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Incidental graphical perception:
How marks and display time influence
accuracy

João Moreira1 , Daniel Mendes2 and Daniel Goncxalves1

Abstract
Incidental visualizations are meant to be perceived at-a-glance, on-the-go, and during short exposure times,
but are not seen on demand. Instead, they appear in people’s fields of view during an ongoing primary task.
They differ from glanceable visualizations because the information is not received on demand, and they differ
from ambient visualizations because the information is not continuously embedded in the environment.
However, current graphical perception guidelines do not consider situations where information is presented
at specific moments during brief exposure times without being the user’s primary focus. Therefore, we con-
ducted a crowdsourced user study with 99 participants to understand how accurate people’s incidental gra-
phical perception is. Each participant was tested on one of the three conditions: position of dots, length of
lines, and angle of lines. We varied the number of elements for each combination and the display time.
During the study, participants were asked to perform reproduction tasks, where they had to recreate a previ-
ously shown stimulus in each. Our results indicate that incidental graphical perception can be accurate when
using position, length, and angles. Furthermore, we argue that incidental visualizations should be designed
for low exposure times (between 300 and 1000 ms).
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Introduction

People may enhance their ability to perform daily tasks

more effectively if they had timely access to pertinent

data. Despite the existence of real-time data retrieval

methods, effectively presenting such information on-

the-go and at-a-glance remains challenging to avoid

becoming inconvenient. Even with devices like smart-

phones or smartwatches, individuals still need to

remember that they can access information, and

proactively seek it. However, by the time they do so, it

is often too late, and the task has already been com-

promised. The very act of searching for information

may give rise to undue cognitive loads, compromising

the primary task, even when the information proves

useful. As an illustration, Lu and Bowman1 have

examined the potential use of augmented reality

interfaces for conveying information. Two commonly

reported problems are distraction and occlusion. We

argue that these issues may arise when attempting to

present multiple graphs simultaneously, even though

information visualization was not specifically explored

in their research. Let us now contemplate a hypotheti-

cal scenario in which people live within an automated

house, equipped with comprehensive real-time moni-

toring of all utilized resources. The utilization of
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graphical representations would enable them to gain

insights into the patterns and dynamics of resource

consumption, thereby facilitating more effective man-

agement. For instance, a line chart could be employed

to monitor energy consumption over time, while a bar

chart could depict the status of ingredient stock. The

fundamental question that arises is how to convey this

abundance of information to individuals only when

relevant for some task and in a manner that minimizes

distraction and does not hinder their performance in

them.

Calm technology is any device that interacts with

people via auditory or visual channels while allowing

information to be conveyed from the periphery to the

center of human attention and back.2 Technology

informs, but does not require our focus or attention.

Ambient,3 Glanceable,4 and Incidental5 are examples

of ambient information systems that have been

explored in Information Visualization. These last two

types are seen at a glance for very short exposure

times. However, they have different use cases.

Glanceable visualizations assume that people are

actively seeking information on a device like a smart-

watch.6 Unlike incidental visualizations, which depict

information in one’s field of view without one actively

searching for it. We believe that incidental visualiza-

tions are precisely what we would like for the afore-

mentioned resource management example. In that

house, people could be shown incidental visualizations

through technology like augmented reality without

having to look for the graphs. This would let them be

aware of information in real-time on the go and at a

glance without having to look for it.

Although this scenario assumes that there is already

theoretical background regarding incidental visualiza-

tions, there are currently no design guidelines to create

them. How to design such visualizations? Which marks

and channels to use, how many, and for how long can

they be seen? Although there are well-known cognitive

principles to design visualizations,7 there is no guaran-

tee they apply in an incidental visualization. These

guidelines come from research in psychophysics, par-

ticularly graphical perception and visual attention.

Graphical perception is ‘‘the visual decoding of catego-

rical and quantitative information from a graph.’’8

Visual attention research focuses on explaining how it

is triggered and manipulated and how it shapes our

memory.9 However, do these results hold if we con-

sider incidental information? Currently, ambient infor-

mation systems studies have focused on glanceable

information conveyed at people’s peripheral atten-

tion6,10–12 proving that people can see information

quickly in their periphery on-demand. Still, would it

be possible to convey information at brief exposures

when needed without it being a person’s primary

focus? Besides, would the performance of such graphi-

cal perception be compromised due to the primary

task? Until now, it has only been shown that it is possi-

ble to perceive information displayed for very short

periods at specific moments.5

To answer all these questions, we conducted a user

study with 99 participants as a starting point to validate

how accurate people’s incidental graphical perception

is. We chose three mark-channel combinations: posi-

tion of dots, length of lines, and angle of lines. We var-

ied the number of elements encoded in each

combination and the time they were exposed to the

user, and tried to understand how both variables influ-

enced accuracy. Furthermore, we measured if people

could remember where they saw all the elements. Our

findings suggest that people can remember values

encoded via different elements shown for brief periods,

thus implying that people can get incidental informa-

tion if those conditions are met. Our significant contri-

butions are:

� A crowdsourcing perception user study.
� Key insights for selecting specific display times

and the number of elements for encoding

information.
� Discussion about people’s incidental perception.

In the next section, we present essential related

work regarding three topics closely related to inciden-

tal perception and explain how they support our work.

Then, we explain how we conducted our crowd-

sourced user study. Next, we describe the attained

results, and in the end, we present a discussion regard-

ing our significant conclusions. Finally, we present the

main conclusions of this research and some directions

for future work.

Related work

This work combines several topics of current research:

� Graphical Perception, with strong foundations

defined during the 1980s, saw few major

advances recently.
� Glanceable Visualizations, where we explain

their design and where they are mainly used.
� Visual Attention, its pros and cons, and how

designers can use it to create compelling

visualizations.

