,482 729* 22,830 12,546*

Recall that the rules capture expected behavior. Therefore, the anomalies presented are the result of comparing each event emitted by each contract, with being captured or
not by the corresponding rule that should have captured it.

* Table 4 presents a detailed explanation of these anomalies. Each anomaly is categorized based on the underlying reasons that led to its occurrence.

Finality Time (30 mins)

$0.000001

$0.000100

$0.010000

$1

$100

$10,000

$1,000,000

$100,000,000

$10,000,000,000

1,000
(16.67 minutes)

10,000
(2.78 hours)

100,000
(1.16 days)

1,000,000
(11.57 days)

10,000,000
(115.74 days)

CCTX Latency (seconds)

C
C

T
X

 V
al

ue
 (

U
S

D
)

Datalog Rule
CCTX_ValidWithdrawal

CCTX_ValidDeposit

CCTX Latency vs. CCTX Value Transferred (Nomad Bridge)

Figure 5: Correlation between the latency and value trans-
ferred in each cctx completed before the attack.

5 Anomaly Detection Results
Hereafter, we present the results of the anomaly detection rules.
Table 3 shows the number of detected anomalies and the reasons
behind each one. Section 5.1 discusses the anomalies found by
isolated rules (1-3 and 5-7), and Section 5.2 presents and discusses
the anomalies found by dependent rules (4 and 8).

5.1 Isolated Rules (Rules 1-3 and 5-7)
We start by analyzing the anomalies detected by rules 1-3 and 5-7.

5.1.1 Depositing onS. On the Nomad bridge, we detected 7,187 na-
tive value transfers (sc_deposit), 4,263 token deposits (erc20_transfer),
and 11,411 TokenDeposited events emitted by the bridge contract
(sc_token_deposited), which reveals that 39 value transfers did not
have a corresponding bridge event emitted. Further analysis showed
that 14 of these transactions are phishing attempts, characterized
by numerous events emitted by tokens marked on block explorers
as having a bad reputation (e.g., 0x88fc...864a). The remaining 25
transactions were single-event transactions that called the Transfer
function of multiple reputable ERC20 tokens, with a total of approx-
imately $93.86K sent to the bridge without triggering a cross-chain
transfer (e.g., 0x7e4e...8d88). On the Ronin bridge, we identified 83
unmatched value transfers, in which 3 were related to phishing
attempts and 80 were also random transfers of value to the bridge
contract, which accounts for $113.00K (e.g., 0xe898...148d).

Finding 1. Attackers use low-value tokens, usually with the name of known
tokens, to interact with bridge contracts. These practices are considered phishing
attacks, in which users can be misled into using fake tokens to increase their
trading value.
Finding 2. Over $206K worth of reputable ERC-20 tokens were sent directly
to bridge addresses without using protocol contracts. Despite warnings from
DeFi platforms about potentially irreversible losses, this risky behavior appears
common.

5.1.2 Depositing on T . We found no anomaly in the process of
depositing tokens in T .

5.1.3 Withdrawals on T . In the Nomad bridge, we identified three
transactions accepted by the bridge where funds were withdrawn
to unintended Ethereum addresses due to being wrongly formatted
– they interacted with the Nomad bridge contract using a 32-byte
string instead of a 20-byte Ethereum address in the beneficiary ad-
dress field. Therefore, this leads to unparseable data from our tool
(the parser is programmed to parse only valid 20-byte addresses).
We further discuss this anomaly in Section 5.2.2 Invalid Benefi-
ciary Addresses. Beyond these three anomalies, we discovered seven
transactions from a single address attempting to exploit the bridge
using different inputs in the “token” field. The attacker first at-
tempted to provide the address of a malicious smart contract as a
token, probably to gain control over the bridge (0x56e6...afe1). In
the following 3 transactions, the attacker tried to withdraw funds
using a newly created contract that was not mapped to a token
in S (e.g., 0xebd6...bfa9 with token 0x2422...Aefb), in an attempt
to have tokens minted on S. Finally, in the latter two, the user
attempted to withdraw funds from a (fake) token contract called
Wrapped ETH (0xcbb4...b91F), to unlock real ETH on Ethereum
(e.g., 0x7cd7...03f1). Fortunately, these transactions reverted and
all attempts failed. On the Ronin bridge, we identified two events
emitted by the bridge contract without a match on erc20_transfer

or sc_withdrawal. These were trying to withdraw unmapped tokens
from T to S, and therefore no tokens were moved, even though
the bridge emitted aWithdraw event.

Finding 3. Attackers interact with bridge contracts providing fake tokens with
symbols or names equal to reputable tokens, in an attempt to deceive the bridge
to unlock real funds on the destination blockchain.

https://etherscan.io/tx/0x88fc3c5e05aae4d898fc92eb93c64ee71dcbbb2a4e5e3715f994adcbce72864a
https://etherscan.io/tx/0x7e4e62f98d4c3194e5b3fbef79cf5fda3330287d489dffd6252634f3f6208d88
https://etherscan.io/tx/0xe898f40fa2fe5c8d89df3a2e4f2496bd11daceedce1523afabfbf144b32d148d
https://moonscan.io/tx/0x56e6c554169c0b6e99d744416c04c11926c3a867ae2ffd3125aa5ba0eaf6afe1
https://moonscan.io/tx/0xebd68eaaa20de3066cf3f53c26777c38d62251ca13c9d6e0d3a991e011babfa9
https://moonscan.io/address/0x24229bf80425c27DB54fB3E4340251Dd5C16Aefb
https://moonscan.io/address/0xcbb4825CF7Cf72a88d1BDdd494c1A251CF21b91F
https://moonscan.io/tx/0x7cd7d1a4feceeaa14b6c347488229707fa710daeab2e1e5d707d43a720a703f1

XChainWatcher: Identifying Anomalies in Cross-Chain Bridges

5.1.4 Withdrawals on S. The analysis highlights 3 events where
funds were transferred from a bridge address without emitting cor-
responding bridge events: 2 in Nomad and 1 in the Ronin bridge.
These instances were linked to phishing attempts and marked ac-
cordingly in block explorers (e.g., 0x3587...39ca and 0x78b6...2766).

5.2 Dependent Rules (Rules 4 and 8)
Now, we analyze the results of the Dependent rules (4 and 8). Recall
from Section 3.3 that Rules 4 and 8 capture linked state changes
across blockchains – i.e., for a record to be accepted by these rules,
there must be a set of events on both sides of the bridge that are
matched. In addition, cctx_finality and token_mapping must be
guaranteed. For example, there may be a valid deposit of tokens
in S captured by SC_ValidERC20ValidDeposit. However, no corre-
spondence is found on T , which signals that the protocol is not
working as intended (e.g., no availability). In this case, the record
of SC_ValidERC20ValidDeposit is said to be “unmatched”, since it
did not match any event on the other blockchain that complies
with Rule 4 CCTX_Deposit. Table 4 dissects the anomalies detected
in Table 3 for CCTX_ValidDeposit and CCTX_ValidWithdrawal. As an
example, Table 3 shows that 19 anomalies have been detected using
CCTX_ValidDeposit. Table 4 clarifies that 6 of these anomalies are
deposits of tokens on S that did not have a correspondence on T ,
and 13 are the opposite – deposits of tokens on T that did not have
any prior correspondence on S.

