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Abstract

Incidental visualizations convey information to a person during an ongoing
primary task, without the person consciously searching for or requesting that
information. They differ from glanceable visualizations by not being people’s
main focus, and from ambient visualizations by not being embedded in the
environment. Instead, they are presented as secondary information that can
be observed without a person losing focus on their current task. However,
despite extensive research on glanceable and ambient visualizations, the topic
of incidental visualizations is yet a novel topic in current research. To bridge
this gap, we conducted an empirical user study presenting participants with
an incidental visualization while performing a primary task. We aimed to
understand how complexity contributory factors—task complexity, output
complexity, and pressure—affected primary task performance and incidental
visualization accuracy. Our findings showed that incidental visualizations
effectively conveyed information without disrupting the primary task, but
working memory limitations should be considered. Additionally, output and
pressure significantly influenced the primary task’s results. In conclusion,
our study provides insights into the perception accuracy and performance
impact of incidental visualizations in relation to complexity factors.
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1. Introduction

In the course of people’s daily lives, instances arise when multiple sources
of information are present, yet it becomes challenging for individuals to ef-
fectively monitor all ongoing events simultaneously. Consider a scenario with
four appliances functioning, each equipped with a timer for a specific task.
However, if an individual were to gain access to these timers — through a bar
chart displaying four bars within their field of vision while they engage in a
primary task — this access could enable that person to stay informed about
various details in real-time and with a quick glance.

Although there are currently ways to get data in real-time, presenting
it effectively and quickly, while not disrupting too much, is yet an unsolved
issue. Even with ubiquitous devices such as smartphones or smartwatches,
people would still need to consciously remember they can access the informa-
tion. However, by the time they looked for the information, time was already
lost, and the task could already be compromised. If people have to choose
and search for the information for themselves, it may induce unwanted addi-
tional cognitive load, even with useful information. For example, augmented
reality interfaces have been explored (Lu and Bowman| [2021) on how they
might apply to everyday uses to convey information, and two of the prob-
lems they reported are distraction and occlusion. Even though they did not
explore information visualization, we argue that distraction and occlusion
might also happen if we try to present several graphs at the same time.

For instance, let’s imagine people living in a fully intelligent house where
every resource, such as energy, water, gas, and food, is measured in real-time,
and assuming the existence of technology that can determine when to present
visualizations. The primary tasks here refer to any task a person is engaged in
that doesn’t require them to explicitly focus on a visualization. By displaying
graphs incidentally, people could gain a better understanding of how these
resources are utilized. For example, a line chart can show energy consumption
over time, or a bar chart can display ingredient stock levels, all without the
need for users to actively search for and explore this data. The question at
hand is: How can visualizations effectively convey information to users during
their primary tasks without causing distraction or excessive obscuring of the
real-world environment? Additionally, how can users receive this information
quickly and effortlessly, all without requiring them to consciously search for
or request it? These are essential considerations in designing user-friendly
visualizations that seamlessly integrate with users’ primary activities and



provide the necessary data without disrupting their workflow.

Calm Technology has been defined (Weiser and Brown) 1996) as any
device that interacts with people via auditory or visual channels while allow-
ing information to be conveyed from the periphery to the center of human
attention and back. In other words, calm technology informs but does not
demand our focus or attention. In information visualization, calm technology
has been explored as ambient information systems such as ambient (Skogj,
2004), glanceable (Blascheck and Isenberg, |2021)), and incidental (Moreira
et al., 2020, [2023alb) visualizations. These last two types share a core con-
cept: they are seen at a glance for very short exposure times. However, they
differ in their use cases. In some glanceable visualizations people actively
search for the depicted information on an easily accessible device, (Gouveia
et al., 2016)) such as a smartwatch. In contrast, incidental visualizations de-
pict information within one’s field of view without the need for conscious
searching, thereby ensuring that the focus of attention remains on the pri-
mary task. Incidental visualizations are precisely what people would want
for the mentioned resource management example. Incidental visualization re-
volves around graphs that have the potential to manifest at any location and
specific instances without requiring explicit user initiation. In that house,
people could be presented with incidental visualizations through some tech-
nology like augmented reality without people searching for the graphs, allow-
ing them to be aware in real-time of contextualized information displayed
in their field of view, without stopping their current tasks.

