Distributed Ledger Interoperability Security

Rafael Belchior (INESC-ID, Instituto Superior Técnico)

Supervisor: Prof. André Vasconcelos Co-supervisor: Prof. Miguel Pupo Correia

2 Billion USD

stolen from blockchain bridges since June 2021

According to DefiLlama, represents 35% of all funds stolen in DeFi

Average 3 Million USD per day

the funding for 132 full PhD scholarships 💽 per day, for 3 years

Why do we care about DLT

- DTCC, Chainlink Complete Pilot to Accelerate Fund Tokenization with JPMorgan, Templeton, BNY Mellon Participating; LINK Gains 7%
- h The aim of the Sma
- Th disseminate fund da
- As

Dv Krie

By Krisztian Sandor 🕓 May

1 write июош поw онсот, сгурго ини оюскенит син

Blockchain

BlockchainPT

Follow

Before oracles came along, practically the only thing anyone did with blockchains was **move money around** and breed ugly digital blockchain cats called CryptoKitties.

When oracles first came on line, it felt like living in a primitive city **that finally got electricity**.

from "The Oracle: A Novel" by Ari Juels

4

The rise of Interoperability

• #	Coin	Price	1h	24h	7d	24h Volume	Market Cap	-		Co	Polygon
☆ 1	Bitcoin BTC	Buy \$68,389.59	▼ 0.3%	▼ 1.0%	▲ 3.3%	\$13,663,947,240	\$1,347,551,070,887		1	0	MATIC
☆ 2	Ethereum ETH	Buy \$3,841.93	▼ 0.3%	▲ 2.7%	• 25.1%	\$12,470,262,478	\$461,028,760,320	۷	2	*	Immutab IMX
合 4	BNB BNB	Buy \$598.73	▼ 0.0%	▼ 0.4%	▲ 4.4%	\$429,266,868	\$92,207,772,331	۷	3		Mantle MNT
☆ 5	Solana SOL	Buy \$162.62	▲ 0.5%	▼ 2.7%	▼ 4.3%	\$2,032,605,702	\$72,884,782,988				Stacks
☆ 10	Toncoin	Buy \$6.32	▲ 0.5%	▼ 1.1%	▲ 0.1%	\$124,426,607	\$21,956,332,740		4	末	STX
合 11	Cardano ADA	(Buy) \$0.4578	▲ 0.2%	▼ 0.4%	₹ 2.1%	\$200,474,590	\$16,169,141,159	۷	5		ARBITRU ARB
合 12	Avalanche AVAX	Buy \$36.77	▲ 0.1%	▼ 3.2%	▲ 2.5%	\$232,265,046	\$14,427,629,064	¥	6	~	Synthetix SNX

New generation of financial infrastructure

Current Problems

	Solu	tion Ca	tegory	1	Detail	ed Ana	lysis	
Reference	PC	BoB	HC	AR	ST	CC	UC	OI
Buterin [44], 2016	+	-	1 1 - -	-	-	±	+	+
Vo et al. [170], 2018		±	±	+	±	±	±	+
Borkowski et al. [35], 2018	+	-	-	-	-	±	-	+
Qasse et al. [145], 2019	±	±	±	-	-	±	±	±
Johnson et al. [100], 2019	±	±	±	-				-
Zamyatin et al. [194], 2019	+		-	-	-	±	-	+
Siris et al. [164], 2019	±	±	±	±	-	+	2-0	
Koens and Poll [106], 2019	+	+	-	_	-	±	_	+
Singh et al. [163], 2020	+		-	-	-	-	+	+
Kannengießer et al. [103], 2020	+	±	±	-		±	2 	
Bishnoi and Bhatia [29], 2020	+	±	±	-	-		-	-
This survey	+	+	+	+	+	+	+	+

Each criterion can be "fulfilled" ("+" in green background), "partially fulfilled" ("±" in orange background), or "not fulfilled" ("-" in red background), if it addresses all, between one and all, or none of its sub-criteria, respectively.