5.2.1 Cross-Chain Finality Violations. One of the most intriguing
findings in this paper is the identification of 37 violations of cross-
chain rules – 5 on the Nomad bridge and 32 on the Ronin bridge
– which were accepted by both bridges at the time, transferring a
total value of $1.3K and $667K, respectively. In the Nomad bridge,
5 instances from SC_ValidERC20TokenDeposit and 5 instances from
TC_ValidERC20TokenDeposit matched each other but were not cap-
tured by CCTX_ValidDeposit – i.e., even though there were valid
commitments on both sides of the bridge, XChainWatcher did not
consider this a valid deposit. Similarly, on the Ronin bridge, 10
events were emitted on each side that did not comply with a valid
deposit (failed CCTX_ValidDeposit), and 22 events on each side that
did not comply with a valid withdrawal (CCTX_ValidWithdrawal).
Figure 6 for the Nomad bridge demonstrates why these events
were not captured by CCTX_ValidDeposit and CCTX_ValidWithdrawal.
When depositing tokens using Nomad, in the fastest cctx, the time
difference between the initial deposit in S (0xeb06...0fea) and the
corresponding deposit on T (0x2cdc...ef0c) was as short as 87 sec-
onds, approximately 20 times less than the required fraud-proof
window. This finding is particularly concerning because it implies
that the security mechanisms of the bridge were bypassed. Not only
did it fail to comply with the fraud-proof time window, but it was
very close to the finality period of the source chain (Ethereum) at
the time of the attack – before “The Merge” [28] was around 78
seconds. On the Ronin bridge, the fastest deposit took 66 seconds
(0x4688...cdf3 and 0xc299...279d), which was less than Ethereum’s
finality period. However, the fastest withdrawal took 11 seconds
(11 < 45, where 45 seconds was Ronin’s finality period at the
time). These practices pose a considerable risk to cctx validation,
creating multiple potential attack vectors, particularly for smaller
blockchains or those more susceptible to forks.

Fraud Proof Window Time (30 mins)

5 invalid CCTXs accepted

by the Nomad Bridge

$0.0001

$0.0100

$1

$100

$10,000

$1,000,000

$100,000,000

100 1,000 10,000
(2.78 hours)

100,000
(1.16 days)

1,000,000
(11.57 days)

10,000,000
(115.74 days)

CCTX Latency (seconds)

C
C

T
X

 V
al

ue
 (

U
S

D
)

Unmatched SC_ValidERC20TokenDeposit CCTX_ValidDeposit

Fraud Proof Window Violation (Deposits in the Nomad Bridge)

Figure 6: Cross-chain finality violation in the Nomad
bridge – we identified 5 unmatched events on both
SC_ValidERC20TokenDeposit and TC_ValidERC20TokenDeposit not
captured by CCTX_ValidDeposit, due to non-compliance with
the fraud-proof time window.

Finding 4.We identified 37 instances where the protocol-defined finality was
not satisfied. In Nomad, this was due to smart contract enforcement issues of
the fraud-proof window; in Ronin, off-chain validators failed to enforce the
source chain’s finality period.

5.2.2 Invalid Beneficiary Addresses. In Nomad, users must specify
a beneficiary address when transferring funds. To accommodate
multiple destination blockchains, Nomad uses a 32-byte field for
the beneficiary address instead of a 20-byte address, since some
blockchains (e.g., Solana) require 32 bytes. When transferring funds
to an EVM-based blockchain, users must left-pad the address with
zeros, and the bridge contract extracts the last 20 bytes.

We identified an anomaly when a user submitted a transaction
(0x7941...1393) inS that deposited 10 DAI into a beneficiary address
that was right padded instead of left-padded. The contract extracted
the last 20 bytes (mainly 0s) and expected a left-padded address;
our tool, which accepted both left and right padding, parsed the
address “correctly”, i.e., without the padding. The user provided
an incorrect input. However, we could not determine whether the
error resulted from user misuse or a malfunction in the bridge’s UI.

We also detected three anomalies when withdrawing funds in
S (e.g., 0xfcc6...7c5f). These involved events that we could not
decode earlier (in Section 5.1.3) because the destination Ethereum
address is represented as an unpadded 32-byte string, and therefore
represents an invalid Ethereum address. Again, the bridge contract
simply extracted the last 20 bytes, whereas our tool throws an
error. Interestingly, none of the destination addresses extracted by
the bridge contract showed any activity after these transactions,
which reveals that the addresses computed by the bridge were not
the ones intended by the users – i.e., users mistakenly provided
a wrongly formatted address and lost the funds because they do
not control these addresses. While these 4 cases can be considered
false positives from our tool – i.e., not protocol anomalies – they
still revealed genuine anomalies in user behavior.

Finding 5. Protocols do not safeguard users against incorrectly formatted
inputs, as bridge contracts are often designed to be blockchain-agnostic and
may lack strict input validation.

https://etherscan.io/tx/0x358788e319dcd2a0afd03102cc944ffda0bf6a68abbd2d84734affcb07d739ca
https://etherscan.io/tx/0x78b643a338afa5bd56aa2eeccd5c2381a5e5a921986a6ccf7b678958b7d62766
https://etherscan.io/tx/0xeb06aa1e251555ac1e4f58b04987d37f87cf407266a5b528f6de235a45590fea
https://moonscan.io/tx/0x2cdc80f24ae1c65b88d956c5709514269c76a911002fca7d1efc7cb87e84ef0c
https://etherscan.io/tx/0x468868506b014b5729f9926ff8bce17823842747828d9a82b23767a5b408cdf3
https://app.roninchain.com/tx/0xc2997f0a2e14c7db69cafbc6e58839299d8130a4c3310e49dbf5fb62f707279d
https://etherscan.io/tx/0x794135750db90cf346b08dc3de668cb19ea69f59bc59e7f158759508ed9a1393
https://moonscan.io/tx/0xfcc6d0775cb1cbb2dc4654b563a9b9881b5972e1dd213b0e8b7535bd5b8e7c5f

Trovato et al.