The scenario we envision, assumes the existence of theoretical background
on incidental visualizations, for which design guidelines are not yet available.
Additionally, there is a lack of studies exploring the hardware required for
implementing such visualizations, although augmented reality is speculated
to be a suitable fit. In two preliminary studies on incidental visualizations
(Moreira et al., 2020, 2023b)), the perception of pre-attentive tasks was in-
vestigated to understand the effectiveness of different marks and channels.
The authors concluded that information displayed (up to four marks) for very
short durations (up to one second) at specific moments can be effectively per-
ceived. Subsequently, the influence of incidental visualizations, which were
presented alongside a primary task (maze game), on users’ performance was
explored (Moreira et al., 2023a)). The study concludes that these visualiza-
tions do not disrupt the primary task and, in fact, they may enhance users’
ability to respond to related questions. Building upon this research, our
study aims to validate the effectiveness of incidental visualizations in real-
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life scenarios and examine how task properties influence task performance,
with the objective, in future work, of exploring the optimal placement and
presentation of these visualizations in the real world.

In this paper, we present the results of an empirical online between-
subjects user study with 120 participants, where we studied the extent to
which people can effectively perceive information from an incidental visu-
alization while performing a primary task. We tested three different task
complexity factors and analyzed the influence each one had on participants’
performance. The primary task had participants interact with a choropleth
map to select regions that satisfied specific criteria. At a certain point, an
incidental visualization (a horizontal bar chart), would appear to add an-
other needed piece of information for participants to successfully finish the
task. According to our results, the overall primary task performance was
normally high, and the horizontal bar chart was mostly perceived accurately,
indicating that incidental visualizations should be further explored for future
design concepts.

Our major contributions with this paper are a user study to evaluate a
primary task with an incidental visualization; how the task performance and
visualization accuracy are affected by three complexity factors; key insights
for future research with incidental visualizations.

2. Related Work

Glanceable perception is the topic that matches the most with the inci-
dental perception definition, except for some use case scenarios. Therefore,
we will start by mentioning some of the research that has been conducted
lately. Then, to motivate future implementation for incidental visualizations,
we will go through augmented reality (AR), in particular studies that men-
tion glanceable AR. Next, more closely related to our work, we will show
some task complexity frameworks that have been defined lately. Finally,
to justify some design choices made, we will state the current knowledge
regarding graphical perception theory.

2.1. Glanceable Perception

Incidental visualizations must be designed to be seen at-a-glance, and
“Glanceability refers to the perception and interpretation of information af-
ter the user is paying attention to the interface” (Matthews| |2006). There



are several challenges related to glanceable perception, but all of those chal-
lenges end up in trying to understand how one person can be aware of in-
formation received at-a-glance. For several years, these challenges have been
addressed. One good example is the Info-lotus (Zhang et al., 2005), where
authors presented a peripheral notification system where people could see
several types of personal information at-a-glance, all in one place. Around
the same time, visualizations were developed (van Dantzich et al. 2002) de-
signed to be glanceable and reduce the mental effort people had to spend
when deciding where to look at. Nowadays, mostly due to their size, smart-
watches and fitness bands are usually the choice to convey such information
(Gouveia et al., 2016)). One recurrent theme is health, due to the capability of
these devices of monitoring body metrics. For example, it was demonstrated
(Ankrah et al., 2022) that children were fully aware of their health using Ap-
ple Watches; A survey was made on sleep data (Islam et al 2022a)) on fitness
trackers, and concluded that the visualizations shown on the devices had the
potential to be glanceable and were effective at communicating sleep data
to wearers ;And a study was conducted (Grioui and Blascheck], 2021) to test
three visualizations displayed on a smartwatch, and concluded that partici-
pants preferred information displayed in a bar chart. If not with wearables,
we have other examples. Health related, glyphs were tested (DEURZEN
et al., [2022) by being displayed on smartphones to make workers aware of
their current posture. If not regarding health, pervasive visualizations were
tested (Wilkinson et al., 2020)) to enhance people’s awareness of the data-
sharing from their smartphone.