Graphical perception

Cleveland and McGill conducted the first well-known

studies regarding Graphical Perception,8,13,14 and

were followed by various other authors.15–17 They
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focused on studying elementary perceptual tasks per-

formed by people to extract quantitative information

from graphs. For example, to decode the length of a

bar into a value. From verbal reports of ratio judg-

ments for ease of comparisons, their studies’ resulted

in an accuracy ranking, which Heer and Bostock later

validated via a crowdsourced user study.18 In sum-

mary, the most accurate encoding is through position;

however, although there have been several other stud-

ies that propose their guidelines regarding visual

encoding channels,19–26 these initial results remain as

the primary guideline for visualization creation.7 In

particular for incidental graphical perception, it has

been demonstrated that it is possible to perceive infor-

mation displayed for very short periods at specific

moments.5 In particular, the authors concluded that

encoding values using a horizontal position is effective

in those situations.

Graphical Perception studies are usually conducted

using psychophysics techniques or specific visual tasks

to test the accuracy of different visual encodings.27,28

In both, the most common one is using compari-

son29,30 via magnitude estimation and magnitude pro-

duction. Magnitude estimation is a task in which

people estimate the proportion of one element relative

to another.8 Magnitude production requires users to

proportionally adjust the intensity of a visual encoding

to a target intensity.22,31 In visual tasks, this can be

done, for example, with change detection or discrimi-

nation.28 Then, there are three main techniques in

psychophysics: Method of Limits (MoL), Method of

Adjustment (MoA), and Method of Constant Stimuli

(MoCS).28 In the MoL, the researcher wishes to iden-

tify the level at which people see a target property in

an image by steadily changing that property until the

viewer sees the target property. In the MoA, everything

is the same, except that viewers directly adjust the

properties of a visualization until they reach a percep-

tual criterion. Finally, in MoCS, people are presented

with random levels of a target property, presented ran-

domly across trials, and asked to draw inferences

about that property.

Graphical perception studies focus on understand-

ing which marks and channels allow people to decode

the correct information to compare different values.

With psychophysics techniques, participants are

assigned visual tasks to estimate, reproduce, or detect

changes. Although these procedures make up the

foundations of design guidelines for chart creation,

there is no evidence that they can be directly applied

to an incidental visualization. In particular, Moreira

et al. 5 did not explore incidental perception using

quantitative value ranges, which limits graph design

possibilities. Furthermore, researchers have not yet

considered dual-task scenarios when evaluating differ-

ent marks and channels.

Glanceable visualizations

In Information Visualization, glanceability means peo-

ple can extract the necessary information at a

glance.32,33 For a display to be glanceable, information

must be simplified just enough to be perceived and

processed,34–37 which might be important for situa-

tions where information is supposed to be more casual

for users.38 Furthermore, it also must be possible to

see it at the periphery of one’s attention.39 Currently,

glanceable visualizations focus on mobile devices, such

as smartwatches and smartphones, mainly for perva-

sive glanceable feedback.33 Furthermore, because

mobile devices have small screens, there is a need to

study micro visualizations.40 Blascheck et al. , for

example, tried to validate the best visual idiom to con-

vey information at a glance. They compared three

visual idioms, donut chart, bar chart, and radial bar

chart, and they concluded that the donut chart was

the best to convey information at a glance via a

smartwatch.

Between smartwatches and smartphones, the for-

mers have been more studied for glanceable visualiza-

tions.41 Moreover, with their embedded placement on

people’s bodies, smartwatches are a convenient non-

disruptive way to present personal information like

one’s current health.41 Particularly for activity trackers,

Gouveia et al. have studied how glanceable behavioral

feedback can enhance user engagement.6,10–12 In these

studies, authors integrated small representations of

activities as part of the smartwatch face, so feedback

was available while checking the time. Their principal

findings concern some design guidelines for glanceable

information, such as the need for it to be more abstract

than usual because of the short time people look at

smartwatches.6 Other guidelines include integration

with existing activities, supporting comparisons to tar-

gets and norms, being actionable, and having the

capacity to lead to checking habits and act as a proxy

to further engagement.

The closest an information system has reached inci-

dental information is via glanceable visualizations.

They convey information at-a-glance in a non-

disruptive way. However, participants perceive them

as part of their primary tasks, meaning that informa-

tion is received on-demand.

Visual attention

Visual attention is a set of cognitive processes driven

by bottom-up and top-down factors.42–44 It selects

Moreira et al. 5



relevant information and filters out irrelevant informa-

tion from the environment. This process is necessary

because people’s memory is limited45–49 and decays

with time after approximately 5–10 s.50 Therefore, it

would be impossible to retain everything simultane-

ously. Instead, Miller argued that our memory could

retain 7 6 2 objects in memory.51 Following a differ-

ent approach, recent studies showed that people could

retain four chunks in memory, regardless of the num-

ber of objects in each chunk.52,53

The bottom-up mechanism works like one of pre-

paratory attention, which plays a significant role in

theories of attention studied for several years now.54–59

Furthermore, it promotes significant benefits for data

comprehension in visualizations56,60–62 because it rein-

forces the perception of essential areas in a scene

whose visual properties contrast with those of their

surroundings.63–65 For example, a blue circle will pop

out if placed in the middle of red circles. However, this

mechanism can also distract if not correctly used or

managed66 because attention can be misplaced to the

location of a startling stimulus.67–76

The top-down mechanism comes into play when-

ever a goal is involved, it contributes toward faster cog-

nition, and it is necessary for further analysis.42,44,77–82

In visualizations, it can increase the performance of

perceptual tasks, including simple stimulus detection

and localization, discrimination, and identifica-

tion.72,83–88 For example, if people know they need to

find a circle, their sight will be prepared to find a spe-

cific shape. However, performance can be significantly

decreased in dual-task scenarios.89–93

The closest topics to visualization theory where

researchers test how our attention works in a dual-task

paradigm are subitizing, groupitizing, and estimation

studies. All these phenomena occur in enumeration

tasks. Subitizing was the term created by Kaufman

et al.94 to describe the ability for people to estimate

sets up to four with no errors, which Jevons discovered

in 1871.95 Regarding subitizing, it has been shown

that depriving visual attentional resources leads to

massive detrimental effects on performance thresh-

olds.89,96–100 Groupitizing is a similar phenomenon to

subitizing, but works for larger sets when chunks can

be formed.101,102 Finally, for higher numerosities, esti-

mation comes into play, and errors are proportional to

numerosity (Weber’s law).103–105

For visualization creation, attention plays a signifi-

cant role when there is a need to emphasize something

in particular. For example, knowing that position is

the best channel to compare two different values does

not help to find a particular target. In this case,

designers make use of people’s bottom-up and top-

down attention. The former gets triggered when

certain visual features are intensified. The latter is

triggered when there is a goal during a search task.

