
CBDC Bridging between Hyperledger Fabric and
Permissioned EVM-based Blockchains

André Augusto∗ Rafael Belchior∗† Imre Kocsis‡ László Gönczy‡ André Vasconcelos∗ Miguel Correia∗
∗INESC-ID and Instituto Superior Técnico †Blockdaemon Ltd ‡Dept. of Measurement and Inf. Systems, BME

Abstract—The last few years have seen a steep increase
in blockchain interoperability research. Most solutions connect
public blockchains, where the main cross-chain use case is token
transfer. By-design platform transparency, tamper resistance,
and auditability make blockchains a candidate infrastructure for
Central Bank Digital Currencies (CBDCs), but bridging CBDCs
is an important missing piece in that scenario. In this paper, we
leverage an asset transfer protocol, SATP, to define an extendable
and dependable blockchain interoperability middleware that can
bridge CBDC between Hyperledger Fabric and EVM-based
permissioned blockchains. The key interoperation enabler in the
solution is a shared asset definition enforced by both sides of the
bridge, accompanied by a mapping between Fabric identities and
Ethereum addresses for identity management. We implemented
our design using Hyperledger Cacti. A preliminary evaluation
shows that latency is more influenced by the ledgers than the
bridging components.

Index Terms—CBDC, Interoperability, Hyperledger Besu, Hy-
perledger Fabric, SATP

I. INTRODUCTION

The notion of distributed ledger interoperability refers to the
ability to transmit messages securely between smart contracts
that manage ledgers on different blockchain networks. Moving
units of value in a predetermined way from one ledger to
another, to support asset transfer and exchange scenarios, is
an important aspect of blockchain and Distributed Ledger
Technology (DLT) interoperability.

The support for bidirectional movement of cryptoassets
between blockchains – bridging – recently emerged as a
key integration requirement and interoperability pattern in
the permissionless, open-access blockchain world. Consortium
distributed ledgers – those with consensus participation tied
to membership in a group of organizations and controls on
network access – are beginning to follow. Important emerging
use cases include temporary movement of money and money-
like instruments, such as a Central Bank Digital Currency
(CBDC) [16], from an authoritative, high-performance consor-
tium distributed ledger to others dedicated to specific industrial
and enterprise collaborations. In their bridged-out form, these
instruments can serve as legal, non-volatile, and fungible
payment and settlement vehicles for smart contracts – without
impacting the performance of the authoritative asset ledger
and preserving the collective business confidentiality of the
collaborating parties.

Even in the permissionless blockchain world, cross-chain
interoperability is still an emerging area (see, e.g., the survey

[13]). There are still significant gaps in the necessary and
proper formal treatment of approaches, including the charac-
terization of interoperability behavior and thus allowing for
monitoring and proactive security ([10] is an important step
forward) and an overall lack of standards.

Additionally, cross-consortium ledger bridging can have a
fundamentally different trust model and requirement set than
bridges for the permissionless world, especially for such assets
as CBDCs, which will have heavily regulated operational
models.

A. Interoperability for an ecosystem of CBDC applications

“A CBDC is a digital payment instrument, denominated
in the national unit of account, that is a direct liability of
the central bank”[16], complementing cash and traditional
reserve or settlement accounts. Although there are only a few
CBDCs already in production, with limited rollout or in minor
economies, in recent years, most central banks have performed
extensive research and experiments on the topic in preparation
for issuing a CBDC in the future. Whether the authoritative
ledger of future CBDCs will be decentralized or centralized
is still a subject of debate; experiments and prototypes exist
for both. By-design tamper resistance, auditability, and fault
tolerance are strong supporting arguments for permissioned
distributed ledger-based implementations, even despite perfor-
mance assurance, privacy, and operating consortium diversity
challenges.

Blockchain-based applications that implement services for
a given business domain (like logistics, retail, insurance, etc.)
need a legally recognized vehicle for payment and settlement
– and in many cases, the same-chain CBDC will be the best
option, when it becomes available [8].

Openly accessible documentation on CBDC experiments
and prototypes of central banks, such as work streams in
the Digital Euro experiments [17], [7], strongly suggests that
the core CBDC ledger will not provide wide-scale support
for smart contracts. Instead, the application of interoperabil-
ity solutions – classic payment initiation triggers, bridging,
and payment channels – can be expected. For CBDC-using
decentralized application ecosystems, arguably, bridging is
the optimal solution, as it seamlessly enables performing the
financial operations encoded in smart contracts.

In a wider context, it is also worth noting that the Multi-
CBDC project (mCBDC [5]) of the Bank of International
Settlements (BIS) demonstrated the use of the bridging mech-

979-8-3503-1019-1/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

lo
ck

ch
ai

n
an

d
Cr

yp
to

cu
rr

en
cy

 (I
CB

C)
 |

 9
79

-8
-3

50
3-

10
19

-1
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

BC
56

56
7.

20
23

.1
01

74
95

3

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 14,2024 at 18:57:20 UTC from IEEE Xplore. Restrictions apply.

anism in the context of wholesale (available only to financial
institutions) CBDC and cross-border transactions.

B. Bridging CBDCs

In the cryptoasset world, bridging is primarily based on two-
way pegs, where the assets temporarily “moved” to another
ledger are actually kept in cryptographically secured custody
on the source chain until they are brought back. This approach
is readily applicable for CBDC bridging between permissioned
distributed ledgers, albeit with caveats regarding the threat
model and necessary security guarantees. We summarize the
key differences from permissionless approaches as follows:
• The party or consortium of parties performing the bridging

can easily be sufficiently trustable and is, or are, incentivized
by non-crypto means (for CBDC, they are expected to be
regulated and auditable entities).

• Trust between the source and target ledgers can be either
in place as a starting premise, or is much easier to achieve;
e.g., by majority or threshold signature schemes over the
known consensus-participating parties of the ledger, which
serves as a transaction source.

• As source and target ledgers typically employ deterministic
transaction finality, questions of forks, chain splits, and
chain dominance do not emerge as an issue.