Regarding particular details for information awareness, some challenges
can be context, body movements, or screen size. The information that is
perceived could depend on what the user is currently doing (Islam et al.|
2022b). Then, one of the consequences of using devices placed on the body
is constant movement. Therefore, information will be read in motion. For
example, several visualizations were reviewed (Islam et al., 2022¢)) in motion
and the authors concluded that viewers can only afford to glance at watch
faces for very short exposure times, which is particularly relevant for running
athletes where movement is much more intense. User acceptance and utility
of real-time visualizations on smartwatches were explored during sport ac-
tivities (Schiewe et al.| [2020) and the authors concluded there is not enough
evidence that athletes will perform better. However, they still preferred to
use these devices for self-monitoring and motivation.

The issue with reading in motion using smartwatches or fitness bands is



also related to the small screen sizes. The challenge here is how to create
effective visualizations that fit these screens without compromising compre-
hensibility. A study was conducted to assess how quickly people could read
the information in small-scaled visualizations, (Blascheck et al., 2019) and
the authors concluded that individual bars and donut sectors could be as-
sessed in a few hundred milliseconds. They later replicated their study on a
laptop (Blascheck and Isenberg, 2021)) and the overall trends were still the
same, proving that perception on larger screens may still apply to small ones.
Around the same time, it was investigated how people would perform at see-
ing information in smartwatches (Neshati et al,2019), but using high-density
continuous time-series data. The authors concluded that graph segments are
best interpreted when compressed along the x-axis.

Understanding how people can effectively perceive and comprehend in-
formation presented at a glance is a significant challenge. When it comes to
incidental visualizations, the primary difference between the current state of
the art and our knowledge gaps lies in our lack of advance knowledge regard-
ing the location and timing of the information. Existing solutions primarily
concentrate on providing information through easily accessible devices, such
as smartwatches, which can be quickly explored in brief intervals.

Glanceable augmented reality offers a potential solution for presenting
information at-a-glance, but it also introduces new challenges, such as vi-
sual occlusion (Daskalogrigorakis et al., [2022). However, the exploration of
information visualization in the context of glanceable augmented reality re-
mains relatively limited. Designers must carefully determine the amount of
information conveyed to avoid overwhelming users (Davari et al.| [2020)). Sec-
ondary stimuli, such as notifications, can disrupt attention (Faulhaber et al.,
2022). It was found that a circular progress bar was effective in providing
progress information without affecting eye contact (Janaka et al., [2022).

Research on everyday tasks in glanceable augmented reality has been
conducted (Lu, 2021; Zhang et al., 2022). The importance of real-world vis-
ibility and minimizing visual clutter was identified (Davari et al., 2020)), and
the potential interference caused by peripheral content was highlighted (Lu
et al., 2021). However, overall user perception of glanceable augmented re-
ality remains positive (Lu and Bowman, 2021)). Context-aware glanceable
augmented reality aims to provide relevant information (Davari et al., 2022).
Users can perceive information effectively with minimal interference in pri-
mary tasks (Davari et al. 2022)).



2.2. Task Complexity

Even if an incidental visualization is perfectly designed, the ongoing pri-
mary task must be considered carefully. Its complexity might affect how ac-
curately the visualization is perceived. Task complexity is an area of research
that has been studied for several years. However, even now, it is hard for
authors to find a global consensus. Robert Wood (Wood\ |1986; Wood et al.,
1987) and Donald Campbell (Campbell, [1988)) are known for their research in
task complexity, and inspired research until now. Wood defined complexity
as a combination of three types of complexity: component, coordinative, and
dynamic. Campbell divided task complexity into four categories: decision,
judgment, problem, and fuzzy. Although these were the foundations at the
time, several frameworks have emerged since then. For example, complex-
ity was divided into Coordinative Complexity and Component Complexity
(Lazzara et al., [2010). The former assumes several team members, whereas
the latter does not.

A significant contribution to the field was made (Liu and Li, [2012), where
authors conducted a comprehensive survey of literature up until 2012 to sum-
marize the research conducted on task complexity. Initially, they categorized
papers based on different viewpoints and definitions, leading to the pro-
posal of a task model. In essence, a task comprises six components: goal,
input, output, process, presentation, and time, each consisting of various
contributing factors. Subsequently, the authors restructured the task model,
expanding it to include ten dimensions: size, variety, ambiguity, relationship,
variability, unreliability, novelty, incongruity, action complexity, and tempo-
ral demand. Each dimension also encompasses multiple contributing factors,
with each factor corresponding to one of the six components.