Finally, several mechanisms may be triggered for the

specific visual tasks for specific enumeration visual

tasks: subitizing for sets of size up to four; estimation

for bigger sets. Furthermore, the subitizing range has

been explored in graphical perception tasks, and accu-

racy is overall high.5 If the elements can form up to

four visual chunks, then groupitizing can take place.

Particularly for these three mechanisms, it is known

that accuracy is significantly decreased in dual-task

scenarios. One of the reasons for this is that people’s

memory is limited.

So, although there are currently various guidelines

regarding visualization creation, there is a gap in

research regarding incidental perception. First, graphi-

cal perception experiments do not impose an inciden-

tal secondary task that involves perceiving marks and

channels. Therefore, there is a need to explore how

accurately people can decode incidental information.

Then, we know that our visual attention is limited and

is weakened in dual-task scenarios. However, we do

not know the limits of incidental attention. For exam-

ple, how many elements can be shown at a time, and

for how long until accuracy drops significantly? Our

work approached all these issues. We found that peo-

ple could perceive incidental information, and its

accuracy depends on the mark and channel used, the

display time, and the number of elements shown

simultaneously.

User study

We conducted a crowdsourced user study to define

design guidelines for incidental visualizations. First, as

with a standard graphical perception user study, we

wanted to validate accuracy by asking participants to

estimate values encoded by specific marks and chan-

nels. We investigated the position of dots, the length of

lines, and the angle of lines as they are the topmost

accurate encoding alternatives in current graphic

design.7 However, because Moreira et al. already

tested these marks and channels, we decided to change

slightly how they were encoded. Our position of dots

combined both horizontal and vertical positions, the

length of lines was encoded with a left-alignment, and

the angle of lines was encoded inside one circumfer-

ence, where the angle varied between 0 and 360º.

Although they might end up having different complex-

ity, we still wanted to assess how different the results

are between them. Finally, we also tested all these

marks and channels for brief exposure times. For each

combination, we varied two properties: the number of

elements displayed and the display time of each set of

elements.
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Crowdsourcing platforms like Amazon Mechanical

Turk, Prolific, or CrowdFlower, have been used by the

visualiza-tion community to conduct empirical visuali-

zation research.106 Their main advantage is that they

increase access to large and diverse participant groups

for evaluation, solving one of the major struggles in

research: obtaining data effi-ciently.107 However, the

main disadvantage is that it is challenging to eradicate

malicious behavior.

Method

After participants clicked the study link in Prolific, our

website redirected them to one of the stimulus types.

Then, they watched a tutorial explaining how the

study was going to be conducted, and after they

started the warm-up trials. Finally, the test itself

began. This was composed of four runs, each with 10

trials. Participants were not shown visual idioms due

to this being a graphical perception user study.

Instead, we only wanted to validate how accurately

they could estimate one or more values encoded by

different marks and channels. In our case, we varied

their number between one, two, three, and four ele-

ments because of people’s memory limitation45,47,48

and the subitizing phenomenon.94 Then, we wanted

to know how the marks’ display time would influence

perception, so we varied it between 100 and 1000 ms,

at 100 ms increments. We chose this range to test

accuracy inside and outside the preattentive phase

while still being far from the glanceable visualizations’

usual threshold (5 s.37 With these two properties plus

the combination itself, our study ended up with three

independent variables: the number of elements, dis-

play time, and stimulus type.

As is common for crowdsourcing, we followed a

between-subject design.108 In our case, the mark-

channel combination was our between-subject vari-

able. However, the number of elements and the display

time differed in each task for each participant, making

them our two within-subjects variables. Therefore, we

conducted a mixed-design user study and, after having

all results, used the three-way mixed ANOVA statisti-

cal test for studying the interaction between all three

variables. This test allows us to understand how accu-

racy differs between values encoded using the positions

of dots, length of lines, and angle of lines, depending

on the number of elements and display time.

Phases and trials

Because of our between-subjects variable (mark-chan-

nel combination), our user study was divided into

three separate sub-studies, all with the same structure.

Each participant was shown a tutorial video explaining

how the study would be conducted and how partici-

pants should interact with the browser to complete all

the tasks. If participants skipped the video, a pop-up

warning would be triggered, saying they should watch

it from start to finish. After watching the video, parti-

cipants were presented with a warm-up phase that

simulated the tasks they would perform next. This

way, we minimized errors due to inexperience regard-

ing the task’s objectives and webpage interface.

The studies were divided into four phases, each

corresponding to one number of elements displayed at

a time (within-subjects variable). Then, each partici-

pant had to perform 10 trials in each phase, each cor-

responding to a different display time (within-subjects

variable). So, for example, a possible trial of the study

could be showing two dots for 200 ms. The order in

which each participant performed each trial and each

phase was generated using a Latin Squares distribu-

tion. In total, each participant performed 40 trials,

four phases, each with 10 exposure times.

Tasks

We wanted participants to estimate values encoded

with different marks. However, in traditional

approaches, these estimations are part of the primary

task during the study. In our case, perceiving the

encoded values is a secondary task without the user

explicitly requesting it. Therefore, we designed a

decoy task (Figure 1) to serve as the participants’ pri-

mary focus. Although we did not register any data for

this task, participants still thought they needed to per-

form it as accurately and quickly as possible to ensure

they performed it as their primary task. It required

them to drag a red circle inside a black circumference.