** https://www.nbcnews.com > tech > security > bitcoin-crypto-exchange-hacks-little-anyone-can-d... Crypto exchanges keep getting hacked, and there's little anyone can ... One of the biggest heists happened this month, when the crypto trading platform Bitmart said hackers stole almost \$200 million after they broke into a company account. An armed guard patrols in ...

https://www.cnn.com > 2021 > 12 > 12 > tech > crypto-exchange-hacks-explainer > index.html
 Crypto exchanges and software keep getting hacked. Here's what yo...
 12 Dec 2021 - Centralized exchanges have been the prime target of hacking groups for several years.
 These exchanges store a user's assets in "hot wallets," or digital wallets that are connected to the ...

https://www.coindesk.com > business > 2021 > 12 > 05 > crypto-exchange-bitmart-hacked-with-los... Crypto Exchange BitMart Hacked With Losses Estimated at \$196M - ... May 29-31, 2024 - Austin, Texas The biggest and most established global event for everything crypto, blockchain and Web3. Register Now. The latest centralized exchange hack may be among the most ...

Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. 2021. A Survey on Blockchain Interoperability: Past, Present, and Future Trends. ACM Comput. Surv. 54, 8, Article 168 (November 2022), 41 pages. https://doi.org/10.1145/3471140

Project Informat	ion	Gene	ral Attack l	Informa	tion		Incid	ent Resp	Wh	nere	I	Mapping to Theoretical Vulnerabilities					
Name & Ref	SA	Date	Amount	AT	Txs	Mix	DT	СТ	VL	EL	\mathcal{V}_{44}	\mathcal{V}_{43}	\mathcal{V}_{28}	\mathcal{V}_{27}	\mathcal{V}_{24}	\mathcal{V}_6	
[218] Ronin	SA_{22}	Mar 2022	624M		0	•	6d	•	IM	SC	1	1	×	×	×	×	
[219] PolyBridge #1	SA_{22}	Aug 2021	611M		O	0	_	O	TC	SC	X	1	1	X	X	X	
[220] BNB	SA_{11}	Oct 2022	566M		O	O	_	0	TC	~							
[123] Wormhole	SA_{22}	Feb 2022	326M		0	•	-	U	TC	Co	mm	unica	tion	Tim	e (C	T)	
[221] Nomad	SA_{33}	Aug 2022	190M		•	•	-	O	SC	-	10	01.1	8			10	
[222] BXH	SA_{11}	Oct 2021	139M		0	O	-	0	-	0	10;	2] ho	ours			_	
[223] Multichain #2	SA_{22}	Jul 2023	126M		0	0	_	0	IN	•	10.	11 1.					
[224] Harmony	SA_{22}	Jun 2022	100M		O	•	-	•	IM	G	12;	4] no	ours			_	
[225] Qubit	SA_{11}	Jan 2022	80M		O	•	_	O	SC	•	14.	61 ha					
[226] pNetwork	SA_{33}	Sep 2021	13M		O	0	13m	O	IN	0]4;	ol uc	Jurs			_	
[227] Thorchain #3	SA_{21}	Jul 2021	8M		0	•	_	-	IN	0	16.	241 h	oure			_	
[223] Anyswap	SA_{22}	Jul 2021	8M		0	0	-	•	IN	•	10,	24] 1	louis			_	
[227] Thorchain #2	SA_{21}	Jul 2021	5M		•	•		0	IM		>-	6 day	VC				
[219] PolyBridge #2	SA_{22}	Jul 2023	4.4M		0	0	7h	•	IM	•	/-	0 ua	y S			_	
[228] Meter	SA_{22}	Jul 2021	4.4M		0	•	_	O	SC								
[229] Chainswap	SA_{22}	Jul 2021	4.4M		•	•	-	0	TC							_	
[223] Multichain #1	SA_{22}	Jan 2022	3M		-	•	_	•	TC								
[227] Thorchain #1	SA_{21}	Jun 2021	140K		-	•	5m	-	IM	TC	×	×	×	×	×	V	
Summary		07/21 - 07/23	2.9B								22%	39%	17%	11%	44%	22%	
Attacker Type (AT)	Numb	per of Transaction	ons (Txs)	Usage o	f Mixer	rs (Mix)		Commun	ication	Time ((CT)	Vulnerab	ility/Exp	loit Loca	tion (VL	/EL)	
 Black hat 	O 1-1	0		O Not	used			O]0; 2]	hours			SC Source	e Chain	SC			
White hat	O 10-	-50		Befo	re the a	ttack		•]2; 4]	hours			TC Targe	t Chain S	SC			
Black and white has	ts 🛈 50-	100		 After 	r the att	ack		0]4; 6]	hours			IM Interc	perabilit	y Mechar	nism		
	100	0-1000		• Befo	re and a	after the	attack]6; 24] hours			BL Busin	ess Logi	c SC			
	• >1	1000						• >= 6	days								
 No information avail 	lable / Tear	m did not respond	i	[†] Still t	to be co	nfirmed						Discovery	Time (I	DT)			