More recently, a task complexity framework was proposed (Efatmanesh-
nik and Handley, 2021), based on two components, objective view and sub-
jective view, components that were explored in 1997 (Maynard and Hakel,
1997). Efatmaneshnik et al. proposed their framework to enhance human
systems’ integration processes. The objective view is based on a task model
where tasks are defined by input, processing skills, and constraints. The
subjective view is based on a task model where complexity depends on sev-
eral personal metrics such as motivations, experience, etc. Then, completely
shifting from traditional frameworks, it was argued that task complexity is, in
fact, a social practice, and it is something that dynamically changes (Danner-
Schroder and Ostermann, 2022)). They concluded that tasks do not possess
a complexity, but they become complex in the enactment due to four mech-
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anisms: forming new paths, keeping paths open, enacting interdependent
paths in parallel, and dissolving old paths.

Finally, some works have explored task complexity interaction with task
performance. For example, it was explored how task complexity affected in-
formation seeking (Bystrom and Jarvelin, 1995)). One of the conclusions they
drew was that, if a person needs information to complete a certain task, if
its complexity is high, it will decrease the chances of the person finding the
information needed. Then, a framework was proposed that connects several
metrics we presented already (Liu and Li, [2011)), but also highlighted how
they could impact task performance. In the context of incidental visualiza-
tions, a study was conducted to assess their impact on primary tasks (Moreira
et al., 2023a), and the conclusion was that their presence did not significantly
affect performance in most cases. However, the study did not investigate if
this holds true for tasks with distinct and specific characteristics.

The shared objective of research on task complexity is to enhance our
understanding of how task complexity affects information seeking and overall
task completion. As we have observed, a lack of consensus indicates the
difficulty in reaching a definitive solution. Nevertheless, in the end of this
section, we will delve into a detailed discussion, focusing on the empirical
framework proposed by Liu and Li, which we deem suitable for our studies.

2.8. Graphical Perception

To create any visualization, designers make use of research regarding
graphical perception. Cleveland and McGill (Cleveland and McGill, 1987,
1986, 1985, [1984)) are very well-known for their original work on graphical
perception, which is the visual decoding of information encoded on graphs.
These results have been used ever since, and even recently it was explored
if these results apply to both adults and children (Panavas et al., 2022),
and the authors concluded that the theory also applied to these ages. In
information visualization, graphical perception theory is used to choose the
best marks and channels to convey information effectively when performing
specific tasks.

However, graphical perception rankings should not be used blindly (Bertini
et al., |2020). It was concluded that rankings do not capture how people use
and learn visualizations. Therefore, rankings should be thought regarding
the tasks to be performed. For example, a survey was conducted to under-
stand which visual idioms are more effective for low-level tasks (Quadri and
Rosen, 2022; Brehmer and Munzner, 2013)). Furthermore, a literature review
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was made to compare visualization designs in terms of visual perception and
human performance under different analysis tasks (Zeng and Battle, [2021)).

Then, besides the task’s nature, individual differences might change how
accurately people perceive visualizations. The Cleveland and McGill studies
were replicated (Davis et al., 2022), and the authors examined the perfor-
mance variance between participants themselves. They concluded that a vi-
sual idiom that is ranked best for the average participant may not be ranked
best for a substantial portion of people, which may comprise current de-
sign guidelines. Then, still on individual differences, now regarding cognitive
ones, a survey was made on how individual differences have been measured
to use that data at accessing visualization performance (Liu et al., 2020)).

Regarding incidental graphical perception, two user studies have been
conducted (Moreira et al., 2020, 2023b). In the first, the authors tested
six combinations of marks and channels: horizontal and vertical positions;
length and slope of lines; the size of areas; and color luminance intensity,
and concluded that horizontal position identification is the most accurate
and fastest task to do. In the second, they tested three combinations of
marks and channels: length of lines, horizontal and vertical positions of dots,
and angle of lines. However, in this study, each combination was displayed
with either one, two, three, or four marks because the authors wanted to
measure accuracy at the subitizing range, which is the term given (Kaufman
et al., [1949) for the enumeration of small sets precisely and effortlessly.

Up to four objects, people can instantly recognize and accurately enumer-
ate the number of objects without the need for counting, and this range was
confirmed also with incidental visualizations. However, even now, whether
attention is necessary for subitizing remains debatable. A survey was con-
ducted (Chen et al 2022) to determine whether manipulations to attention
demonstratively affect subitizing, and proposed a framework for the involve-
ment of attention in visual enumeration.