Both the circle and circumference positions were

always randomly generated. To present the incidental

visualization in the participants’ field of view, an event

would be triggered, while dragging the red circle, in

the current location of the cursor. Both the circle and

circumference would disappear, and the target stimuli

would appear. This way, the visualization appeared

without being requested while participants were focus-

ing on a primary task.

According to the current phase and study, the event

cleaned the screen and presented the marks and

correspond-ing channel at the current cursor position,

followed by a mask. Then, participants had to remem-

ber how the marks appeared and reproduce them as

well as possible by inter-acting with the application.

We chose reproduction tasks to understand what

exactly was seen by participants, regardless of seman-

tic meaning. Finally, after participants finished their

reproduction task, they pressed a submit button to

Moreira et al. 7



move on to the next decoy task corresponding to the

subsequent trial.

We used masks because masking is a powerful tool

used by researchers to regulate the difficulty of a

task,109 and to make sure people’s iconic memory did

not bias the results.110 For example, if a target is pre-

sented briefly, it can be rendered entirely invisible by

the subsequent presentation of a non-target object.

This phenomenon has been named backward mask-

ing. In our case, the mask was always presented for

100 ms. Furthermore, it was made of dots (position)

or lines (length or angle) depending on the stimulus.

Hence, it was made of the same marks and channels as

the target stimulus. Finally, while the target stimulus

had one, two, three, or four elements, the masks

always had 50 and always displayed for 100 ms. Our

study did not consider both properties because we did

not intend to assess accuracy depending on the masks.

Marks and channels

In each mark-channel combination, participants com-

pleted a reproduction task. After performing the decoy

task, they were shown a stimulus with one, two, three,

or four elements, with a display time between 100 ms

and 1000ms. However, instead of explicitly estimating

the quantitative values, they had to create the marks

and adjust their channel as needed using their mouse

cursor to be close to the original stimulus. There was

no time limit to complete each task, and each answer

could be adjusted before submitting it. The tutorials

presented to the users (available at https://figshare.

com/s/967082b878cf0d530a04) exemplify each of the

tasks explained below.

Position of Dots: Each stimulus was made of a

black stroked square with one, two, three, or four red

dots (Figure 2(a)), whose (x, y) coordinates were ran-

domly generated. Then, the corresponding mask

(Figure 2(b)) with 50 dots, also with randomly gener-

ated coordinates, followed the stimulus. Finally, after

the mask, the initial square appeared with no dots

inside it. Participants could then create dots using

their mouse anywhere inside the square and simulta-

neously adjust their position on both axes. Each square

was generated to have 7 cm.

Length of Lines: Each stimulus was made of a

black stroked square with one, two, three, or four red

left-aligned horizontal lines (Figure 2(c)), whose

lengths were randomly generated. However, the y-axis

coordinate value was not random. Instead, depending

on the current phase (number of elements), lines were

equally distributed across the y-axis because, in this

stimulus, we would rather not target the position

channel. The length of each line varied between zero

and the width of the square. Then, the corresponding

mask with 50 lines (Figure 2(d)), also with randomly

generated lengths, followed the stimulus. Finally, after

the mask, the initial square appeared with no lines

inside it. Participants could then create the lines in the

available spaces inside the square and adjust their

length. Each square was generated to have 7 cm.

Figure 1. Example of a decoy task, which is performed before each trial.
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Angle of Lines: Each stimulus was made of a black

stroked circumference with one, two, three, or four

red lines always originating from the center of the cir-

cumference with randomly generated angles (Figure

2(e)). This canvas (circular) is different from the pre-

vious two to make sure the lines that originated from

the center all had the same size. The angle of each line

varied between zero and 2p radians. Furthermore,

each line had a length equal to the circumference

radius. Then, the corresponding mask with 50 lines,

also with randomly generated angles, followed the sti-

mulus (Figure 2(f)). Finally, after the mask, the initial

circumference appeared with no lines inside it.

Participants could then create the lines inside the cir-

cumference and adjust their angle. Each circumfer-

ence was generated to have 7 cm of diameter.

Participants

We conducted our user study with 99 participants

using Prolific (*https://prolific.co/)1, an online crowd-

sourcing platform focused on academic research.

Thirty-three were assigned to each value of our

between-subject variable (stimulus type): position,

length, and angle. The variable was studied in three

independent studies conducted in sequence.

We imposed two restrictions on participants. The

first was filtering out all participants who could not

participate with a desktop computer. Then, we only

wanted participants with a normal or corrected-to-

normal vision to ensure it did not compromise percep-

tion. Initially, we gathered 114 participants. However,

15 were rejected due to malicious behavior, mainly

rule breakers and some gold standard preys (more

details below). Sixty-four participants were between

18 and 27 years old, 25 between 27 and 36, and the

rest between 36 and 73 (mean = 27, std dev = 9).

Furthermore, we got people from 25 different coun-

tries, most from Poland (18%), United Kingdom

(16%), Portugal (11%), Greece (10%), and Italy

(9%). Of the 99 participants, 63 were male, and 36

were female. Finally, the median time for each partici-

pant was 9 m 14 s, and each participant was paid

£8.12/hr on average.

Online prototype

Everything was designed to be hosted online because

we conducted a crowdsourced user study. Therefore,

we created a webpage where each participant per-

formed all tasks.

Figure 2. Stimulus and corresponding masks for each type studied: (a) position stimulus, (b) position mask, (c) length
stimulus, (d) length mask, (e) angle stimulus, and (f) angle mask.

Moreira et al. 9
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The webpage was always divided into three sec-

tions: the header, the progress section, and the stimu-

lus area (Figure 1). The header always contained three

lines of text. The first indicated the number of ele-

ments shown in the current phase. For example, it

could say ‘‘Number of lines: 2,’’ which would mean

participants were at the phase with two elements

shown simultaneously. Then, the other two lines of

text indicated the primary and secondary tasks. These

last lines always displayed the same information, but

they served as a reminder for participants to continu-

ously know their goals.