Augusto, R. Belchior, M. Correia, A. Vasconcelos, L. Zhang and T. Hardjono, "SoK: Security and Privacy of Blockchain Interoperability," 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2024, pp. 3840-3865,

9

- **02** Overview of problem and solution space
- **03** C1: Systematization
- **04** C2: Blockchain Gateways (SATP)
- 05 C3: New Interoperability Security Method
- 06 Future Work and Conclusions

- **02** Overview of problem and solution space
- **03** C1: Systematization
- **04** C2: Blockchain Gateways (SATP)
- 05 C3: New Interoperability Security Method
- 06 Future Work and Conclusions

- 02 Overview of problem and solution space
- **03** C1: Systematization
- **04** C2: Blockchain Gateways (SATP)
- 05 C3: New Interoperability Security Method
- 06 Future Work and Conclusions

Thesis chapter **2 and 3** : Do You Need a Distributed Ledger Technology Interoperability Solution?

BUNGEE: Dependable Blockchain Views for Interoperability

- **02** Overview of problem and solution space
- 03 C1: Systematization

- **04** C2: Blockchain Gateways (SATP)
- 05 C3: New Interoperability Security Method
- 06 Future Work and Conclusions

Thesis chapter **4** : *Hermes: Fault-Tolerant Middleware for Blockchain Interoperability*

- 01 Hypothesis
- **02** Overview of problem and solution space
- **03** C1: Systematization
- **04** C2: Blockchain Gateways (SATP)
- 05 C3: New Interoperability Security Method
- 06 Future Work and Conclusions

Thesis chapter **5 and 6** : Harmonia: Securing Cross-Chain Applications using ZKP

Hephaestus: Modelling, Analysis, and Performance Evaluation of Cross-Chain Transactions

- **02** Overview of problem and solution space
- 03 C1: Systematization

- **04** C2: Blockchain Gateways (SATP)
- 05 C3: New Interoperability Security Method
- **06** Future Work and Conclusions

- Overview of problem and solution space
- C1: Systematization
- C2: Blockchain Gateways (SATP)
- 05 C3: New Interoperability Security Method
- Future Work and Conclusions

[There can be] Interoperability mechanisms providing interoperability across the <u>technical</u>, <u>semantic</u>, (and <u>organizational</u>) layers can securely implement the requirements of both centralized and decentralized organizations.

Centralized orgs.: have enterprise-grade requirements (privacy - confidentiality, auditability, monitoring and availability). There is an emphasis on **Compliance and interoperability with legacy infrastructure -> Type User Enterprise-Grade**

[There can be] Interoperability mechanisms providing interoperability across the <u>technical</u>, <u>semantic</u>, (and <u>organizational</u>) layers can securely implement the requirements of both centralized and decentralized organizations.

Centralized orgs.: have enterprise-grade requirements (privacy - confidentiality, auditability, monitoring and availability). There is an emphasis on **Compliance and interoperability with legacy infrastructure -> Type User Enterprise-Grade**

Decentralized orgs.: focus on the retail investor or Web3 "crypto-native" institutions; **Prioritize more decentralized solutions and privacy-preserving features** (anonymity) -> Type User Crypto-Native