• On the other hand, the atomicity, consistency, integrity, and
durability of the asset transfer itself – as defined by [12] –
gain primary importance.
Integration technologies are emerging to host solutions

tailored to this setting, which, compared to cryptocurrency
bridging solutions, can translate the different trust models to
lower latency, significantly lower protocol complexity, and the
absence of either further trust requirements or the introduction
of cryptoeconomic incentives. Important examples include
Hyperledger Cacti [26] and Weaver [2]. Work is also underway
– within the scope of the Internet Engineering Task Force
(IETF) – to define standard protocols for asset transfers with
ACID guarantees between trusted ledgers in SATP [20], which
defines an asset transfer protocol between gateways attached
to trusted ledgers. There is also a prototype implementation
that preserves the ACID properties for Cacti, with the source
and target gateways deployed in a Cacti network. However, as
of this writing, no mature general-purpose bridging solution
is available for fungible asset transfers between permissioned
ledgers.

C. Contributions

In this paper, we present the design and prototype im-
plementation of a novel fungible asset bridge between Hy-
perledger Fabric and Hyperledger Besu (an Ethereum client
implementation) operated by a trusted (regulated) party.

Our Fabric/EVM pairing is a representative case; many
decentralized CBDC experiments apply Fabric and other
dedicated “enterprise” blockchain technologies for CBDC
implementation, while Ethereum technology is widely used
for experiments and production systems in most application
domains.

We build on the SATP implementation by creating the
Fabric and EVM (Ethereum Virtual Machine) side smart
contract facilities for fungible asset bridging from Fabric to
the EVM via two-way pegging, preserving the fault tolerance
provided by the underlying protocol.

In our design, a single bridging entity operates both the
source and target gateways. This eliminates the need for the
still evolving lookup and discovery aspect of SATP, necessary
for gateway peering; and establishes a single, potentially
regulated party who can be tasked with executing additional
policies on “bridging out” and “bridging back” assets.

Executed policies can range from no-touch observation,
such as creating audit trails, to compliance enforcement – e.g.,
halting the bridge-back operation on activities in the target
chain which are suspicious from a regulatory compliance point
of view (the target ledger is trusted, not its users). Policies
can be deployed in Cacti, which is purpose-built to host such
“business logic”, and are expected to be especially important
in the CBDC context.

As transparent decentralized transaction validator capabili-
ties are being worked on for Cacti, we expect our design to
almost automatically gain support for permissioned distributed
bridging in the near future – by the virtue of platform
developments.

The rest of this paper is structured as follows. Section II
presents the necessary technical background. Section III pro-
vides an overview of existing relevant blockchain interop-
erability approaches. Our solution design is introduced in
Section IV. Sections V and VI present the implementation and
a preliminary evaluation of the solution. We close the paper
with concluding remarks.

II. BACKGROUND

We provide an overview of the technical background on
which the paper is based. We briefly introduce three related
Hyperledger projects: Fabric, Besu, and Cacti; and describe
SATP, an asset transfer protocol between trusted blockchain
networks.

A. Hyperledger Fabric

Hyperledger Fabric [3] is an open source project under
the Hyperledger umbrella that enables the creation of per-
missioned blockchains. Permissioned blockchains are usually
used by organizations (or consortiums) that demand data
sharing in such a way that all nodes are known and identified,
contrary to widely used public blockchains, such as Bitcoin
[27]. Additionally, Fabric enables the deployment of smart
contracts, called chaincode, using a variety of programming
languages including JavaScript, Java, and Go. Fabric end-to-
end transaction latency and throughput are engineerable sys-
tem properties and can go as low as hundreds of milliseconds
and as high as thousands of transactions per second [3].

B. Hyperledger Besu

Hyperledger Besu (or just Besu) is an open-source Ethereum
client that is distinguished by its ability to create public and

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 14,2024 at 18:57:20 UTC from IEEE Xplore. Restrictions apply.

private networks. Its use is directed at the enterprise environ-
ment, supporting a wide range of consensus mechanisms (e.g.,
PoW, PoA, and IBFT).

C. Hyperledger Cacti

Hyperledger Cacti [26] is a project in the Hyperledger
ecosystem. Cacti is a blockchain integration framework that
takes further steps when it comes to interconnecting enterprise-
grade blockchain networks. It accomplishes that by offering a
pluggable architecture that makes possible the execution of
operations on as many networks as needed, through the usage
of Business Logic Plugins (BLP) and Ledger Connectors.
BLPs capture the necessary business logic for a certain ap-
plication or protocol, whereas ledger connectors expose APIs
that facilitate interaction with specific ledgers. For instance,
the Fabric Ledger Connector provides an API so that any BLP
can interact with an underlying Hyperledger Fabric network.

Recently, Cacti and Weaver [2], a Hyperledger Lab ex-
plained in Section III, have decided to merge their projects
to form Hyperledger Cacti. Nevertheless, we refer to the
project as Cacti since the merge has not been performed yet.
Additionally, given Cacti’s pluggable architecture, this change
will not impact our solution in the future.

D. SATP

The Secure Asset Transfer Protocol [20] (previously Open
Digital Asset Protocol) is an asset transfer protocol between
two networks, based on relays [13], relying on trusted gate-
ways to execute the protocol. This gateway-based architecture
can be compared with the concept of Autonomous Systems
when the Internet was born [19]. At the time, the solution
proposed to scale up and interconnect these networks was to
implement border gateway routers, providing an entry point
to each network. We can think of blockchains as the networks
and gateways as the routers; these gateways run the Secure
Asset Transfer Protocol, acting as the egress/ingress for data. A
major advantage of this architecture is being ledger-agnostic.

In SATP, client applications are responsible for communi-
cation with their local gateway in order to initiate a gateway-
to-gateway asset transfer. In essence, the protocol is divided
into three main phases/flows1:

1) Transfer Initiation Flow: gateways come to an agreement
regarding the asset being transferred and exchange infor-
mation on the legal frameworks under which they operate;

2) Lock-Evidence Verification flow: the asset being trans-
ferred is locked (no more transactions targeting the asset
are approved) in the source chain and the proof is sent
to the target gateway;

3) Commitment Establishment Flow: both gateways commit
the changes in their local ledgers, which corresponds to
the deletion/burning of the asset in the source chain and
the creation/minting of a representation in the target one.
The end result is an asset in the target chain which is a
representation of the asset deleted in the source one.