Then, the progress sections showed the current

phase, the submit button, and the progress bar. The

submit button was disabled until participants finished

reproducing the stimulus. After they pressed it, the

study moved to the subsequent trial. Finally, the prog-

ress bar showed how many trials were left. Finally, the

stimulus area served as the canvas for every stimulus

shown to participants. It was also the place for partici-

pants to create and adjust the corresponding elements

until they were satisfied that their version was similar

to the original one.

Malicious behavior

Gadiraju et al. define five categories of well-known mal-

icious participants111: ineligible workers, fast deceivers,

rule breakers, smart deceivers, and gold standard preys.

Ineligible workers participate even though they do not

meet the requirements. Fast deceivers give random

answers to finish a task as fast as possible. Rule breakers

do not provide answers with enough quality. Smart

deceivers conform to the rules but give semantically

wrong answers. Finally, gold standard prey can only be

caught with specific questions during evaluation, as

they do not exhibit malicious behavior, but are still not

paying enough attention. We implemented several vali-

dation mechanisms to identify these participants and

reject their participation. Before starting the study, each

participant answered some questions to make sure they

were not ineligible workers:

� They had to input their Prolific ID, so they

could prove they were registered in Prolific.
� Participants had to input their monitor size so

that our webpage could calculate the pixels per

inch ratio, thus ensuring everything drawn

during the tasks had the same size for every

participant.
� They had to choose their age using a slider.

The age question was explicitly created to avoid fast

deceivers. Because their profiles in Prolific have the

ages registered, we could quickly check if participants

were not paying adequate attention. To avoid rule

breakers, we implemented two browser validations.

The first was regarding the browser’s current zoom

and window size; we wanted each participant to use all

the available space to perform each task. In particular,

we wanted participants to use their browser with 100%

zoom and with its window maximized. Therefore, if

these settings changed during the study, a pop-up mes-

sage appeared. Then, the browser was blocked until

both properties were changed to their required values.

The second validation was regarding idle time, and we

implemented two mechanisms. First, the browser was

continuously checking if the mouse cursor was stopped

for more than 30 s. Second, the browser continuously

checked if the participants left the browser window for

more than 30 s. If any of these situations occurred, a

pop-up would warn participants that their behavior

would compromise their results.

Furthermore, to avoid rule breakers, we analyzed

idle time. Prolific has a standard way to measure this,

which is by comparing the starting and ending time-

stamps. However, this is flawed because Prolific can-

not know what happens outside its platform, namely

on the test’s webpage. Therefore, we implemented sev-

eral timestamps across the study:

� We tracked the time between entering the web-

page and finishing the warm-up phase. Some

people entered and stayed idle for some time

before actually starting the trials.
� We tracked how much time they took from after

the warm-up phase until the end of the study.
� We also tracked how much time each trial took,

corresponding to the time after the mask was

presented and the trial answers’ submission.

To flag the participants that spent too much time

idle, we first looked at the time each participant took

during the warm-up phase. Then, we checked which

ones were significant outliers according to each stimu-

lus, and we rejected their submissions. Then, we

looked at each participant’s total time during the

study, and we checked again for outliers. However, we

did not reject until we knew if the time was evenly dis-

tributed across trials. If only a particular trial took sig-

nificantly more time, we would still accept the

participation. This way, we avoided rejecting a sub-

mission whose participant could have been forced to

stop the study while still wanting to finish it. The trial

detected as an outlier was then removed when we

applied our statistical tests.

To avoid gold standard prey, the webpage randomly

chose one trial in each of the four phases and made it

obvious. In graphical perception, specifically in studies

10 Information Visualization 23(1)



about the subitizing range, when the stimulus com-

prises several elements that make up a pattern, the sti-

mulus is perceived as one object. Therefore, it is

possible to have high accuracy values over the subitiz-

ing range.112–114 We used these results to ensure the

flagged trials were easy to perceive at any given display

time by making the stimulus reassemble a pattern. For

example, in the dots’ position flagged trial, all dots

were next to each other, close to the center of the

black stroked square (Figure 3(a)). In the lines’ length

stimulus, all lines had half of the total length (Figure

3(b)). Finally, in the lines’ angle, the four lines were

put to resemble the plus sign (Figure 3(c)).

All these flagged trials made up our baseline for

identifying participants that were not paying the

required attention. Because each participant per-

formed four flagged trials, we used them to get a mean

flag accuracy value. Then, we compared all partici-

pants’ mean values and checked which ones were sig-

nificant outliers inside each stimulus. Unlike the idle

time strategy, the corresponding participant’s submis-

sion was rejected if the flag accuracy was an outlier.

Data

Our study measured each trial’s accuracy to under-

stand how it changed according to the stimulus, the

number of elements, and display time. Instead of ask-

ing participants to estimate the quantitative values of

the presented marks, we asked them to reproduce

them. There is usually no need to decode the exact

value in a visual idiom because tables, for tabular data,

for example, are better for that purpose. Hence, accu-

racy was measured by looking at the delta between the

original marks’ positions, lengths, or angles and the

ones created by participants. For example, in the

position marks, we calculated the distance between

the original marks and the ones created by the

participants. Then, to get an accuracy between 0 and

1, we divided that value by the value of the worst-case

scenario, which would be when participants create the

marks the farthest possible from the original ones. The

dataset used in the analysis is available at https://fig-

share.com/s/3fde55b17b58545c7ee2.

Results

We analyzed accuracy with two different statistical

tests. First, we used the three-way mixed ANOVA sta-

tistical test to determine whether there was a statisti-

cally significant three-way interaction between the

stimulus used (position, length, angle), the display

time, and the number of elements. Then, we used the

One-way ANOVA to determine if there was a signifi-

cant difference between all three mark-channel accura-

cies to understand which one was more accurately

perceived, regardless of display time and the number

of elements. Our goal was to understand the influence

of our three independent variables on accuracy.