Table 4: Identification of the origin of all anomalies identified by CCTX_ValidDeposit and CCTX_ValidWithdrawal within [𝑡0; 𝑡3]

Nomad Bridge Ronin Bridge

Logical Rule (cf. Section 3.3) Captured Unmatched Anomaly Explanation Captured Unmatched Anomaly Explanation

1. SC_ValidNativeTokenDeposit 7,187 0 38,462 10 10 do not comply with cctx_finality

2. SC_ValidERC20TokenDeposit 4,223 6 5 do not comply with cctx_finality 5,527 01 contains an invalid beneficiary address (FP)

3. TC_ValidERC20TokenDeposit 11,417 13
5 do not comply with cctx_finality

43,990 10 10 do not comply with cctx_finality7 do not comply with token_mapping
1 contains an invalid beneficiary address (FP)

5. TC_ValidNativeTokenWithdrawal 464 238 238 events do not have correspondence on S 0 0

6. TC_ValidERC20TokenWithdrawal 4,846 491 491 events do not have correspondence on S 35,411 11,814 22 do not comply with cctx_finality
11,792 events do not have correspondence on S

7. SC_ValidERC20TokenWithdrawal 4,869 387
3 contains an invalid beneficiary address (FP)

25,470 732
708 matched events on T before 𝑡0 (FP)1

2 do not comply with token_mapping 22 do not comply with cctx_finality
382 events do not have correspondence on T 2 events do not have correspondence on T

Example: there were 11,417 records captured by TC_ValidERC20TokenDeposit (Rule 3), however, only 11,404 were matched by a transaction on S (counted in
CCTX_ValidDeposit – cf. Table 3), which indicates there are 13 events emitted by the bridge contract on T without a corresponding action on S, which is an anomaly.
Note: we mark in red the events that caused loss of funds to the protocol (i.e., attacks identified by XChainWatcher)

1 false positives (FP) due to the impossibility of extracting data in the Ronin blockchain (T) before 𝑡0 , which caused the events to not being matched

5.2.3 Invalid Token Mappings. We identified 9 anomalies in Rules
4 and 8 due to records not complying with the token_mapping pred-
icate, 7 when depositing tokens in T using the Nomad bridge, and
2 when withdrawing tokens in S.

According to the Nomad bridge documentation [46], anyone
can deploy a new token on Moonbeam and ask the bridge to link
it to the contract that represents the same token on Ethereum.
We found 5 transactions that involved the Nomad bridge operator
deploying new ERC20 tokens on Moonbeam. One of the transac-
tions 0x7fe7...bf27 deployed a new token contract on Moonbeam
mapped to a token contract in S called WRAPPED GLMR (e.g.,
0x92C3...7178). This token is the native token of the Moonbeam
blockchain, which already exists in S and is already mapped by
the bridge (0xba8d...A663) – and therefore, this mapping should
not have been validated by the bridge operator. Our hypothesis is
that these may be users creating fake tokens with the name of real
tokens (e.g., WRAPPED GLMR), in an attempt to later on withdraw
real funds on Ethereum. This vulnerability was the cause of an at-
tack on the Thorchain bridge in 2022 [71], where attackers created
a fake contract called Wrapped Ether and tricked the bridge con-
tract into accepting the withdrawal of real Ether. The 4 subsequent
transactions tried depositing different amounts of different tokens
to multiple addresses in T . Strangely, no activity was found on S in
the mapped contracts – i.e., the tokens were never used by anyone
previously (e.g., 0xda3f...5c72).This activity is very unusual, espe-
cially since the transactions mapping tokens across blockchains
were issued by the Nomad bridge operator, which suggests a lack
of contract verification between blockchains by the operator.

Finding 6. The Nomad bridge operator linked fake or duplicate tokens between
Moonbeam and Ethereum, including an already existingmapping forWRAPPED
GLMR. This highlights a lack of rigorous token contract verification, leaving
the protocol vulnerable to spoofing attacks.

5.2.4 Withdrawals in T with no Correspondence in S. We found
729 (= 238 + 491) withdrawals on T , in which no corresponding
transaction was found in S. A first hypothesis to explain the high
number of anomalies is whether these values are a consequence of
the attack, i.e., multiple users tried (unsuccessfully) to withdraw

0

50

100

150

200

250

300

2022−02 2022−04 2022−06 2022−08
Date

N
um

be
r

of
 E

ve
nt

s

Transferred Value (USD)

$1M

$5M

$10M

$15M

$20M

Matched

Unmatched

Matched vs. Unmatched Withdrawal Events in T (Nomad Bridge)

Figure 7:Withdrawal events emitted onT matched (N = 4,482)
or unmatched (N = 828) with another event on S (through
CCTX_ValidWithdrawal) in the Nomad bridge.

funds as the bridge was paused. To test this hypothesis, Figure 7
shows the comparison between the matched and unmatched with-
drawal events emitted on T on the Nomad bridge (the results for
the Ronin bridge are similar but not shown for the sake of space).
As expected, close to when the hack happened in August 2022, there
were many unmatched withdrawal events emitted in T – there
were 313 events trying to withdraw $24.7M worth of tokens in the
24 hours prior to the attack. In Ronin, we identified 468 events with-
drawing $24.3M in the same period. Not surprisingly, in the event
of an attack, it is difficult to withdraw tokens, due to the bridge
being paused after the attack. However, it is also noticeable that
throughout the entire period in which the bridge was functioning,
there were always multiple low-value unmatched events, following
the same trend as the matched ones. These are funds escrowed in
T in which the corresponding tokens were never unlocked on S
within [𝑡1; 𝑡2] – and the bridge still holds the escrowed assets in T .

A manual analysis of these anomalies revealed that many of the
destination addresses (beneficiaries on Ethereum) targeted by these
events on T had no funds or had not made any transactions to
date. Table 5 illustrates these findings, separating metrics extracted
before and after (i.e., as a consequence of) the attack. Our analysis

https://moonscan.io/tx/0x7fe7e6ea905831d135514fd665d9867349b24134f0dd1217fb7d55a88204bf27
https://etherscan.io/address/0x92C3A05B5CC7613E8A461968AD8616BAE3C47178
https://etherscan.io/address/0xba8d75BAcCC4d5c4bD814FDe69267213052EA663
https://moonscan.io/tx/0xda3f048e50e8e4df1d5726fb3ea6839e95ed15e49b4d7daf3c91a5b44b3f5c72

XChainWatcher: Identifying Anomalies in Cross-Chain Bridges

Table 5: Analysis of the balance of destination addresses on Ethereum targeted by withdrawals on T

Nomad Bridge Ronin Bridge

Before Attack After Attack Total Before Attack After Attack Total

Unmatched withdrawal events in T 541 188 729 11,574 220 11,794
Addresses with balance 0 at withdrawal date 95 26 121 5,988 66 6,054
Addresses with balance 0 at withdrawal date and still today 55 17 72 5,212 49 5,261
Addresses with balance < 0.0011 at withdrawal date 185 46 231 7,381 88 7,469
Total Value (in million of USD) $0.34M $3.27M 1 $3.62M 1 $1.09M $0.09M $1.18M
Addresses that tried withdrawing more than once 34 23 58 932 21 956
Addresses that tried withdrawing exactly once 460 136 592 9,490 176 9,657

1 A single address is responsible for $3M.

revealed that, spanning both bridges, 6,175 addresses on Ethereum
(≈ 49%) had a zero balance at the time of the withdrawal event, in
which 5,333 (≈ 43%) are still holding a zero balance at the time of
writing. As a result, users cannot withdraw their assets due to not
having funds to cover gas fees. According to the Ronin documen-
tation, users should have a minimum of 0.0011 ETH to cover gas
fees for issuing a transaction on Ethereum to withdraw funds [64].
7,700 addresses (≈ 61) did not have sufficient funds to meet this
requirement. The total value of unwithdrawn funds amounts to
$4.8M, in which a single transaction attempted to withdraw $3M.
Excluding this outlier, the amount not withdrawn is $1.8M. Figure 8
shows the distribution of balances of beneficiary addresses with
non-zero balances when the withdrawal event was triggered in T .