1https://github.com/CxSci/IETF-SATP/blob/main/Figures/
gateway-model-flows-v10PNG.png, accessed on February 6, 2023

For the time being, gateways are assumed to be trusted.
In order to relax this trust assumption, progress has been
made paving the way for trustless gateways, leveraging the
concept of blockchain views [11], [1], [28]. In this case,
gateways exchange verifiable proofs to attest to the success
of the operations performed in each ledger. On the other
hand, even though the implementation represents a non-trivial
solution, one can think of securing gateways at the hardware
level, through the deployment of such infrastructure in Trusted
Execution Environments (TEE), such as Intel SGX [25] (a
solution based on TEE to enable interoperability is [24]).

SATP is currently implemented in Hyperledger Cacti in
the form of a Business Logic Plugin, along with its crash
recovery mechanism [9] which provides recovery and roll-
back procedures in the presence of crashes. These procedures
specify the steps necessary for a crashed gateway to resume
the execution of the protocol, and in the worst case scenario
rollback the execution – given that a DLT is an append-only
data structure, rolling back the protocol corresponds to issuing
transactions with the contrary effect of the ones already issued.
For accountability, auditability, and integrity purposes, the
implementation uses a decentralized log storage infrastructure
(an IPFS network [15]), where the gateways publish the proofs
necessary for a successful asset transfer.

III. RELATED WORK

In this section we present some solutions focused on
interoperability between blockchains considering our CBDC
bridging use case. We lay out the most representative solutions;
this list is not meant to be exhaustive.

An extensive survey on blockchain interoperability [13]
classifies interoperability solutions into three categories:
1) Public Connectors provide interoperability between public
blockchains – e.g., sidechains, notary schemes, and HTLCs;
2) Blockchains of Blockchains pave the way for the “creation
of application-specific blockchains that interoperate with each
other” [13] on top of existing infrastructure – e.g., Polka-
dot [32] and Cosmos [22]; 3) Hybrid Connectors encompasses
the solutions that are not suitable to any of the previous two
classes, mainly the ones directed to both public and private
environments.

There are multiple trustless and privacy securing bridging
solutions such as Falazi et al. [18], A. Xiong et al. [34],
Horizon [23], Stone D. [31], and Bridging Sapling [29]. These
solutions, integrated into the Public Connectors category, are
either focused on permissionless blockchains that support
cryptocurrencies or do not have working implementations of
the protocols. We also discard solutions that require both
ledgers to have access to each other (e.g. SPV-like solutions),
or that allow any user to become a bridging validator given the
permissioned nature of our use case (e.g., a group of validators
running a consensus mechanism in order to accept/reject a
cross-chain transaction, where anyone can run a node [34]).

Under the Hybrid Connectors [13] category, we find the
Trusted Relay solutions where a trusted relay redirects packets

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 14,2024 at 18:57:20 UTC from IEEE Xplore. Restrictions apply.

TABLE I
COMPARISON BETWEEN SOLUTIONS THAT SUPPORT PERMISSIONED

NETWORKS. TRANSFERS AND EXCHANGES ARE BETWEEN FABRIC AND
EVM BASED BLOCKCHAINS

Provides
Infrastructure

Asset
Transfer

Asset
Exchange

No changes
to ledgers

Interledger ✓ ? ✓ ✓
Weaver ✓ ✗ ✓ ✓
Cacti ✓ ✓ ✓ ✓
YUI ✓ ✓ ✓ ✗

between blockchains. Currently, there is only one implemen-
tation of a bridge between Fabric and EVM-based blockchains
created by Datachain and NTT Data in cooperation. The bridge
is created using the YUI Hyperledger Labs project2, that lever-
ages the Inter-Blockchain Communication protocol (IBC). The
authors leverage an SPV-like architecture that trusts a relayer
to forward the block headers of each blockchain as packets.
Since both chains need IBC support, the necessity of making
changes to the underlying ledgers, to support IBC, constitutes
a downside of the solution. Additionally, Interledger [33]
introduces a relay architecture similar to Cacti’s that provides
the underlying infrastructure for interoperability; however, the
protocol to realize asset transfers was not found.

Weaver [2] is a Hyperledger Labs project that proposes a
generalized protocol for data transfer within permissioned net-
works using trusted relay services. Relay services are respon-
sible for representing a blockchain and running a protocol to
transfer data between them. SATP [20] is a similar solution in
which the relays are called gateways, providing a standardized
communication protocol between gateways. While Weaver is
focused on both the infrastructure and the communication
protocol, SATP is focused only on the standardization of the
latter. Weaver only supports transfers of assets between Fabric
and Corda [21], thus, for now, not suitable for our use case.
Therefore, we opt for using the SATP implementation in Cacti
as the underlying protocol and infrastructure for our solution.

Table I presents a comparison between these solutions.
Interledger and Hyperledger Cacti are positioned as the best
solutions that meet our requirements. Their architecture is very
similar; however, we could not find the underlying protocol
used for the execution of asset transfers. Also, given that Cacti
presents a more mature project and includes the implementa-
tion of a future standard for communication between networks,
we choose Cacti as the base for our solution.

IV. SOLUTION DESIGN

We propose a bridging approach between Fabric and Besu
using Cacti and SATP. In this section, we present our bridging
model and describe the components of the architecture that im-
plements the approach (see Figure 1). Note that the solution we
present might also fit other sorts of regulated assets operated
within highly regulated environments, besides CBDCs.