Three-way mixed ANOVA

This test was run to understand the effects of the num-

ber of visual elements (number), perception time

(time), and visual encoding (stimulus) in graphical

perception accuracy error. There was a statistically sig-

nificant three-way interaction between number, time,

and stimulus, F(26.96, 1091.882) =2.430, p \ 0.001,

partial h2= .057, e =0.499. The accuracy thus depends

on how these three variables interact with each other.

The statistical significance of a simple two-way

interaction and a simple one-way main effect was

accepted at a Bonferroni-adjusted alpha level. This

adjusted alpha level is determined by dividing the

desired level of statistical significance (in this case,

0.05) by the number of simple two-way interactions

Figure 3. Stimulus generated to detect gold standard preys: (a) position of dots, (b) length of lines, and (c) angle of lines.
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being analyzed. In our case, since we had three inter-

actions, we divided 0.05 by three, resulting in a value

of 0.016. There was a statistically significant simple

two-way interaction between number and time for the

length stimulus, F(6.239, 180.92) =4.749, p \ 0.001,

e =0.231, for the position stimulus, F(27, 702) =

1.947, p = 0.003, and for the angle stimulus, F(27,

702) = 3.147, p \ 0.001. If we assume one particular

number, time, or stimulus, accuracy depends on how

the other two variables interact with each other.

There was a statistically significant simple one-way

main effect of the number of visual elements for all sti-

muli in all perception times (p \ 0.05). For one par-

ticular stimulus and one particular perception time,

varying the number of elements changes accuracy

significantly.

Likewise, there was a statistically significant simple

one-way main effect of the perception time for all sti-

muli in all number of visual elements (p \ 0.05). For

one particular stimulus and one particular number of

elements, varying the perception times changes accu-

racy significantly.

All simple one-way pairwise comparisons were run

between the different number of elements trials for all

stimuli in all perception times. Likewise, all simple

one-way pairwise comparisons were run between the

different perception times trials for all stimuli in all

number of elements. Bonferroni corrections were

made in all cases, with comparisons within each sim-

ple one-way main effect considered a family of com-

parisons. Adjusted p-values are reported in Tables 1

and 2. The green cells correspond to p-values less than

0.05.

The results of the statistical analysis, regarding the

number of elements, are in Table 1. At a glance, it is

possible to see that most of the table is green, which

means that, overall, increasing the number of elements

significantly increases accuracy.

Looking at the length stimulus, it is noticeable that

the most significant differences are from one element

to two, three, and four elements. Besides, we can also

see that the differences between two and four elements

were mainly significant. Using one mark versus using

two, three, or four, and using two marks versus using

four will thus result in significantly more accurate

perceptions of values encoded via the length of lines.

Looking at the position stimulus, all differences

between one element and two, three, and four ele-

ments were statistically significant. However, between

the other combinations, the majority of differences

were not significantly different. Using one mark versus

using two, three, or four will thus result in significantly

more accurate perceptions of values encoded via the

position of dots.

Finally, looking at the angle stimulus, we can see

that all differences between one element and two,

three, and four elements were statistically significant.

Furthermore, again, between the other combinations,

the majority of differences were not significantly differ-

ent. Using one mark versus using two, three, or four

will result in significantly more accurate perceptions of

values encoded via the angle of lines.

By analyzing Table 2, it is possible to notice that, dif-

fering from the previous table, it mostly shows no statis-

tically significant differences between display times. In

particular, the most statistically significant differences

happened between 100 ms and from 300 ms to

1000ms, mainly in the length channel. Changing the

display time usually does not significantly change accu-

racy, except for the length channel with a display time

below 300 ms.

One-way Welch ANOVA

A one-way Welch ANOVA was conducted to determine

if the graphical perception percentage error differed for

different mark-channel combinations. Participants were

classified into three groups: length, position, and angle.

The error percentage was statistically significantly

different between different stimuli, Welch’s F (2,

2059.986) = 699.861, p \ 0.001. The error percent-

age increased from the angle stimulus (0.022 6 0.024)

to the length stimulus (0.055 6 0.041) and position

stimulus (0.153 6 0.147) in that order. Games-Howell

post hoc analysis revealed that the increase from the

angle stimulus to the length stimulus (0.032, 95% CI

(0.024 to 0.041)), and the increase from the angle sti-

mulus to the position stimulus (0.131, 95% CI (0.122

to 0.140)) was statistically significant (p \ 0.001), as

well as the increase from the length stimulus to the

position stimulus (0.099, 95% CI (0.107 to 0.090),

p \ 0.001). From these results, we can specify an

accuracy ranking; first the angle of lines, then the

length of lines, and finally the dots’ position, from best

to worst.

Accuracy variation

This section focuses only on how accuracy varied,

regardless of significant differences. After knowing

which differences were significantly different, we

looked at how accuracy evolved when the number of

elements (Figure 5) varied and how it evolved when

the display time varied (Figure 4).

We can see that the error rate decreased when the dis-

play time increased, which happened for one, two, three,

and four elements (Figure 5). Increasing display time

thus increased accuracy. However, the results for one ele-

ment pop out when compared with the others, meaning

12 Information Visualization 23(1)
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that encoding information with only one mark was over-

all more accurate. Then, we can see that the error rate

increased when the number of elements increased, which

happened for all display times (Figure 4). Increasing the

number of elements decreases accuracy.

Finally, by looking at Figures 4 and 5, we can see

that the error rates for the position of dots (orange

lines) are usually higher compared with the other two

encodings. Using the position of dots thus decreased

accuracy.

Table 2. Simple one-way pairwise comparisons between the different display times with Bonferroni corrections within
each simple one-way main effect are considered a family of comparisons.