To assess the impact of the attack on these values, we divided
the analysis into pre-attack and post-attack periods. The data shows
that the attack does not seem to have any influence. The number of
data points before the attack is much higher (≈97%), suggesting that
this is a common practice when the bridge is operating normally.
Interestingly, even users with many funds, including those with
over 10 or 200 ETH in their addresses, were involved in this behavior
(cf. Figure 8). Another noteworthy finding is the difference between
unique addresses that attempted to withdraw funds once versus
those that tried multiple times. Some users repeatedly attempted
withdrawals, while others seemingly gave up, likely considering
their funds lost. This may also be attributed to user inexperience and
inadequate UI/UX [15]. The Pearson correlation coefficient between
the number of withdrawal attempts and the amount withdrawn (by
each user withdrawal request) is negligible (−0.017) showing no
meaningful relationship between both variables.

Finding 7.We found 729 cases where users tried to withdraw funds from the
destination blockchain (T), but the bridge never completed the corresponding
transaction on the source blockchain (S). This left up to $4.8M stuck in the
bridge.Whilemany of these happened around the time of the attack, themajority
occurred during normal use. Moreover, nearly half of the users didn’t have
enough ETH to pay gas fees on the destination blockchain, preventing them
from claiming their funds, and pointing to serious usability issues.

5.2.5 Withdrawals in S with no Correspondence in T . Both bridges
analyzed in this paper suffered a Forged Withdrawal Attack,
where funds were stolen from S (Ethereum). As shown in Table 4,
382 unmatched events, under SC_ValidERC20TokenWithdrawal, were
identified because they were not matched on T on the Nomad
bridge. Analyzing the timestamp of the transactions in which these
events were emitted, we conclude that all 382 events were part of
the attack, involving 382 transactions and 279 unique addresses.

0.0011 ETH

1

10

100

1000

10000

0.00000010.0000010.000010.000100.001000.010000.10000 1 10 100 1,000
Balance (Ether)

F
re

qu
en

cy

(a) distribution of balances of non−zero destination addresses in withdrawals before attack

0.0011 ETH

1

10

100

0.00000010.0000010.000010.000100.001000.010000.10000 1 10 100 1,000
Balance (Ether)

F
re

qu
en

cy

Bridge Nomad: (a) N=446 | (b) N=162 Ronin: (a) N=5608 | (b) N=154

(b) distribution of balances of non−zero destination addresses in withdrawals after attack

Figure 8: Distribution of the balance of all addresses to which
funds are being sent inS when withdrawing funds from T . A
red dotted line marks the value needed to pay for transaction
fees to successfully withdraw funds in S.

These totaled $159, 577, 598 of stolen funds. These events had only
14 unique withdrawal IDs, indicating that attackers copy-pasted
data from other transactions, exploiting the bridge’s acceptance of
any data as valid proof [56]. Our analysis identified 279 addresses
that exploited the protocol, the majority of which were contracts
deployed in bulk to scatter funds across multiple addresses. We
traced the transactions and identified 45 unique EOAs responsible
for deploying these contracts. We cross-referenced our findings
with data from Peckshield, a reputable security firm, which provided
a list of addresses involved in exploiting the bridge at the time of
the attack [50]. We identified 9 more EOAs than Peckshield in the
same blockchains (36 EOAs). We also found a dataset related to
the attack on GitHub [45], which includes 246 transactions, less
136 than ours. To eliminate the possibility of false positives, we
manually checked all anomalies not identified by the other datasets.

In the Ronin bridge data, we identified 710 anomalies related to
events emitted on S without correspondence on T . Unfortunately,
due to rate limits for extracting data from the Ronin blockchain,
we could not decrease 𝑡0 to the date on which the contracts were
deployed. This caused our tool to identify anomalies in transactions

Trovato et al.

that would match events emitted well before our period of analy-
sis. We captured over 500k additional transactions in [𝑡0; 𝑡1 [, more
than 3.5 months taking into account the maximum latency of with-
drawals in the Ronin bridge (cf. Figure 5), of around 3 months, and
added some margin, but it did not prove to be enough. To exclude
withdrawals before 𝑡0, we based ourselves on the withdrawal_id –
a counter incremented for each withdrawal event emitted in the
bridge contract. Of the unmatched 710 events, 708 had a withdrawal
ID less than withdrawal_id of the first event included in [𝑡0; 𝑡1 [, sug-
gesting that they were emitted before our collection data interval.
We are left with 2 unmatched withdrawal events in the selected
interval. These events were emitted by transactions issued by the
same address (0x098b...2f96) on March 23, 2022, 13:29 (0xc28f...d0b7)
and 13:31 (0xed2c...9b08), transferring a total of $565.64M. These
two transactions are those identified in the industry as pertaining
to the Ronin bridge hack. When comparing the results, no false
negatives were found.

Finding 8. XChainWatcher successfully identified malicious transactions in the
Nomad and Ronin bridges. The Nomad analysis overcame previous analyses by
uncovering 9 additional attacker EOAs not reported by security firms and 136
more transactions than the largest existing public dataset of the Nomad hack.

6 Discussion and Future Work
We present the discussion and limitations of our work.

Rule modeling. Modeling cross-chain rules requires explor-
ing the semantics of a bridge protocol, its data model, and associ-
ated token contracts. While bridges can be categorized into several
classes of models – in this paper, we analyzed bridges that connect
Ethereum to sidechains. Specific rule modeling may change slightly
depending on the particular instantiation. This paper does not aim
to propose a universal cross-chain model applicable to all proto-
cols. Instead, we empirically demonstrate that logic-driven analysis
is effective for the detection of unknown anomalies on bridges.
Our work establishes the first baseline for future security analy-
ses on cross-chain bridges. Rules are created based on the current
behavior of the protocol. If event signatures are changed, XChain-
Watcher needs to be updated accordingly by the bridge operator to
capture the new events. This seems acceptable as XChainWatcher is
supposed to run alongside the bridge and controlled by the operator.

Timeframes and Selected Bridges. We focus on short time-
frames with confirmed attacks, modeling expected behavior rather
than relying on signature-based detection. Since there are no prior
anomaly datasets for cross-chain bridges, manually analyzing large
volumes of anomalies would be impractical. Thus, we target (1)
short periods and (2) timeframes with verified attacks. We selected
the Ronin bridge as it is the most profitable cross-chain attack to
date, and the Nomad bridge because of the high number of transac-
tions exploiting the protocol in the hack.