Overview of problem and solution space

03 Systematization

Potentiality Assessment (PA)	Score (0–4)
P1: Interoperation within the same DLT network, same subnetworks	
P2: Interoperation within the same DLT network, different subnetworks	
P3: Interoperation within different DLT networks	
P4: Interoperation within different DLT protocols	
Compatibility Assessment (CA)	Score (0–3)
C1: Provides semantic-level interoperability (shared protocols)	
C2: Provides organization-level interoperability (shared agreements)	
C3: Provides legal-level interoperability (follow regulations)	
Performance Assessment (PeA)	Score (0-3)
PE1: Provides acceptable cross-chain transaction end-to-end latency/throughput	
PE2: Provides acceptable cross-chain transaction end-to-end cost	
PE3: Complies with desirable energetic consumption goals	
PA + CA + PeA	Total (0-10):
Interoperability assessment is divided into PE, CA, and PeA assessments. A higher score corresponds to solution.	a more interoperable

Table 3. DLT Interoperability Solution Assessment

Rafael Belchior, Luke Riley, Thomas Hardjono, André Vasconcelos, and Miguel Correia. 2023. Do You Need a Distributed Ledger Technology Interoperability Solution? Distrib. Ledger Technol. 2, 1, Article 1 (March 2023), 37 pages.

Mitigating the security problem

Decentralization + Economic inventices

User Crypto-Native

Proactive monitoring + incident response (WIP)

User Crypto-Native or Enterprise-grade

Proactive monitoring - Hephaestus

Parameter	Type	Native
case id	string	×
receipt ID	string	1
timestamp	Date	\checkmark
blockchain ID	string	×
invocation type	string	\checkmark
method name	string	\checkmark
parameters	string	\checkmark
identity	string	\checkmark
cost	number	\checkmark
latency	number	\checkmark
carbon footprint	number	×

PART 3 = series of cc rules

Future Work

SoK: Security and **Privacy** of **Blockchain Interoperability**

André Augusto Rafael Belchior André Vasconcelos Miguel Correia Luyao Zhang Thomas Hardjono

(INESC-ID, Instituto Superior Técnico) (INESC-ID, Instituto Superior Técnico) (INESC-ID, Instituto Superior Técnico) (INESC-ID, Instituto Superior Técnico) (Duke Kunshan University) (MIT Connection Science)

The paper in tables

TABLE 3. CLASSIFICATION OF BLOCKCHAIN INTEROPERABILITY STUDIES IN ACADEMIA AND INDUSTRY.

CROSS-CHAIN SYSTEMS. THE COLORED CIRCLE DENOTES THE LAYER WHERE IT CAN BE FOUND (CF. SECTION 3.1).