Stimulus
time (ms)

Stimulus
time (ms)

Number of Elements

1 2 3 4

Len Pos Ang Len Pos Ang Len Pos Ang Len Pos Ang

100 200 0.457 0.102 1.000 1.000 1.000 1.000 0.006 1.000 1.000 0.073 1.000 1.000
300 0.066 0.001 1.000 0.009 1.000 0.029 0.000 1.000 1.000 0.000 1.000 1.000
400 0.006 0.002 1.000 0.003 0.599 1.000 0.000 1.000 1.000 0.000 1.000 1.000
500 0.010 0.000 1.000 0.015 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000
600 0.043 0.000 1.000 0.001 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000
700 0.006 0.000 1.000 0.002 0.005 0.314 0.000 1.000 1.000 0.000 1.000 1.000
800 0.006 0.001 1.000 0.001 1.000 1.000 0.000 . 002 1.000 0.000 0.448 1.000
900 0.003 0.000 1.000 0.001 1.000 0.097 0.000 0.004 0.152 0.000 0.177 1.000
1000 0.007 0.000 0.050 0.000 0.005 1.000 0.000 1.000 0.176 0.000 0.003 1.000

200 300 1.000 1.000 1.000 0.764 1.000 0.377 0.735 1.000 1.000 0.016 1.000 1.000
400 0.185 1.000 1.000 0.029 1.000 1.000 0.812 1.000 1.000 0.017 1.000 0.184
500 0.708 0.127 1.000 0.417 1.000 1.000 0.036 1.000 1.000 0.007 1.000 1.000
600 1.000 0.675 1.000 0.038 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000
700 0.107 0.089 0.852 0.059 0.555 1.000 0.209 1.000 1.000 0.000 1.000 1.000
800 0.117 0.441 1.000 0.044 1.000 1.000 0.001 1.000 1.000 0.000 1.000 1.000
900 0.115 0.142 1.000 0.019 1.000 1.000 0.000 0.948 0.649 0.000 0.818 1.000
1000 0.316 0.770 0.142 0.004 0.884 1.000 0.000 1.000 1.000 0.000 0.069 1.000

300 400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.469
500 1.000 1.000 0.719 1.000 1.000 0.050 1.000 1.000 1.000 1.000 1.000 1.000
600 1.000 1.000 1.000 1.000 1.000 1.000 0.019 1.000 1.000 0.164 1.000 1.000
700 0.080 0.178 1.000 0.721 0.102 1.000 1.000 1.000 1.000 1.000 1.000 1.000
800 0.545 1.000 1.000 1.000 1.000 0.379 1.000 0.775 1.000 0.000 1.000 1.000
900 0.141 1.000 1.000 0.256 1.000 1.000 0.145 1.000 1.000 0.090 1.000 1.000
1000 1.000 1.000 0.358 0.029 0.355 1.000 0.001 1.000 0.800 0.010 0.239 1.000

400 500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.030
600 1.000 1.000 1.000 1.000 1.000 1.000 0.038 1.000 1.000 0.185 1.000 1.000
700 1.000 1.000 0.610 1.000 0.224 1.000 1.000 1.000 1.000 0.566 1.000 0.805
800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.428 1.000 0.001 1.000 0.065
900 1.000 1.000 1.000 1.000 1.000 1.000 0.207 1.000 1.000 0.081 1.000 0.026
1000 1.000 1.000 0.110 1.000 0.571 1.000 0.004 1.000 1.000 0.032 0.269 . 0.038

500 600 1.000 1.000 1.000 0.875 1.000 1.000 0.913 1.000 1.000 0.148 1.000 1.000
700 1.000 1.000 0.127 1.000 1.000 0.683 1.000 1.000 1.000 1.000 1.000 1.000
800 1.000 1.000 0.196 1.000 1.000 1.000 1.000 0.602 1.000 0.001 1.000 1.000
900 1.000 1.000 1.000 0.557 1.000 1.000 1.000 0.342 0.516 0.156 1.000 1.000
1000 1.000 1.000 0.032 0.002 1.000 0.946 0.099 1.000 1.000 0.180 0.292 1.000

600 700 1.000 1.000 1.000 1.000 0.955 1.000 0.372 1.000 1.000 1.000 1.000 1.000
800 1.000 1.000 1.000 1.000 1.000 1.000 0.805 0.939 1.000 0.679 1.000 1.000
900 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.197 1.000 1.000 1.000
1000 1.000 1.000 0.124 1.000 1.000 1.000 1.000 1.000 0.366 1.000 0.699 1.000

700 800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.425 1.000 0.033 1.000 1.000
900 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.381 0.423 1.000 1.000 1.000
1000 1.000 1.000 1.000 1.000 1.000 1.000 0.024 1.000 1.000 1.000 0.202 1.000

800 900 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1000 1.000 1.000 1.000 0.530 1.000 1.000 0.331 1.000 1.000 1.000 1.000 1.000

900 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Adjusted p-values are reported. The green cells correspond to significant differences.
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Discussion

Although traditional visualizations are usually more

complex than just having up to four marks simultane-

ously, and although our study did not explore all stimuli

that exist in graphical perception for information

visualization, we argue that our study serves as a starting

point for future work. As we have explained in our liter-

ature review, people’s visual attention using a top-down

mechanism (goal focused) is restricted due to working

memory limitations, and is significantly impacted in

Figure 4. Error rate (y-axis) for each number of elements across all display times: (a) one mark, (b) one mark, (c) three
marks, and (d) four marks.

Figure 5. Error rate (y-axis) for each display time across all number of elements (x-axis). The orange line represents the
dots’ position channel, the blue line represents the line length channel, and the gray line represents the line angle
channel. The line at the top of the graph represents 30%, and the minimum represents 0%. For example, at the 100 ms
figure, accuracy for the angle stimulus did not vary much as the number of elements increased: (a) 100 ms, (b) 200 ms,
(c) 300 ms, (d) 400 ms, (e) 500 ms, (f) 600 ms, (g) 700 ms, (h) 800 ms, (i) 900 ms, and (j) 1000 ms
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dual-task scenarios. In particular, our decoy task

required enough attention from participants so that

we could explore incidental graphical perception.