2https://github.com/hyperledger-labs/yui-docs,
accessed on February 6, 2023

A. Bridging Model

Any cross-chain bridge must have the means to translate
data between blockchains. Technologically heterogeneous net-
works pose special challenges, such as non-trivial harmo-
nization of protocol finalities due to different architectures
and consensus mechanisms, or harmonizing the syntactic
and semantic differences between communication interfaces
and APIs. Bridging Fabric and Besu is certainly a hetero-
geneous setup: Besu is an Ethereum client (although we
assume deterministic finality consensus), while Fabric uses a
special execute-order-validate deterministic finality consensus
approach [3] and a transaction and identity model radically
different from Ethereum.

As justified in Section III, we base the architecture of
the solution on Hyperledger Cacti. Cacti was envisioned to
enable interoperability through a set of nodes (Cacti Nodes)
that can together form a consortium and validate cross-chain
transactions by running a consensus protocol [26]. It can
be thought of as a relay solution that works in a trusted
environment working towards a trustless setting in the future.
Although the consortium feature is not yet fully available in
the project, it is planned for the near future; therefore, for now,
we leverage a single Cacti Node.

Each Cacti Node can be composed of multiple API Servers,
hence our solution comprises two (Figure 1), each targeting a
different side of the bridge. We use both Fabric and Besu
ledger connectors34 as means to access the ledgers; IPFS
connectors allowing communication with an IPFS network
that, as explained before, acts as decentralized log storage for
integrity, accountability and auditability purposes; finally, the
SATP business logic plugin5. The SATP plugin includes the
gateway logic and exposes an API that is accessible to the
end users to trigger bridging operations — bridging out or
bridging back CBDC.

This bridging model can be easily extended to other ledgers
with minor effort, using SATP, as most existing blockchains
support the deployment of smart contracts.

B. CBDC and Common Asset definitions

The integration of both Fabric and Besu can be achieved
through the definition of an asset that can be interpreted by
both parties or through the development of a translation algo-
rithm designed specifically for the required bridge. Because
of its flexibility and simplicity, we opt for the first alternative;
therefore, we build 1) a specification for the CBDC in which
tokens are represented in each ledger through chaincode/smart
contracts; and 2) a common asset definition called Asset Refer-
ence that represents a certain amount of CBDC to be bridged.
This can be thought of as the piece that enables interoperability
between both chains making the bridging operation possible.

3https://github.com/hyperledger/Cacti/tree/main/packages/
Cacti-plugin-ledger-connector-fabric, accessed on February 6, 2023

4https://github.com/hyperledger/Cacti/tree/main/packages/
Cacti-plugin-ledger-connector-besu, accessed on February 6, 2023

5https://github.com/hyperledger/Cacti/tree/main/packages/
Cacti-plugin-odap-hermes, accessed on February 6, 2023

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 14,2024 at 18:57:20 UTC from IEEE Xplore. Restrictions apply.

HYPERLEDGER
FABRIC

CONNECTOR

IPFS

CONNECTOR

HYPERLEDGER BESUHYPERLEDGER FABRIC

BESU

ODAP

GATEWAY

FABRIC

ODAP

GATEWAY

HYPERLEDGER CACTUS
NODE

SATP/

ODAP

API SERVER 1 API SERVER 2

CBDC

CHAINCODE

ASSET REFERENCE

CHAINCODE

IPFS

CHANNEL 1

ORG 1 / Finantial Institution ORG 2 / Bridge Entity

CharlieAlice

Bob’s

Fabric ID

Bob

ASSET REFERENCE

SMART CONTRACT

CBDC

SMART CONTRACT

Alice’s

Fabric ID

Charlie’s

Fabric ID

Bob’s

Account

Alice’s

Account

Charlie’s

Account

HYPERLEDGER
BESU

CONNECTOR

IPFS

CONNECTOR

Fig. 1. Architecture of the solution – A bridge between Fabric and Besu using SATP’s implementation in Cacti

Thus, SATP will not interact directly with the CBDC, rather
with Asset References.

The reasons for the creation of this layer are threefold.
Firstly, the bridge is not bound to a specific CBDC imple-
mentation, thus serving as an interface. Moreover, it protects
against double-spending given that it offers a locking mech-
anism, hence, a client cannot initiate two bridging operations
on the same asset at the same time. Finally, it allows storing
information about the CDBC locked in the source chain in
another data structure.

In each ledger, the deployed smart contracts adhere to a
specified mapping between the ledger-specific asset definition
and this common asset definition of the bridging solution.
Specifically, when receiving an Asset Reference from the
other side of the bridge, one understands the definition and
is capable of translating the object into function calls to the
CBDC smart contracts/chaincode.

The Asset Reference and the CBDC smart contracts inter-
operate bidirectionally (explored in Sections V-B and V-C)
– when bridging out and bridging back CBDC. The Asset
Reference smart contracts’ access control is defined by only
accepting requests from the bridge and CBDC smart contract
depending on the function calls.

Each asset reference has five attributes. It contains an
identifier used exclusively by the clients to initiate bridging
operations on the escrowed CBDC, that must be unique
within the Asset Reference chaincode and smart contract,
respectively. Given that a user can initiate two simultaneous
bridge requests on the same Asset Reference, there must be a
boolean indicating whether the asset reference is being bridged
or not. If isLocked is true, requests must be rejected. The
amount field indicates the amount of CBDC represented by
this Asset Reference. It matches the amount of CBDC put
in custody by the final user. This final user is the owner of
the Asset Reference. At the same time, this is the sender and
recipient of the CBDC (as explained in Section IV-C). The
tokenID field is the ID of the token that is represented by this
asset. This is due to the flexibility of the solution, whether
multiple CBDC definitions can be supported (e.g. a digital

euro or a digital USD).