		1	Security	_		Govern	rnance and Performance Privacy							Misc.			
Ref	Year	Security Approaches	In	Av	Ac	Dc	Lat	Co	Privacy Approaches	Cf	Un	An	IMode	PC	Impl	Vulnerability/Leak Mitigati	ons
[50]	2019	SAn		0	0	0			-	-	-	-	DT	1	1	V ₁ Honest mining assumption [45] M ₁ -M.	
[53]	2023	SA11	Ō	õ	ō	•	õ	-	_1	0	0	0	AT	1	×	 V₂ Absence of identity verification [45], [71], [72] M₈-M₁ 	
[54]	2023	SA ₁₁	0	0	•	0	0	0	_2	0	0	0	AE	1	±	V ₃ Network isolation [38], [45], [62], [77] M ₆ , M ₇	
[56]	2023	SA11	0	0	0	0	0	0	-	-	-	-	DT	1	±	 V₄ Outdated light client state [45], [53], [150] M₁₆ 	
[58]	2020	SA ₁₁	•	0		0		•	-	-	-	-	AE	~	1	 V₅ Wrong main chain identification [6], [45], [77] M₁₈ 	
[21]	2021	SA SA		0	0		0		PA2			0	DT	- 2	÷	 V_c Incorrect event verification [151]–[154] M₁₂-M 	14
[51]	2021	SAU SAU SAU	ě	ě	õ	ě			-	-	-	-	DT	x	2	 V₇ Acceptance of invalid consensus proofs [155] M₁₂ 	14
[55]	5 2022	SAn, SAn, SAn	ő	ő	ě	ő	ő		PA		0	0	AT	1	13	V ₂ Absence of chain identification [156]	
[36]	2019	SA11, SA11		Ō		ō	Ō	-	_^			Ō	DT	×	×	2. Submission of reneated inclusion proofs [21] [45] [77] [157] M.	
[52]	2023	SA_{11}, SA_{31}	•	0	0	0	0	-	_1	0	•	0	AT	×	±	 V. Counterfeiting assets [45] [77] [158] M M 	1.0
[59]	2020	SA_{11}, SA_{41}	0	0	0	0	0	-	-	-	-	-	AE	1	± .	 V₁₀ Countertaining about (10); (17); (100) W₁₁ Involuntary timelock expiry [63] [85] M₁₁ M 	23
[60]	2021	SA12	0	0	•	0	0	0	PA_2	•	O *	0	DT	×	±	 V₁₁ Involuting function capity [00]; [00] V₂₉ Vit V₂₉ Vit V₂₉ Vit 	30
[6]	2021	SA ₁₂		0		0	0	0	-,	-	-	-	AE	1	*	 V₁₂ Onset withhead [58] [61] [80] [86] [96] [94] [160] M. M. 	1
[65]	2019	SA12					0	0	 P.4	0	0	0	DT	1	-	V_{13} Action withhold [56], [61], [60], [60], [60], [94], [100] M_{18} , M_{2}	7,0
[64]	2023	SAn SAn			ő		-	õ	PA.	ě			AE	×	1	 V₁₄ Onspectified gas minit [101] M₆₅ M₆₅ M₆₅ 	
[63]	2020	SA11, SA41			ŏ			ĕ		-	-	-	AE	1	×	V_{15} Resource exhaustion [45], [55], [57], [60], [65], [69] M_{48} -M	-50
[67]	2022	SA22	•	•	0	•	-	-	-		-	-	AT	1	×	V_{16} Single point of failure [130], [102] $\mathcal{M}_7, \mathcal{M}_3$	2,0
[68]	2019	SA22	•	•	٠	0	0	0	-	-	-	-	DT	1	1	V_{17} Publicly identifiable operators [74] M_{44} -M	46
[71]	2021	SA22	•	0	0	•	0	0	-	-	-	-	DT	1	1	V_{18} Misaligned incentive mechanisms [38], [60], [65], [122] M_{23} , M_{23} , M_{23}	31
72	2021	SA22			0			0	-	-	-	-	AE	1	+	V_{19} Token price volatility [45], [74], [77], [80], [82], [83] $M_{35}-M_{35}$	39
[73]	2023	SA SA					0	0	PA1 PA	-			AT	1	+	• V_{20} Centralized power [65], [162], [163] M_{32}, M_{32}	43
# [69]	2021	SA., SA.			à	ā	ő	õ	_1	ě	ě	0	DT	×	+	• V_{21} Verifier's dilemma [163] \mathcal{M}_{24} - \mathcal{M}_{24}	26
E [66]	2023	SAm, SAm			ŏ	ŏ	ŏ	ŏ	PA.	÷	ŏ	ŏ	AT	×	×	• \mathcal{V}_{22} Manipulation of exchange rates [29], [164]–[167] $\mathcal{M}_{40}, \mathcal{M}_{40}$	41
7 [70]	2022	SA22, SA41	0	0	0	0	0	0	-	-	-	-	AE	1	+	• V_{23} Unfair transaction/event ordering [65] $\mathcal{M}_{41}, \mathcal{M}_{51}$	42
× [75]	2022	SA31	•	0	0	•	0	-	-	-	-	-	AE	1	×	 V₂₄ Insecure access control [168]–[173] M₅₁,M 	52
[76]	2022	SA31	0	•	0	•	-	0	-	-	-	-	DT	1	1	 V₂₅ Conceed approvals to third parties [152], [174], [175] M₅₃ 	