Extensibility of XChainWatcher. The framework is extensible
and easy to use. To add support for other protocols, users must
(1) analyze the protocol and incorporate any specific restrictions
into the cross-chain rules (i.e., adding any missing protocol-specific
cross-chain rules), (2) extract transaction receipts to be used in
the analysis, (3) create an Event Data Decoder and Extractor that
decodes event data and creates logical relations, and (4) populate a
configuration file (cf. Figure 3) with RCP connection URLs, bridge

contract addresses, and tokens mappings. An important feature of
the proposed design of XChainWatcher is that it is agnostic to the
state validation logic employed – Trusted Third Parties (Ronin), and
Native State Verification (Nomad) [8] – because it only relies on the
events emitted by on-chain contracts.

Event-based Analysis. We chose to perform an event-based
analysis for two main reasons. Firstly, protocols typically involve
more transactions than those triggering transferring assets, e.g.,
light client updates. Analyzing all transactions, including those
unrelated to actual state changes, would be inefficient and resource-
intensive. Moreover, capturing all transactions that target bridge
contracts is not enough to extract all the relevant data, as users
can issue transactions to intermediary protocols (such as bridge
aggregators [66]) that make internal transaction calls to bridge
contracts. When contract events are not emitted (e.g., due to a bug
in a contract or even a malicious upgrade in amulti-transaction
attack), our tool detects this behavior as abnormal because a state
change will be missing in the cross-chain flow (cf. Section 2.2).

Future Work. Future work is threefold: (1) extend analysis
periods to identify further anomalies, such as salami slicing at-
tacks [17], (2) support additional bridges, (3) using the clean and
labeled dataset to train anomaly detection models to perform large
scale analyses of cross-chain data.

7 Related Work
Despite the extensive research corpus on interoperability [15, 16,
70], there is little related work available on monitoring and pro-
tecting interoperability solutions. The concept of a cross-chain
model was introduced in Hephaestus [14], a theoretical cross-chain
model generator, highlighting the importance of defining cross-
chain rules to identify misbehavior. XScope [71] uses three static
rules to detect three types of attacks (signature-based detection)
on cross-chain bridges, specifically targeting smaller chains with
limited datasets. XScope’s detection capabilities are limited to three
specific anomalies, and it focuses exclusively on token deposits (not
covering the withdrawal process). Unfortunately, XScope is not
open-source, limiting a deeper empirical comparison. In the indus-
try, Hyperlane [36], Range [53], and Layer Zero’s Precrime [39] pro-
vide analysis tools for bridges. However, these are proprietary and
lack technical documentation, systematic evaluation, and datasets,
making it challenging to compare directly with our work. Finally,
while post-attack analyses typically trace the flow of funds using
tools such as Chainalysis [20], our tool enables the retrieval of the
same (and more) data by applying cross-chain rules.

8 Conclusion
This paper proposes amonitoring framework for cross-chain bridges
powered by a cross-chain model supported by a Datalog engine.
We uncover significant attacks within cross-chain bridges, such as 1)
transactions accepted in one chain before the finality time of the orig-
inal one elapsed, breaking the safety of the bridge protocol; 2) users
trying to exploit a protocol through the creation of fake versions of
wrapped Ether to withdraw real ether on the Ethereum blockchain,
breaking safety; 3) bridge contract implementations handling un-
expected inputs differently across chains, hindering a good UX and

https://etherscan.io/address/0x098b716b8aaf21512996dc57eb0615e2383e2f96
https://etherscan.io/tx/0xc28fad5e8d5e0ce6a2eaf67b6687be5d58113e16be590824d6cfa1a94467d0b7
https://etherscan.io/tx/0xed2c72ef1a552ddaec6dd1f5cddf0b59a8f37f82bdda5257d9c7c37db7bb9b08

XChainWatcher: Identifying Anomalies in Cross-Chain Bridges

leading to the loss of user funds. In addition, we identify every trans-
action involved in previous hacks on the bridges studied. We show
that although only 49 unique externally owned accounts (EOAs)
exploited Nomad, there were 380 exploit events, with each address
deploying multiple exploit contracts to obscure the flow of funds.
Finally, our study highlights a critical user awareness gap – many
users struggle to withdraw funds due to the highly manual nature of
the process, contrasting with the more streamlined deposit process
managed by bridge operators. This user error has led to over $4.8M
in unwithdrawn funds due to users mistakenly sending funds to
addresses they do not control or that have never been active. We
are the first to empirically analyze the security vulnerabilities of
cross-chain bridges. Our open-source dataset provides a valuable
resource for future research.

References
[1] 2022. Multichain Contract Vulnerability Post Mortem | by Multichain (Previously

Anyswap) | Medium. https://medium.com/multichainorg/multichain-contract-
vulnerability-post-mortem-d37bfab237c8

[2] 2022. Rekt - Qubit Finance. https://rekt.news/qubit-rekt/
[3] 2022. Rekt - Wormhole. https://rekt.news/wormhole-rekt/
[4] 2024. JSON-RPC API | ethereum.org. https://ethereum.org/en/developers/docs/

apis/json-rpc/
[5] Raja Amir. 2023. Etherscan Information Center | Understanding and Ethereum

Transaction. https://info.etherscan.com/understanding-an-ethereum-
transaction/

[6] Andreas M Antonopoulos and Gavin Wood. 2018. Mastering Ethereum: building
smart contracts and dapps. O’Reilly Media.

[7] Multichain (Previously Anyswap). 2021. Anyswap Multichain Router V3 Exploit
Statement. https://medium.com/multichainorg/anyswap-multichain-router-v3-
exploit-statement-6833f1b7e6fb

[8] A. Augusto, R. Belchior, M. Correia, A. Vasconcelos, L. Zhang, and T. Hardjono.
2024. SoK: Security and Privacy of Blockchain Interoperability. In 2024 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos,
CA, USA, 234–234. https://doi.org/10.1109/SP54263.2024.00182

[9] Rebecca Gurley Bace, Peter Mell, et al. 2001. Intrusion detection systems. (2001).
[10] Base. 2025. Base. https://base.org
[11] Rob Behnke. 2021. Explained: The pNetwork Hack. https://www.halborn.com/

blog/post/explained-the-pnetwork-hack-september-2021
[12] Rob Behnke. 2021. Explained: The THORChain Hack (July 2021). https:

//www.halborn.com/blog/post/explained-the-thorchain-hack-july-2021
[13] Rafael Belchior, Luke Riley, Thomas Hardjono, André Vasconcelos, and Miguel

Correia. 2023. Do You Need a Distributed Ledger Technology Interoperability
Solution? Distrib. Ledger Technol. 2, 1, Article 1 (March 2023), 37 pages. https:
//doi.org/10.1145/3564532

[14] Rafael Belchior, Peter Somogyvari, Jonas Pfannschmidt, André Vasconcelos,
and Miguel Correia. 2024. Hephaestus: Modeling, Analysis, and Performance
Evaluation of Cross-Chain Transactions. IEEE Transactions on Reliability 73, 2
(2024), 1132–1146. https://doi.org/10.1109/TR.2023.3336246

[15] Rafael Belchior, Jan Süßenguth, Qi Feng, Thomas Hardjono, André Vasconcelos,
andMiguel Correia. 2024. A brief history of blockchain interoperability. Commun.
ACM 67, 10 (2024), 62–69.