C. Asset Transfer Model

Let us denote userA’s Fabric Identity (FI) by IdA, and its
Ethereum address as AddrA. We represent bridging out of X
CBDC from user A FI in Fabric to user A’s address in Besu
as IdA

X CBDC−−−→ AddrA. The bridge back of X CBDC from user
A’s address in Besu to user A’s FI in Fabric is represented as
AddrA

X CBDC−−−→ IdA.
Our ultimate goal is to perform a successful transfer of

CBDC from a Hyperledger Fabric to a Hyperledger Besu
network; however, we have not defined yet what are the
requirements that must be met for such an asset transfer to
be deemed successful. We summarize them as follows:

1) the bridging out of X CBDC represented as IdA
X CBDC−−−→

AddrB , is only valid if user A in the source ledger
corresponds to User B on the target ledger;

2) the bridging back of X CBDC represented as
AddrA

X CBDC−−−→ IdB is only valid if user A in the source
ledger corresponds to User B on the target ledger;

3) the bridging out of X CBDC represented as IdA
X CBDC−−−→

AddrA, is only valid if X CBDC were locked in Fabric
and cannot be double spent (two-way pegging mecha-
nism);

4) the bridging back of X CBDC represented as
AddrA

X CBDC−−−→ IdB is only valid if X CBDC were burnt
in Besu and cannot be double spent;

Note that in SATP, the asset reference in the source chain
is deleted before the creation of its representation in the target
chain; however, the amount of CBDC it represents is not, it is
maintained in locked/escrowed in the original one. In fact, it
remains in secured custody until a user bridges back the CBDC
to the source chain again – it might not be the same user
because it can change hands in the target chain. The amount
of CBDC that is put in custody is constantly tracked, and it
is possible (for the authorized members of the consortium –
e.g., the Central Bank) to know how much CBDC was bridged
out at any moment. This plays a fundamental part in future
auditability procedures. Additionally, for simplicity in terms of

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 14,2024 at 18:57:20 UTC from IEEE Xplore. Restrictions apply.

KYC/AML compliance, we only authorize transfers of value
from/to the same user.

D. Failure Model
Since our solution is built on top of the existing SATP, it

inherits its properties. Therefore, our CBDC bridging solution
guarantees atomicity, consistency, integrity, durability, and
termination properties [12]. In addition, it also provides the
logging infrastructure for future auditability procedures [9].
The protocol is not concerned with Byzantine (arbitrary)
behavior from gateways; it supports crash faults and there
is a crash recovery mechanism that comprises both a self-
healing mode – where one gateway recovers by itself – or
a primary-backup mode – one gateway is replaced by an
authorized backup gateway. In the worst-case scenario, the
rollback procedure is triggered if there is no communication
beyond a defined timeout. An earlier analysis of the recovery
and rollback procedure showed that the rollback is very costly
and should be avoided as much as possible – it represents
38% of the total latency, compared to 0.5% when running
the recovery procedure alone [6]. Hence, a conclusion from
this work is that “if we guarantee a backup gateway for
each gateway running SATP, the recovery procedure is always
triggered to the detriment of the rollback.” [6]. This gives us
some confidence in the performance of the protocol when the
necessary infrastructure is provided, e.g., multiple gateways
can serve as backups to one another.

E. Security Model
SATP assumes the correct behavior of all the gateways

involved in the bridging operation. However, we protect the
solution from any possible misbehavior of the final users when
triggering bridging operations.

Section IV-C presents the Asset Transfer model which
encompasses a set of requirements for a successful bridging
operation. In particular, the bridge rejects any request made
to bridge CBDC from/to different users. Moreover, the CBDC
and the Asset Reference smart contracts have access control
policies that expose only a set of predetermined functions
to the exterior based on their role. In the source chain, the
CBDC chaincode is the one that can be directly accessed by
end users and only exposes the Escrow functionality. In turn,
the Asset Reference chaincode can only be accessed by the
bridge entity or by the CBDC smart contract (e.g., when tokens
are escrowed/put in custody, which triggers the creation of an
Asset Reference representing the same amount of CBDC). In
the target chain, the CBDC smart contract is the only one that
can be called by the end users – to escrow funds in order
to bridge them back. Other operations exposed by the CBDC
smart contract must only be exposed to the Asset Reference
smart contract, which in turn can only be called by the bridging
entity (e.g., deleting an Asset Reference triggers a call to the
burn function of the CBDC smart contract).

V. IMPLEMENTATION

We implement the presented solution in Hyperledger Cacti
as an application built on top of the existing SATP business

logic plugin, comprising around 4k lines of code, plus 2k for
tests. The source code will be merged into the main branch of
Hyperledger Cacti’s project in the near future.

A. Identity Management

In order to guarantee requirements 1 and 2 enumerated
in IV-C, the bridge must be able to establish a mapping
between Fabric Identities and Ethereum addresses.

We explore the possibility of generating Ethereum addresses
based on the keys of the existing X.509 certificates used
by Fabric; the elliptic curves used in Besu and Fabric-
generated certificates turned out to be incompatible. Fabric
only supports prime256v1, secp384r1, or secp521r1 curves6,
whereas Ethereum employs the secp256k1 curve[4], just like
Bitcoin [27]. Therefore, we decide to create a registry that
maps Fabric IDs to Ethereum addresses, and the other way
around, in the Fabric ledger The current prototype implements
one-to-one mappings, however, there is no architectural/tech-
nical obstacle to defining one-to-many mappings as well. As
an example, this would enable the support for simultaneous
transactions from one CBDC account to multiple Ethereum
addresses participating in different business collaborations.

The bridge has the responsibility of verifying the compli-
ance of each request with the content of the identity registry.
These checks are performed in SATP’s first phase, where
gateways also must reach an agreement on the asset to be
transferred, the respective owner, and whether it complies with
the asset transfer model detailed in Section IV-C.