[45]	2019	SA_{31}, SA_{21}	0.	•	•	•	0	0	-	-	-	-	AT	~	~	 V₂₆ Outdated third-party library version [176] M₇₈ 	
[77]	2022	SA ₃₁ , SA ₂₁	0.	0				0	PA	0	•	•	AI			 V₂₇ Unsafe third party modules [151], [156], [162], [177] M₅₈, M 	78
[30]	2020	SA., SA.,			0		ě			-	-	-	DT	1	1	 V₂₈ Dead code [151], [159], [176]–[180] M₅₉ 	
[41]	2022	SAm, SAm		ě	ŏ	ā	ő	õ	-	-	-	-	AT	1	+	 V₂₉ Usage of non-standard naming [176], [177] M₇₉ 	
[78]	2023	SA12, SA11		ġ.	Ő		-	ŏ	PA ₁	0	•7	•7	AT	1	1	V ₃₀ Inconsistent smart contract engine version [156], [162], [179] M ₈₀	
[79]	2022	SA12, SA11	•	Ô.	0	-	0	õ	PA	0	0	0	AT	×	±	 V₂₁ Unconventional code/testing architecture [176], [179] M_{e1} 	
[80]	2021	SA41	•	0	•	•	0	•	-		-	-	AE	1	1	○ V ₂₂ Reentrancy [156] Men	
[81]	2021	SA41	•	0	•	0	0	0	PA_1	•	•	0	AE	1	± .	V ₂₂ Failure to emit events upon state changes [151], [162], [178] Mer	
82	2022	SA41	•	0	•	•		•	-	-	-	-	AE	1	±	V ₂ , Inconsistent bridge contract interfaces [180]	
[83]	2022	SA41 SA							-	-	-	-	AE	1	±	• V _{es} Out of order transaction execution [151] Mer	
[85]	2018	SA.		ő	ŏ		ő		-	-	-		AE	1	×	V ₂ , Absence of storage gaps in smart contracts [181]	
[86]	2022	SA		ŏ	ĕ	÷	ŏ		-	-	-	-	AE	1	×	 V₃₆ reserve or storage gaps in smart contacts [101] W₂₆ Integer overflow and underflow [151] [159] [162] [176] 	
[87]	2020	SA41		Ó	0		0	•	PA ₃	٠	•	0	AE	1	×	 V₃₇ integer orderioù und underioù [151], [155], [155], [176] Mager W Absence of sanity checks [156] [177] 	
[88]	2022	SA41	•	0	0	•	0	•	PA_6	•	0	0	AE	1	×	 V₃₈ Absence of same encodes [150], [177] V₃₈ Absence of same encodes [150], [177] V₄₈₇ 	
[89]	2018	SA41	•	0	0	•	-	-	PA_6	0	0	0	AE	1	×	 V₃₉ Code and documentation mismatched [102], [170]-[179] M₈₈ W Uninitialized variables [182] 	
[90]	2022	SA41	•		0	•		•	-	-	-	-	AE	1	1	\circ V_{40} Ominicalized variables [162] \mathcal{M}_{66}	
[91]	2021	SA41 SA							 P.4	-	-	-	AE	1	~	• V ₄₁ Compromise of ZK algorithms private inputs [120] M_{67}	
[92]	2022	SA.,			ě	ő		ä	P 4.	õ		ě	AE	2	7	V_{42} Other smart contract vulnerabilities [151], [162], [179] $\mathcal{M}_{51}, \mathcal{M}_{51}$	547
[94]	2022	SAn		ě	ő	ě	o o	ě	-	-	-	-	AE	1	1	V_{43} inadequate key management [152], [183] $\mathcal{M}_{47}, \mathcal{M}_{47}$	60
11.00	0.0000	C1 C1		-				-		-		-	17	1	1	V_{44} Physical intrastructure backdoors [50] M_{46} , M_{46}	63
(13)	J 2023	SA ₁₁ , SA ₂₂		0	0		0		-	-	-	-	AT	1	1	 V₄₅ Social engineering-related vulnerabilities [174], [184] M₇₇ 	
5 112	1 2023	SA., SA., SA					0		-	-	-	-	AT	1	1	 — Lakage of private data in ZK ceremony input [40] — Mea 	
P 113	1 2022	SA SA.			ě		ě		-	-	-	-	AT	1	1	- L. Linking transactions through transactional data [88], [89] Mag	
- [130	1 2023	SAm, SAm		ő	ŏ	ō	ő	ō	-	-	-	-	DT	1	+	$-\mathcal{L}_{1}^{2}$ Common secret deployment [87] \mathcal{M}_{0}	
[13]	2023	SAI		ě	ŏ	ĕ		ě	-	-	-	-	AT	1	1	- C. User-generated privacy leaks [126], [146]-[149] May	
Metri	add	send in namer #(send()	57/1005	\$1.57(100%	57(100%	55/069	51/80%	50(86%)		23/400	24(420%)	23(400	0			- L Mapping on-chain addresses to real-world identities [126]	1~
Metri	mara	ntood in paper #(and%)	20(699	12/2295)	14(25%)	20(550)	2(492)	22(46%)		0(20%)	15(42%)	4(179	3	16/91@	15/20%)		- 92