[16] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. 2021.
A Survey on Blockchain Interoperability: Past, Present, and Future Trends. ACM
Comput. Surv. 54, 8, Article 168 (oct 2021), 41 pages. https://doi.org/10.1145/34
71140

[17] Rekha Bhowmik. 2008. Data Mining Techniques in Fraud Detection. Journal of
Digital Forensics, Security and Law 3, 2 (2008), 35–53. https://doi.org/10.15394/j
dfsl.2008.1040

[18] Tom Blackstone. 2023. LayerZero raises $120M to expand cross-chain messaging
efforts. https://cointelegraph.com/news/layerzero-raises-120m-to-expand-
cross-chain-messaging-efforts

[19] Blockdaemon. 2024. Blockdaemon REST API. https://docs.blockdaemon.com/r
eference/introduction-txapi

[20] Chainalysis. 2025. Chainalysis. https://www.chainalysis.com/
[21] ChainSwap. 2021. ChainSwap Exploit 11 July 2021 Post-Mortem. https:

//chain-swap.medium.com/chainswap-exploit-11-july-2021-post-mortem-
6e4e346e5a32

[22] Vishal Chawla. 2023. Union Labs raises $4 million to develop cross-chain bridge
enabled by ZK proofs. https://www.theblock.co/post/263310/union-labs-raises-
4-million-to-develop-cross-chain-bridge-enabled-by-zk-proofs

[23] James Cirrone. 2023. $225 Million Raised in Wormhole Token Sales. https:
//www.coindesk.com/business/2023/11/29/blockchain-messaging-platform-
wormhole-raises-225m-at-25b-valuation

[24] James Cirrone. 2023. Crypto funding: A $72M week for cross-chain oracles, NFT
merchandise. https://blockworks.co/news/funding-cross-chain-oracle-nft-
merchandise

[25] Li Duan, Yangyang Sun, Wei Ni, Weiping Ding, Jiqiang Liu, and Wei Wang. 2023.
Attacks Against Cross-Chain Systems and Defense Approaches: A Contemporary
Survey. IEEE/CAA Journal of Automatica Sinica 10, 8 (2023), 1643–1663.

[26] Ethereum Foundation. 2024. ERC-20 Token Standard. https://ethereum.org/en/
developers/docs/standards/tokens/erc-20/

[27] Ethereum Foundation. 2024. ERC-721 Token Standard. https://ethereum.org/e
n/developers/docs/standards/tokens/erc-721/

[28] Ethereum Foundation. 2025. The Merge | Ethereum.org. https://ethereum.org/e
n/roadmap/merge/

[29] Ethereum Foundation. 2025. Sidechains. https://ethereum.org/en/developers/d
ocs/scaling/sidechains/

[30] Arbitrum Foundation. 2025. Arbitrum — The Future of Ethereum. https:
//arbitrum.io/

[31] Eliza Gkritsi. 2021. $139M BXH Exchange Hack Was the Result of Leaked Admin
Key. https://www.coindesk.com/tech/2021/11/01/139m-bxh-exchange-hack-
was-the-result-of-leaked-admin-key/

[32] Gnosis. 2025. Deposit Contracts | Gnosis Chain. https://docs.gnosischain.com/a
bout/specs/deposit-contracts

[33] Gnosis. 2025. xDAI Bridge | Gnosis Chain. https://docs.gnosischain.com/bridg
es/About%20Token%20Bridges/xdai-bridge

[34] The go-ethereum Authors. 2025. Built-in tracers | go-ethereum. https://geth.eth
ereum.org/docs/developers/evm-tracing/built-in-tracers#call-tracer

[35] Terje Haugum, Bjørnar Hoff, Mohammed Alsadi, and Jingyue Li. 2022. Security
and Privacy Challenges in Blockchain Interoperability - A Multivocal Literature
Review. In Proceedings of the International Conference on Evaluation and Assess-
ment in Software Engineering 2022 (EASE ’22). Association for Computing Ma-
chinery, New York, NY, USA, 347–356. https://doi.org/10.1145/3530019.3531345

[36] Hyperlane. 2025. Hyperlane. https://hyperlane.xyz/
[37] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On synthesis of

program analyzers. In Computer Aided Verification: 28th International Conference,
CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II 28. Springer,
422–430.

[38] Polygon Labs. 2025. Mapped tokens – Polygon Knowledge Layer. https:
//docs.polygon.technology/pos/reference/mapped-tokens/

[39] LayerZero Labs. 2022. LayerZero Security Update – April 2022. https://medium
.com/layerzero-official/layerzero-security-update-april-2022-4c27a22380b4

[40] Sung-Shine Lee, Alexandr Murashkin, Martin Derka, and Jan Gorzny. 2023. SoK:
Not Quite Water Under the Bridge: Review of Cross-Chain Bridge Hacks. In 2023
IEEE International Conference on Blockchain and Cryptocurrency (ICBC). 1–14.
https://doi.org/10.1109/ICBC56567.2023.10174993

[41] Li.Fi. 2024. LI.FI – Bridge & DEX Aggregation Protocol. https://li.f i/
[42] Mantle. [n. d.]. Mantle | Mass Adoption of Decentralized and Token-Governed

Technologies. https://www.mantle.xyz
[43] Poly Network. 2023. The Poly Network Exploit Analysis. https://polynetwork.

medium.com/the-poly-network-exploit-analysis-b0a77aff6078
[44] Margaux Nijkerk. 2023. Coinbase, Framework Venture Funds Invest $5M in

Socket Protocol, in Bet on Blockchain Interoperability. https://www.coindesk.c
om/tech/2023/09/06/coinbase-framework-venture-funds-invest-5m-in-socket-
protocol-in-bet-on-blockchain-interoperability/

[45] Nomad. 2022. https://github.com/nomad-xyz/hack-data/blob/main/data/hack/t
ransactions.json

[46] Nomad. 2022. FAQ | Nomad Docs. https://docs.nomad.xyz/token-bridge/faq
[47] Nomad. 2022. Glossary | Nomad Docs. https://docs.nomad.xyz/resources/gloss

ary
[48] Nomad. 2022. Introduction | Nomad Docs. https://docs.nomad.xyz/nomad-

101/introduction
[49] Optimism. 2025. Optimism. https://optimism.io/
[50] PeckShieldAlert. 2022. #PeckShieldAlert PeckShield has detected 41 addresses

grabbed $152M (80%) in the nomadxyz_bridge exploit, including 7 MEV Bots
($7.1M), RariCapital Arbitrum exploiter ($3.4M), and 6 White Hat ($8.2M). https:
//x.com/PeckShieldAlert/status/1554350737957998592