B. Hyperledger Fabric

In our current implementation, we leverage a single-
channel Fabric network composed of two organizations: Org1
(for CBDC holders and the issuing central bank), and Org2
(the bridging entity). In the prototype, we enroll two users
in Org1 (Alice and Charlie) and one user in Org2 (Bob).
Additionally, we leverage the Solo ordering service [30] for
testing purposes (a single node that simulates consensus). All
of this is available in a Fabric Test Network provided by
Cacti. It allows quickly spinning up a Fabric network with the
above configuration, while facilitating the deployment of the
chaincode. The prototype is trivial to extend to a more refined
multi-organization setup; the key point is the presence of the
“bridging organization”. In the Fabric network, the CBDC
smart contract provides out-of-the-box support for the well-
known ERC20 Token Standard7 – a specification of fungible
tokens. Since the ERC20 token standard is directed to EVM-
based blockchains, on the Fabric side, we leverage and extend
the implementation of an existing ERC20 token standard for
Fabric, in JavaScript, available in the fabric-samples reposi-
tory8. It is possible to use other token standards like ERC721,

6https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/users-guide.
html, accessed on February 6, 2023

7https://ethereum.org/en/developers/docs/standards/tokens/erc-20,
accessed on February 6, 2023

8https://github.com/hyperledger/fabric-samples,
accessed on February 6, 2023

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 14,2024 at 18:57:20 UTC from IEEE Xplore. Restrictions apply.

or ERC1400 (if additional access control is necessary) under
some restrictions, namely supporting the Escrow and Refund
functionality. The Escrow function gives the user the ability
to escrow CBDC, which, in our solution, is implemented as
a transfer of ownership of CBDC from the end user to a user
belonging to Org2 (e.g., Bob). On the other hand, the Refund
function reverts the operation performed by Escrow, thus, it
can only be called by an Org2 user that has control over
escrowed funds.

Furthermore, the Asset Reference chaincode offers not only
the implementation of the Asset Reference data structure
mentioned before, but also functionality such as CreateAs-
setReference, DeleteAssetReference, LockAssetReference, Un-
lockAssetReference, and Refund.

As stated previously, the Asset Reference and the CBDC
smart contracts interoperate bidirectionally. When a user es-
crows funds in the CBDC chaincode, a new asset reference
is created that represents the amount of CBDC that was
escrowed. This asset reference is then transferred from Fabric
to Besu using SATP, which is used by the bridge to mint
the corresponding CBDC to userA’s Ethereum address in the
target chain. On the other hand, after bridging back an asset
reference, the bridge initiates the refund operation against it,
which triggers the refund of CBDC in the CBDC chaincode.

Note that, at any time, it is possible to query the CBDC
chaincode on the Fabric side so as to retrieve the total value
locked (TVL) in the chaincode at the moment.

C. Hyperledger Besu
Similarly to Fabric, we leverage a Besu all-in-one image

provided by Cacti in the form of a Besu Test Network, creating
user accounts for the same users as before: Alice, Charlie, and
Bob.

On the Besu side, similarly to what was mentioned in the
last section, we provide out-of-the-box support for the ERC20
Token Standard for the CBDC smart contract, but it may also
be implemented as other token standards. We summarize the
requirements for an asset to be bridgeable from Besu to Fabric
as having both the Mint and Burn functionality. The Mint
function allows CBDC to be minted to an address. On the
other hand, the Burn function reverts the operation performed
by the previous one. Either operation can only be executed by
the bridging entity through the Asset Reference smart contract.

Similarly to the Fabric side, the Asset Reference smart
contract supports the following functionality: CreateAssetRef-
erence, DeleteAssetReference, LockAssetReference, UnlockAs-
setReference, and Mint. When bridging out CBDC, the mint
function is called, which triggers the minting of CBDC to the
final user address. On the contrary, when bridging back CBDC,
the DeleteAssetReference function is called by the gateway
which burns tokens from the final user address in the CBDC
smart contract. The ownership of the Asset Reference smart
contract is given to the bridge entity.

D. Bridge Components
In Cacti, each API Server (containing the gateways, and the

connectors to the networks) is exposed to the exterior and is

accessible by the end users. We implement two extensions, one
for each ledger, to the default behavior of an SATP gateway
by developing the ledger-specific functionality necessary to
run the protocol (lock, delete, or create an asset reference).
Moreover, we implement the functionality related to issuing
the rollback transactions.

In the first phase of the protocol, where gateways must agree
on the parameters of the transfer, a set of checks is run to
make sure that the operation is valid regarding the rules and
requirements it must enforce in order to be deemed a valid
transfer. These checks range from the amount of CBDC to
be bridged, to the validity of the sender/receiver pair, and the
asset reference.

E. Example Scenario

We demonstrate the bridging operations in the scenario
captured by Figure 2, where Alice initiates the bridge out 500
CBDC to the target chain – i.e., IdAlice

500 CBDCX−−−−−→ AddrAlice.
Alice starts by putting the 500 CBDC in custody by calling

the Escrow function in the CBDC chaincode. Internally, it
triggers the transfer of those funds to the bridge address and
calls the CreateAssetReference function in the Asset Reference
chaincode. An Asset Reference object (Listing 1) is created
that represents the escrowed amount.

Listing 1. Asset Reference representing 500 CBDC
{
"id": "ID1",
"isLocked": "false",
"amount": 500,
"owner": "IdAlice",
"tokenID": "CBDCX"

}

Alice now has the identifier (ID1) of the asset reference that
represents her 500 CBDC that can be used by her to trigger the
bridging out operation. The initiator of the transaction needs
to match the owner of the asset reference, otherwise any user
could bridge other users’ tokens. In this case, the operation is
not permitted.

Alice can now use the asset reference ID1 to make a
bridge out request to the gateway on the source chain –
Gateway 1. Gateway 1 communicates with Gateway 2 to
initiate the execution of SATP. SATP executes the locking and
deleting of the asset in the source chain, and the creation of
a representation in the target one [20], thus an asset reference
would be created in the latter. Given that the bridged CBDC
might change hands in the target chain, we do not want to
create the asset reference to avoid generating inconsistencies
(e.g., an asset reference representing 500 CBDC exists, but the
user has already transferred a portion of the funds to another
user). Hence, the bridge does not create an asset reference;
instead, it calls the mint function that is responsible for parsing
the Asset Reference with id ID1 and mints 500 CBDC to
Alice’s Ethereum address in the CBDC smart contract.

The opposite operation, bridging back, is not shown here
for the sake of preserving space. To bridge back tokens, Alice
needs to perform the same operations but inversely. Tokens

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 14,2024 at 18:57:20 UTC from IEEE Xplore. Restrictions apply.

are escrowed in the target chain, creating an asset reference
that will be used for the bridging entity when running SATP.
Instead of minting tokens to the final user FI, there is a Refund
operation in the source chain. This transfers the tokens that
were in custody back to Alice. Note that one can choose to
bridge back only a portion of CBDC that was bridged out
initially.