ability/Leak	Mitigations
onest mining assumption [45]	\mathcal{M}_1 - \mathcal{M}_2
osence of identity verification [45], [71], [72]	Mo-MI
etwork isolation [38], [45], [62], [77]	Mr. Mr
atdated light client state [45], [53], [150]	M16
rong main chain identification [6], [45], [77]	\mathcal{M}_{18}
correct event verification [151]-[154]	M12-M14
ceptance of invalid consensus proofs [155]	Mis
sence of chain identification [156]	MA
bmission of repeated inclusion proofs [21], [45], [77], [157]	M17
ounterfeiting assets [45], [77], [158]	\mathcal{M}_{19} - \mathcal{M}_{22}
voluntary timelock expiry [63], [85]	M29-M30
Inset withdrawal limits [156], [159]	M69
ction withhold [58], [61], [80], [86], [86], [94], [160]	$\mathcal{M}_{8}, \mathcal{M}_{27}, \mathcal{M}_{28}$
Inspecified gas limit [161]	Mas
esource exhaustion [45], [55], [57], [60], [65], [69]	M48-M50
ingle point of failure [156], [162]	M_7, M_{32}, M_{47}
ublicly identifiable operators [74]	M44-M46
fisaligned incentive mechanisms [38], [60], [65], [122]	M23, M31-M34
oken price volatility [45], [74], [77], [80], [82], [83]	M35-M39
entralized power [65], [162], [163]	M_{32}, M_{43}
erifier's dilemma [163]	M24-M25
fanipulation of exchange rates [29], [164]-[167]	$\mathcal{M}_{40}, \mathcal{M}_{41}$
Infair transaction/event ordering [65]	M_{41}, M_{42}
secure access control [168]-[173]	$\mathcal{M}_{51}, \mathcal{M}_{52}$
onceed approvals to third parties [152], [174], [175]	M_{S3}
butdated third-party library version [176]	M_{78}
Insafe third party modules [151], [156], [162], [177]	M_{58}, M_{78}
ead code [151], [159], [176]–[180]	\mathcal{M}_{59}
sage of non-standard naming [176], [177]	M_{79}
aconsistent smart contract engine version [156], [162], [179]	\mathcal{M}_{80}
inconventional code/testing architecture [176], [179]	M_{81}
eentrancy [156]	\mathcal{M}_{82}
ailure to emit events upon state changes [151], [162], [178]	\mathcal{M}_{83}
aconsistent bridge contract interfaces [180]	\mathcal{M}_{84}
but of order transaction execution [151]	\mathcal{M}_{85}
bsence of storage gaps in smart contracts [181]	\mathcal{M}_{86}
teger overflow and underflow [151], [159], [162], [176]	\mathcal{M}_{87}
bsence of sanity checks [156], [177]	M_{87}
ode and documentation mismatched [162], [176]-[179]	\mathcal{M}_{88}
ninitialized variables [182]	\mathcal{M}_{66}
compromise of ZK algorithms' private inputs [126]	M67
ther smart contract vulnerabilities [151], [162], [179]	$M_{51}, M_{54}-M_{56}$
hadequate key management [152], [183]	$M_{47}, M_{60} - M_{62}$
hysical intrastructure backdoors [50]	$M_{46}, M_{63} - M_{64}$
ocial engineering-related vulnerabilities [174], [184]	M_{77}
eakage of private data in ZK ceremony input [40]	\mathcal{M}_{89}
inking transactions through transactional data [88], [89]	\mathcal{M}_{90}
ommon secret deployment [87]	Mar