Fortunately, these limitations did not jeopardize peo-

ple’s accuracy above a 30% error rate. We argue that

this indicated that incidental perception may still be

viable for receiving information during an ongoing

primary task.

Our results from the Three-way mixed (BWW)

ANOVA test indicated that the interaction between

display time, number of elements, and stimulus type

significantly affected accuracy. Because the results of

our one-way Welch ANOVA test also showed us that

changing between stimuli significantly impacts accu-

racy, we conclude that indeed choosing the correct sti-

mulus can indeed make the difference. However, we

were intrigued when we found that our ranking

between the three stimuli differed from previous stud-

ies, as reviewed by Vanderplas et al.,7 indicating that

incidental perception might not work the same way.

We argue that that happened because our tasks (sti-

mulus intensity) differ in nature from some studies

mentioned by Vanderplas (magnitude estimation),

which might compromise the comparison of our rank-

ings and theirs. In any case, our results indicated that

the less accurate task was estimating dot positions

(avg = 85%), then the length of lines (avg = 93%),

and finally, the angle of lines (avg = 97%), always with

significant differences according to the one-way Welch

ANOVA. Usually, in graphical perception, it is the

other way around. Our results thus showed that

encoding information to be seen incidentally using the

angle of lines was better than using the length of lines,

which was better than the position of dots. We found

that our results were closer to the study of Blascheck

et al.,40 where they concluded that the Donut chart

was more effective than the bar chart and radial bar

chart in smartwatches. One of the channels used to

encode information in a Donut chart is the angle.

Furthermore, instead of magnitude estimation or

production tasks, we asked participants to reproduce

the entire stimulus. As a result, we obtained an overall

high accuracy (no lower than 70%), meaning that

individual marks were effectively perceived with no

need for comparison during an incidental glance.

Moreover, we think that angles were the best channel

to encode values because people perceive them differ-

ently. Looking at all the channels we studied, only the

angle has a fixed range of values: Between 0 and 2p

radians. Hence, regardless of the size of the stimulus,

the number of possible values will always be the same.

For example, if a circle has a 10 or 100 cm radius, the

angle range will still be the same. However, this phe-

nomenon does not occur in the other two channels.

The larger the canvas, the more (x, y) coordinates

there will exist. Accuracy will probably be the same

across different stimulus sizes when using the angle of

lines without differing the number of elements or dis-

play time.

Looking at the results regarding the number of ele-

ments (Table 1), we can see that the most significant dif-

ferences occurred between having one element and

having more than one. This result matches the subitizing

phenomenon. It has been proved that counting items in

the subitizing range requires attention.115 Because parti-

cipants performed trials with primary and secondary

tasks, and because we know that attention significantly

decreases in dual-task scenarios, encoding information

for incidental perception will be significantly more effec-

tive by using only one element. However, accuracy will

not significantly change with information encoded using

two, three, or four elements.

If we look at the table with the display time (Table 2),

the results differ significantly from the previous one.

Now, almost all combinations do not show statistically

significant differences in accuracy. We mainly have them

between 100 ms and from 300 ms to 1000ms in the

length channel. Once again, these results match previous

research regarding preattentive processing, which has

been said to happen during the first 250 ms. However,

they do so only in one of the studied channels.

Incidental perception is thus significantly less accurate if

performed during the first 200 ms when the length

channel is used.

The key insights on incidental graphical perception

for an incidental visualization design process drawn

from our results are as follows:

� The positions of the dots should be further

explored because the error rate was never above

30%.
� Graphs can be designed up to four marks with

no detrimental effects. For example, a bar chart

with four bars (length), a donut chart with four

sections (angle), or a Cleveland dot plot with four

dots (position), would be effective as incidental

visualizations. However, because our study

focused only on the subitizing range, we do not

know what happens for more than four marks.
� An effective exposure time for marks to be per-

ceived incidentally is between 300 and 1000 ms,

and varying it will induce no detrimental effects.

Limitations

Because our work focused on graphical perception, it

serves as the starting point in the design of incidental

visualizations. However, traditional graphs usually

have information encoded using more than four marks
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simultaneously, and the tasks performed in traditional

visualization are not reproduction tasks. Furthermore,

in real daily scenarios, the primary task complexity

may significantly influence incidental perception accu-

racy. Therefore, future work should consider how inci-

dental graphical perception should be adapted to

create complex graphs and how it could be integrated

into people’s daily activities. Moreover, 33 participants

per condition might not have been enough, and the

primary task that was tested could have been too sim-

ple and too repetitive to ensure the amount of atten-

tion expected from participants. Would the results be

the same without this primary task? Finally, the fact

that the angle proved to be the most accurate channel

was surprising. However, we were unable to check if

measuring error rates was the best course of action, or

if this happened because of the nature of the stimulus.

For example, the size of the dots at the positions’ sti-

mulus, the low error possibilities of the angle stimulus,

or the stroke of the lines. Additionally, measuring fixa-

tion points could have proved useful to understand

participants’ behavior for the different stimuli.

Conclusion and future work

Having more ubiquitous devices in people’s lives

allows them to have information available on the go.

However, it must be conveyed without distracting too

much to ensure primary ongoing tasks are not com-

promised. Although there are already systems whose

purpose is to convey glanceable information, they still

assume people want to look at these systems as part of

their primary task. Therefore, we explored how peo-

ple’s graphical perception works when information is

conveyed only when needed, during brief exposure

times, and without asking explicitly.

We conducted a crowdsourced user study with 99

participants to explore how people’s incidental percep-

tion works when information is encoded via the posi-

tions of dots, length of lines, and angle of lines. We

varied two properties, the number of elements dis-

played at a time and display time. Our results strongly

suggest that incidental perception is accurate.

Moreover, varying display time (up to 1000ms) and

the number of elements (up to four) do not signifi-

cantly influence accuracy, except if more than one ele-

ment is displayed or elements are displayed in less

than 200 ms. Finally, the angle was the most accurate

channel for incidental graphical perception, differing

from traditional graphical perception rankings.
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