ALICE CBDC CC

escrow(500)

transfer(bridge_address, 500)

createAssetReference(500)

return id1

initiateODAP(id1)

lockAssetReference(id1)

init

SATP/ODAP

mint(id1)

return

return

return

end

SATP/ODAP

mint(500, Alice)

return

return

deleteAssetReference(id1)

Phase 1

Phase 2

Phase 3

return id1

CBDC SCASSET REF CC ASSET REF SCGATEWAY 1 GATEWAY 2

Fig. 2. Bridging out sequence diagram – IdAlice
500 CBDC−−−−−→ AddrAlice

VI. EMPIRICAL EVALUATION

We set up a pilot environment to perform an early evalu-
ation of the solution. We used a GCP Compute Engine VM,
with an instance composed of 4 vCPUs, and 20 GB of memory,
using an Ubuntu 18.04 image. We locally spun a Fabric and
Besu network using the publicly available Cacti Fabric All-In-
One and Cacti Besu All-In-One Docker images. The results
shown in this section are the average of 500 independent runs.
We study the latency introduced by the solution, separating the
latency inserted by ledger-specific operations (i.e., lock/delete
at the Fabric side and mint at the Besu side) from those of the
bridging solution (steps executed by gateways, including their
communication). This is our first validation on whether the
delay caused by the solution is within the acceptable range.

Our preliminary results, in Figure 3, show that the overhead
introduced by the bridge (compared to the steps that re-
quire blockchain transactions) are consistent with other recent
studies (e.g., [14] using Cacti, separating intra- and inter-
blockchain communication) and, in most cases, are below 30%
of the end-to-end response time. In detail, the mean value
for the complete execution of the protocol is around 7164
ms, whereas the computation associated with gateways and
their communication is around 2019 ms. There are of course

several further improvements of the measurement configura-
tion necessary before a well-founded benchmarking campaign:
separation of components, changing consensus mechanism at
the Besu side (from PoW to IBFT), and more precise workload
definitions would be the most obvious ones.

0

30

60

90

120

0 2500 5000 10000 125007500
Latency(ms)

Fr
eq

ue
nc

y

Bridging
Total

Latency distribution (n=500)

Fig. 3. Bridging protocol vs overall latency

VII. CONCLUSIONS

In this work, we contribute to the state of the art with an in-
teroperability approach across permissioned chains in heavily
regulated settings, while also adopting emerging standards that
can alleviate some core interoperability problems. We leverage
SATP, under specification at IETF, to conduct cross-chain asset
transfers between heterogeneous permissionless blockchains.
We implement a CBDC bridging solution between Fabric
and Besu, leveraging SATP’s implementation in Hyperledger
Cacti. The key-enabler of interoperability is a common as-
set definition that represents a certain amount of CBDC.
Moreover, a mapping between Fabric Identities and Ethereum
addresses is assembled to ensure client-initiated operations
follow our Asset Transfer Model. Finally, our analysis proves
our initial hypothesis in which the total latency of the solution
is tightly coupled to the chosen ledgers – i.e., gateways, do
not incur significant overhead.

ACKNOWLEDGMENTS

The Hyperledger Foundation supported this work as part of
the Hyperledger Mentorships program 2022. Rafael was sup-
ported by national funds through Fundação para a Ciência e a
Tecnologia (FCT) with reference UIDB/50021/2020 (INESC-
ID) and 2020.06837.BD, and Blockdaemon. The work of
Imre Kocsis and László Gönczy was partially supported by
the Cooperation Agreement between the Hungarian National
Bank (MNB) and the Budapest University of Technology and
Economics (BME). We thank the anonymous reviewers for
suggestions that helped us improve this paper.

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 14,2024 at 18:57:20 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] E. Abebe, Y. Hu, A. Irvin, D. Karunamoorthy, V. Pandit, V. Ramakr-
ishna, and J. Yu. Verifiable observation of permissioned ledgers. CoRR,
abs/2012.07339, 2020.

[2] E. Abebe, Y. Hu, A. Irvin, D. Karunamoorthy, V. Pandit, V. Ramakr-
ishna, and J. Yu. Verifiable observation of permissioned ledgers. In
2021 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), pages 1–9, 2021.

[3] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al.
Hyperledger fabric: a distributed operating system for permissioned
blockchains. In Proceedings of the thirteenth EuroSys conference, pages
1–15, 2018.

[4] A. M. Antonopoulos and G. Wood. Mastering ethereum: building smart
contracts and dapps. O’reilly Media, 2018.

[5] R. Auer, P. Haene, H. Holden, et al. Multi-CBDC arrangements and the
future of cross-border payments. BIS Papers, 2021.

[6] A. Augusto, R. Belchior, A. Vasconcelos, and T. Hardjono. Resilient
Gateway-Based N-N Cross-Chain Asset Transfers. TechRxiv, Jun. 2022.
[Online]. Available: https://www.techrxiv.org/articles/preprint/Resilient
Gateway-Based N-N Cross-Chain Asset Transfers/20016815.

[7] Banque de France. Digital euro experiment, combined feasibility –
tiered model, July 2021. https://www.banque-france.fr/sites/default/files/
media/2021/08/02/821220 digital euro en.pdf.

[8] A. Bechtel, A. Ferreira, J. Gross, and P. Sandner. The future of payments
in a dlt-based european economy: A roadmap. In The Future of Financial
Systems in the Digital Age, pages 89–116. Springer, Singapore, 2022.

[9] R. Belchior, M. Correia, A. Augusto, and T. Hardjono. Dlt gateway crash
recovery mechanism draft 04. Internet-Draft draft-belchior-gateway-
recovery-04, Internet Engineering Task Force, 2021.