TABLE 1. TWO TIER CLASSIFICATION OF SECURITY APPROACHES IN BLOCKCHAIN INTEROPERABILITY ACADEMIC STUDIES. WE PRESENT THE PRIMARY SECURITY APPROACHES IN BLOCKCHAIN INTEROPERABILITY AC PRIMARY SECURITY APPROACH OF SOLUTIONS THAT EMPLOY VARIOUS.

Security Approach (Tier 1)	Security Approach (Tier 2)	IM Role	References	# (and %)
SA Trusted Third Parties	SA11 Centralization	Centralized Services	[21], [36], [50]-[59]	12 (24%)
	SA12 Trusted Computation	Trusted Execution Environment	[60]-[62]	3 (06%)
SA ₂ Distributed Trust	SA21 Permissionless Network	Public Network Validators	[63]-[65]	3 (06%)
	SA22 Permissioned Network	Whitelisted Network Validators	[66]-[74]	9 (18%)
SA ₃ Native State Verification	SA31 Inclusion Proofs	Relayers	[38], [45], [75]-[77]	5 (10%)
	SA32 Validity Proofs	Relayers	[41], [42], [78], [79]	4 (08%)
	SA33 Frand Proofs	Relayers	None in academia	0 (00%)
SA4 Local Verification	SA41 Secret- & Time-based Locks	Off-chain Communication Channel	[80]-[94]	15 (29%)

TABLE 2. CLASSIFICATION OF PRIVACY-ENABLER APPROACHES IN BLOCKCHAIN INTEROPERABILITY STUDIES

Privacy Approach	References	# (and %)
PA1 Zero Knowledge Proofs	[64]-[66], [73], [77]-[79], [81]	8 (47%)
PA2 Trusted Execution Envir.	[21], [55], [60]	3 (18%)
PA3 Adaptor Signatures	[87], [92]	2 (12%)
PA ₄ Blind Signatures	[93]	1 (06%)
PA ₅ Ring Signatures	[74]	1 (06%)
PA ₆ Homomorphic Encryption	[88], [89]	2 (12%)

XChainWatcher : Monitoring and Identifying Attacks in Cross-Chain Bridges

André Augusto(INESC-ID, Instituto Superior Técnico)Rafael Belchior(INESC-ID, Instituto Superior Técnico)André Vasconcelos(INESC-ID, Instituto Superior Técnico)Miguel Correia(INESC-ID, Instituto Superior Técnico)

Benchmarking Blockchain Bridge Aggregators

Shankar Subramanian¹ André Augusto² Rafael Belchior² André Vasconcelos² Miguel Correia²

University of Massachusetts, Amherst INESC-ID, Instituto Superior Técnico **UMassAmherst**

Manning College of Information & Computer Sciences

7th TEEE International Conference on Blockchain (Blockchain 2024)

Conclusions

Conclusion (Part 1/3)

Implications:

- **1.** Advances in theoretical foundations for blockchain interoperability
 - a. Unified model and classification framework
 - b. Guidelines to systematically evaluate solutions
- 2. Propose a data model for heterogeneous blockchains based on views
 - a. Common data format for heterogeneous chains
 - b. Privacy-preserving friendly data format

3. Gateway paradigm

- a. Technical foundation for organizational interoperability
- b. Privacy-preserving asset transfers that are auditable,

Conclusion (Part 2/3)

Implications:

- 4. New interoperability framework based on ZKP
 - a. dApp framework using ZKP
 - b. Decentralized and cost-efficient bridge implementation on Ethereum
- 5. Monitoring tools for automatic incident response
 - a. Cross-chain rules and model
 - b. Provide first process mining implementation

Hypothesis

"IMs providing interoperability across the technical, semantic, and organizational layers can securely implement the requirements of both centralized and decentralized organizations".

Conclusion (Part 3/3)

Conclusion

"We foresee "the development and enhancement of incident response infrastructure, the development of organizational and legal interoperability in DLTs, and the flourishing of <u>new use cases using hybrid blockchain</u> <u>applications</u>, particularly where the thesis statement is verified."

Future Work

- A. Extend cross-chain models
- **B.** Privacy-preserving interoperability solutions
- C. S&P of bridge aggregators

Thank you

Rafael Belchior

rafael.belchior@tecnico.ulisboa.pt

https://tinyurl.com/gscholar-rb