[51] Eli Phoenix. 2023. Supra Completes Over $24m in Early Stage Funding to Date.
https://cointelegraph.com/press-releases/supra-completes-over-24m-in-early-
stage-funding-to-date

[52] Polygon. 2024. Polygon Knowledge Center. https://stargateprotocol.gitbook.io/
stargate/v2-developer-docs/integrate-with-stargate/how-to-swap

[53] Range. 2024. Range. https://www.range.org/
[54] Rekt. 2021. POLY NETWORK - REKT. https://rekt.news/polynetwork-rekt/
[55] Rekt. 2021. THORChain - REKT 2. https://rekt.news/thorchain-rekt2/
[56] Rekt. 2022. Nomad Bridge - REKT. https://rekt.news/nomad-rekt/
[57] Rekt. 2022. Rekt - BNB Bridge. https://www.rekt.news/bnb-bridge-rekt/
[58] Rekt. 2022. Rekt - Meter. https://rekt.news/meter-rekt/

https://medium.com/multichainorg/multichain-contract-vulnerability-post-mortem-d37bfab237c8
https://medium.com/multichainorg/multichain-contract-vulnerability-post-mortem-d37bfab237c8
https://rekt.news/qubit-rekt/
https://rekt.news/wormhole-rekt/
https://ethereum.org/en/developers/docs/apis/json-rpc/
https://ethereum.org/en/developers/docs/apis/json-rpc/
https://info.etherscan.com/understanding-an-ethereum-transaction/
https://info.etherscan.com/understanding-an-ethereum-transaction/
https://medium.com/multichainorg/anyswap-multichain-router-v3-exploit-statement-6833f1b7e6fb
https://medium.com/multichainorg/anyswap-multichain-router-v3-exploit-statement-6833f1b7e6fb
https://doi.org/10.1109/SP54263.2024.00182
https://base.org
https://www.halborn.com/blog/post/explained-the-pnetwork-hack-september-2021
https://www.halborn.com/blog/post/explained-the-pnetwork-hack-september-2021
https://www.halborn.com/blog/post/explained-the-thorchain-hack-july-2021
https://www.halborn.com/blog/post/explained-the-thorchain-hack-july-2021
https://doi.org/10.1145/3564532
https://doi.org/10.1145/3564532
https://doi.org/10.1109/TR.2023.3336246
https://doi.org/10.1145/3471140
https://doi.org/10.1145/3471140
https://doi.org/10.15394/jdfsl.2008.1040
https://doi.org/10.15394/jdfsl.2008.1040
https://cointelegraph.com/news/layerzero-raises-120m-to-expand-cross-chain-messaging-efforts
https://cointelegraph.com/news/layerzero-raises-120m-to-expand-cross-chain-messaging-efforts
https://docs.blockdaemon.com/reference/introduction-txapi
https://docs.blockdaemon.com/reference/introduction-txapi
https://www.chainalysis.com/
https://chain-swap.medium.com/chainswap-exploit-11-july-2021-post-mortem-6e4e346e5a32
https://chain-swap.medium.com/chainswap-exploit-11-july-2021-post-mortem-6e4e346e5a32
https://chain-swap.medium.com/chainswap-exploit-11-july-2021-post-mortem-6e4e346e5a32
https://www.theblock.co/post/263310/union-labs-raises-4-million-to-develop-cross-chain-bridge-enabled-by-zk-proofs
https://www.theblock.co/post/263310/union-labs-raises-4-million-to-develop-cross-chain-bridge-enabled-by-zk-proofs
https://www.coindesk.com/business/2023/11/29/blockchain-messaging-platform-wormhole-raises-225m-at-25b-valuation
https://www.coindesk.com/business/2023/11/29/blockchain-messaging-platform-wormhole-raises-225m-at-25b-valuation
https://www.coindesk.com/business/2023/11/29/blockchain-messaging-platform-wormhole-raises-225m-at-25b-valuation
https://blockworks.co/news/funding-cross-chain-oracle-nft-merchandise
https://blockworks.co/news/funding-cross-chain-oracle-nft-merchandise
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://ethereum.org/en/roadmap/merge/
https://ethereum.org/en/roadmap/merge/
https://ethereum.org/en/developers/docs/scaling/sidechains/
https://ethereum.org/en/developers/docs/scaling/sidechains/
https://arbitrum.io/
https://arbitrum.io/
https://www.coindesk.com/tech/2021/11/01/139m-bxh-exchange-hack-was-the-result-of-leaked-admin-key/
https://www.coindesk.com/tech/2021/11/01/139m-bxh-exchange-hack-was-the-result-of-leaked-admin-key/
https://docs.gnosischain.com/about/specs/deposit-contracts
https://docs.gnosischain.com/about/specs/deposit-contracts
https://docs.gnosischain.com/bridges/About%20Token%20Bridges/xdai-bridge
https://docs.gnosischain.com/bridges/About%20Token%20Bridges/xdai-bridge
https://geth.ethereum.org/docs/developers/evm-tracing/built-in-tracers#call-tracer
https://geth.ethereum.org/docs/developers/evm-tracing/built-in-tracers#call-tracer
https://doi.org/10.1145/3530019.3531345
https://hyperlane.xyz/
https://docs.polygon.technology/pos/reference/mapped-tokens/
https://docs.polygon.technology/pos/reference/mapped-tokens/
https://medium.com/layerzero-official/layerzero-security-update-april-2022-4c27a22380b4
https://medium.com/layerzero-official/layerzero-security-update-april-2022-4c27a22380b4
https://doi.org/10.1109/ICBC56567.2023.10174993
https://li.fi/
https://www.mantle.xyz
https://polynetwork.medium.com/the-poly-network-exploit-analysis-b0a77aff6078
https://polynetwork.medium.com/the-poly-network-exploit-analysis-b0a77aff6078
https://www.coindesk.com/tech/2023/09/06/coinbase-framework-venture-funds-invest-5m-in-socket-protocol-in-bet-on-blockchain-interoperability/
https://www.coindesk.com/tech/2023/09/06/coinbase-framework-venture-funds-invest-5m-in-socket-protocol-in-bet-on-blockchain-interoperability/
https://www.coindesk.com/tech/2023/09/06/coinbase-framework-venture-funds-invest-5m-in-socket-protocol-in-bet-on-blockchain-interoperability/
https://github.com/nomad-xyz/hack-data/blob/main/data/hack/transactions.json
https://github.com/nomad-xyz/hack-data/blob/main/data/hack/transactions.json
https://docs.nomad.xyz/token-bridge/faq
https://docs.nomad.xyz/resources/glossary
https://docs.nomad.xyz/resources/glossary
https://docs.nomad.xyz/nomad-101/introduction
https://docs.nomad.xyz/nomad-101/introduction
https://optimism.io/
https://x.com/PeckShieldAlert/status/1554350737957998592
https://x.com/PeckShieldAlert/status/1554350737957998592
https://cointelegraph.com/press-releases/supra-completes-over-24m-in-early-stage-funding-to-date
https://cointelegraph.com/press-releases/supra-completes-over-24m-in-early-stage-funding-to-date
https://stargateprotocol.gitbook.io/stargate/v2-developer-docs/integrate-with-stargate/how-to-swap
https://stargateprotocol.gitbook.io/stargate/v2-developer-docs/integrate-with-stargate/how-to-swap
https://www.range.org/
https://rekt.news/polynetwork-rekt/
https://rekt.news/thorchain-rekt2/
https://rekt.news/nomad-rekt/
https://www.rekt.news/bnb-bridge-rekt/
https://rekt.news/meter-rekt/

Trovato et al.