[10] R. Belchior, P. Somogyvari, J. Pfannschmid, A. Vasconcelos, and
M. Correia. Hephaestus: Modelling, Analysis, and Performance
Evaluation of Cross-Chain Transactions. TechRxiv, Sep. 2022. [Online].
Available: https://www.techrxiv.org/articles/preprint/Hephaestus
Modelling Analysis and Performance Evaluation of Cross-Chain
Transactions/20718058.

[11] R. Belchior, L. Torres, J. Pfannschmid, A. Vasconcelos, and
M. Correia. Is My Perspective Better Than Yours? Blockchain
Interoperability with Views. TechRxiv, Jun. 2022. [Online]. Available:
https://www.techrxiv.org/articles/preprint/Is My Perspective Better
Than Yours Blockchain Interoperability with Views/20025857.

[12] R. Belchior, A. Vasconcelos, M. Correia, and T. Hardjono. Hermes:
Fault-tolerant middleware for blockchain interoperability. Future Gen-
eration Computer Systems, 2021.

[13] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia. A survey
on blockchain interoperability: Past, present, and future trends. ACM
Comput. Surv., 54(8), oct 2021.

[14] P. Bellavista, C. Esposito, L. Foschini, C. Giannelli, N. Mazzocca, and
R. Montanari. Interoperable Blockchains for Highly-Integrated Supply
Chains in Collaborative Manufacturing. Sensors, 21(15):4955, July
2021.

[15] J. Benet. IPFS – Content Addressed, Versioned, P2P File System. arXiv,
2014. [Online]. Available: http://arxiv.org/abs/1407.3561.

[16] BIS Innovation Hub. Central bank digital currencies: foundational
principles and core features, October 2020. https://www.bis.org/publ/
othp33.pdf.

[17] U. Emanuele, B. Alessia, C. Daniele, C. Angela, C. Marco, F. Simone,
G. Giuseppe, G. Giancarlo, M. Gabriele, T. Pietro, and V. Alessia. A
digital euro: a contribution to the discussion on technical design choices.
Mercati, infrastrutture, sistemi di pagamento, (10), 2021.

[18] G. Falazi, U. Breitenbücher, F. Daniel, A. Lamparelli, F. Leymann, and
V. Yussupov. Smart contract invocation protocol (scip): A protocol for
the uniform integration of heterogeneous blockchain smart contracts. In
S. Dustdar, E. Yu, C. Salinesi, D. Rieu, and V. Pant, editors, Advanced
Information Systems Engineering, pages 134–149, Cham, 2020. Springer
International Publishing.

[19] T. Hardjono, A. Lipton, and A. Pentland. Towards an interoperability
architecture for blockchain autonomous systems. IEEE Transactions on
Engineering Management, 67(4):1298–1309, 2019.

[20] M. Hargreaves, T. Hardjono, and R. Belchior. Secure Asset Transfer
Protocol draft 00. Internet-Draft draft-hargreaves-sat-core-00, Internet
Engineering Task Force, 2021. [Online]. Available: https://datatracker.
ietf.org/doc/draft-hargreaves-sat-core/.

[21] M. Hearn and R. G. Brown. Corda: A distributed ledger. Corda
Technical White Paper, 2016, 2016.

[22] J. Kwon and E. Buchman. Cosmos whitepaper, 2019.
[23] R. Lan, G. Upadhyaya, S. Tse, and M. Zamani. Horizon: A gas-efficient,

trustless bridge for cross-chain transactions. CoRR, abs/2101.06000,
2021.

[24] M. Li, J. Weng, Y. Li, Y. Wu, J. Weng, D. Li, G. Xu, and R. Deng.
Ivycross: A privacy-preserving and concurrency control framework
for blockchain interoperability. Cryptology ePrint Archive, Paper
2021/1244, 2021. https://eprint.iacr.org/2021/1244.

[25] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. Rozas. Intel® software guard extensions (intel® sgx)
support for dynamic memory management inside an enclave. In
Proceedings of the Hardware and Architectural Support for Security
and Privacy 2016, HASP 2016. Association for Computing Machinery,
2016.

[26] H. Montgomery, H. Borne-Pons, J. Hamilton, M. Bowman, P. Som-
ogyvari, S. Fujimoto, T. Takeuchi, T. Kuhrt, and R. Belchior. Hyper-
ledger cacti whitepaper. https://github.com/hyperledger/Cacti/blob/main/
whitepaper/whitepaper.md, 2020. [Online].

[27] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review, page 21260, 2008.

[28] C. Pedreira, R. Belchior, M. Matos, and A. Vasconcelos. Securing
Cross-Chain Asset Transfers on Permissioned Blockchains. TechRxiv,
2022. [Online]. Available: https://www.techrxiv.org/articles/preprint/
Trustable Blockchain Interoperability Securing Asset Transfers on
Permissioned Blockchains/19651248, 2022.

[29] A. Sanchez, A. Stewart, and F. Shirazi. Bridging sapling: Private cross-
chain transfers, 2022.

[30] S. Shalaby, A. A. Abdellatif, A. Al-Ali, A. Mohamed, A. Erbad,
and M. Guizani. Performance evaluation of hyperledger fabric. In
2020 IEEE International Conference on Informatics, IoT, and Enabling
Technologies (ICIoT), pages 608–613, 2020.

[31] D. Stone. Trustless, privacy-preserving blockchain bridges. https://arxiv.
org/abs/2102.04660, 2021. [Online].

[32] G. Wood. Polkadot: Vision for a heterogeneous multi-chain framework.
White Paper, 21, 2016.

[33] L. Wu, Y. Kortesniemi, D. Lagutin, and M. Pahlevan. The flexible in-
terledger bridge design. In 2021 3rd Conference on Blockchain Research
& Applications for Innovative Networks and Services (BRAINS), pages
69–72, 2021.

[34] A. Xiong, G. Liu, Q. Zhu, A. Jing, and S. W. Loke. A notary group-
based cross-chain mechanism. Digital Communications and Networks,
2022.

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on May 14,2024 at 18:57:20 UTC from IEEE Xplore. Restrictions apply.

		2023-07-08T16:40:50-0400
	Preflight Ticket Signature