[59] Rekt. 2022. Ronin Network - REKT. https://rekt.news/ronin-rekt/
[60] Rekt. 2023. Multichain - REKT 2. https://rekt.news/multichain-rekt2/
[61] Rekt. 2023. POLY NETWORK - REKT 2. https://rekt.news/poly-network-rekt2/
[62] Ronin. 2024. Earlier today, we were notified by white-hats about a potential

exploit on the Ronin bridge. After verifying the reports, the bridge was paused
approximately 40 minutes after the first on-chain action was spotted. https:
//x.com/ronin_network/status/1820804772917588339

[63] Ronin. 2024. Ronin Bridge | Ronin Docs. https://docs.roninchain.com/apps/ronin-
bridge

[64] Ronin. 2025. Withdraw an ERC20 token | Ronin Docs. https://docs.roninchain.
com/apps/ronin-bridge/withdraw-token#step-3-confirm-your-withdrawal

[65] Squid. 2023. Squid raises $3.5 million to build next-generation cross-chain swaps
powered by Axelar. https://medium.com/@squidrouter/squid-raises-3-5-
million-to-build-next-generation-cross-chain-swaps-powered-by-axelar-
c3284bf33b02

[66] S. Subramanian, A. Augusto, R. Belchior, A. Vasconcelos, and M. Correia. 2024.
Benchmarking Blockchain Bridge Aggregators. In 2024 IEEE International Con-
ference on Blockchain (Blockchain). IEEE Computer Society, Los Alamitos, CA,
USA, 37–45. https://doi.org/10.1109/Blockchain62396.2024.00015

[67] L2BEAT team. 2025. L2BEAT – The state of the layer two ecosystem. https:
//l2beat.com/bridges/summary

[68] THORChain. 2021. ETH Parsing Error and Exploit. https://medium.com/thorc
hain/eth-parsing-error-and-exploit-3b343aa6466f

[69] Ruoyu Yin, Zheng Yan, Xueqin Liang, Haomeng Xie, and Zhiguo Wan. 2023.
A survey on privacy preservation techniques for blockchain interoperability.
Journal of Systems Architecture (Apr 2023), 102892. https://doi.org/10.1016/j.sy
sarc.2023.102892

[70] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur
Gervais, and William Knottenbelt. 2019. XCLAIM: Trustless, Interoperable,
Cryptocurrency-Backed Assets. In 2019 IEEE Symposium on Security and Privacy
(SP). 193–210. https://doi.org/10.1109/SP.2019.00085

[71] Jiashuo Zhang, Jianbo Gao, Yue Li, Ziming Chen, Zhi Guan, and Zhong Chen.
2023. Xscope: Hunting for Cross-Chain Bridge Attacks. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering (ASE ’22).
Association for Computing Machinery, New York, NY, USA, Article 171, 4 pages.
https://doi.org/10.1145/3551349.3559520

[72] Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin. 2024. Secu-
rity of Cross-chain Bridges: Attack Surfaces, Defenses, and Open Problems. In
Proceedings of the 27th International Symposium on Research in Attacks, Intrusions
and Defenses (Padua, Italy) (RAID ’24). Association for Computing Machinery,
New York, NY, USA, 298–316. https://doi.org/10.1145/3678890.3678894

[73] Qianrui Zhao, Yinan Wang, Bo Yang, Ke Shang, Ming Sun, Haijun Wang, Zijiang
Yang, and Xin He. 2023. A Comprehensive Overview of Security Vulnerability
Penetration Methods in Blockchain Cross-Chain Bridges. Authorea (Authorea)
(Oct 2023). https://doi.org/10.22541/au.169760541.13864334/v1

https://rekt.news/ronin-rekt/
https://rekt.news/multichain-rekt2/
https://rekt.news/poly-network-rekt2/
https://x.com/ronin_network/status/1820804772917588339
https://x.com/ronin_network/status/1820804772917588339
https://docs.roninchain.com/apps/ronin-bridge
https://docs.roninchain.com/apps/ronin-bridge
https://docs.roninchain.com/apps/ronin-bridge/withdraw-token#step-3-confirm-your-withdrawal
https://docs.roninchain.com/apps/ronin-bridge/withdraw-token#step-3-confirm-your-withdrawal
https://medium.com/@squidrouter/squid-raises-3-5-million-to-build-next-generation-cross-chain-swaps-powered-by-axelar-c3284bf33b02
https://medium.com/@squidrouter/squid-raises-3-5-million-to-build-next-generation-cross-chain-swaps-powered-by-axelar-c3284bf33b02
https://medium.com/@squidrouter/squid-raises-3-5-million-to-build-next-generation-cross-chain-swaps-powered-by-axelar-c3284bf33b02
https://doi.org/10.1109/Blockchain62396.2024.00015
https://l2beat.com/bridges/summary
https://l2beat.com/bridges/summary
https://medium.com/thorchain/eth-parsing-error-and-exploit-3b343aa6466f
https://medium.com/thorchain/eth-parsing-error-and-exploit-3b343aa6466f
https://doi.org/10.1016/j.sysarc.2023.102892
https://doi.org/10.1016/j.sysarc.2023.102892
https://doi.org/10.1109/SP.2019.00085
https://doi.org/10.1145/3551349.3559520
https://doi.org/10.1145/3678890.3678894
https://doi.org/10.22541/au.169760541.13864334/v1

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain and Smart Contracts
	2.2 Cross-Chain Bridge Model
	2.3 Attacks in Cross-Chain Bridges

	3 XChainWatcher
	3.1 Logical Relations
	3.2 Decoders and Logic Relation Builders
	3.3 Cross-Chain Rules

	4 Evaluation Methodology
	4.1 Data Sources
	4.2 Experiment Setup

	5 Anomaly Detection Results
	5.1 Isolated Rules (Rules 1-3 and 5-7)
	5.2 Dependent Rules (Rules 4 and 8)

	6 Discussion and Future Work
	7 Related Work
	8 Conclusion
	References