In summary, there are three enumeration mechanisms: estimation, subitiz-
ing, and counting. For subitizing, medium attention demands still allow for
this mechanism to work effectively, such as divided, selective, spatial, or
temporal, attention.

Following this work, the same authors investigated the effects of inci-
dental visualizations on users’ performance within a maze game context.
Through an empirical study, the research reveals that these visualizations
neither hinder the primary task nor adversely affect participants’ question-
answering abilities. Notably, this positive impact remains consistent, and
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working memory appears to have no significant influence in this regard.

Finally, selecting appropriate visual marks and channels can have a sig-
nificant impact. Therefore, it is crucial to comprehend the accuracy rankings
based on the specific tasks we aim to accomplish. However, it is important
not to blindly rely on rankings alone. Various factors such as age disparities
between adults and children, the nature of the tasks influencing visual per-
ception, and individual cognitive differences can all introduce variations and
potential interferences.

2.4. Discussion

Incidental visualizations and glanceable visualizations share a common
objective: enabling individuals to perceive information at a glance. However,
there are fundamental differences between the two. Glanceable visualizations
are accessed either on purpose or based on peripheral stimuli (Blascheck
et al., [2021)), and people consciously will look at it. In contrast, inciden-
tal visualizations are not actively sought out or perceived; instead,
they spontaneously appear in a person’s field of view during an
ongoing primary task without needing conscious focus. They are,
in essence, trully embedded as calm technology (Weiser and Brown, [1996)).
While incidental visualizations may not encounter challenges related to body
movements or screen size, they do face the contextual challenge of providing
information based on the user’s current task or activity. Body movements
are no problem because we argue that an incidental visualization should ap-
pear in each person’s field of view, not at a specific location such as a body
part. Then, due to the study where the authors replicated the smartwatch
results (Blascheck and Isenberg), 2021)), the screen size should also not be an
issue. Therefore, if we are to picture a possible hardware implementation,
augmented reality probably fits what we want. Although occlusion, distrac-
tion, or even annoyance may become the next big challenges, we hope they
will have lesser importance due to two major design choices in incidental
visualizations. First, they should appear for short exposure times, which
may minimize the occlusion time of the real world. Second, they should be
designed to minimize cognitive load to avoid distraction from primary tasks,
which then may lead to less annoyance felt. While our current study does
not specifically focus on glanceable augmented reality, we recognize its po-
tential as a promising avenue for implementing incidental visualizations in
the future.
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When it comes to task complexity, as we have observed, there is no clear
consensus regarding the preferred framework to be utilized. For our specific
study, frameworks that involve multiple individuals or assume complexity as
a social construct will not be employed. We intend to initially test incidental
visualizations in isolation before considering social scenarios. Furthermore,
we aim to avoid subjective perspectives on task complexity as our primary fo-
cus is on the inherent nature of tasks. Thus, the framework proposed by Liu
and Li (Liu and Li, 2012)) proves to be more suitable for our purposes. Their
framework offers a level of granularity that enables studies to concentrate on
specific factors, three of which we will utilize as independent variables in our
research. Specifically, we evaluated the complexity dimensions of size and
temporal demand. The former relates to the number of task components,
where we examined the complexity contributory factors of output quantity
and input quantity. The latter pertains to the pressure-induced task require-
ments, for which we tested the complexity contributory factor of pressure.

Incidental visualizations, like any other type of visualization, will be cre-
ated with visual idioms designed with graphical perception theory. However,
if people are performing primary tasks, incidental visualizations should de-
mand as little attention as possible without compromising visual accuracy.
Therefore, as Moreira et al. (Moreira et al., 2023bja)) used in their studies,
we will conduct ours within the subitizing range. Besides, according to Chen
et al. (Chen et al., [2022) framework, subitizing works in divided attention
situations, which is what happens with incidental visualizations. Further-
more, according to Quadri et al. (Quadri and Rosen, 2022)), for retrieving
values tasks, which are the tasks we used in our study, bar charts are pre-
ferred. Therefore, we used bar charts to convey information, each with four
bars due to the subitizing range. To address individual differences in vi-
sual perception (Liu et al., 2020), we utilized the OSPAN (Operation Span)
test (Turner and Engle, [1989)) to assess participants’ working memory ca-
pacity. The test involves solving mathematical operations while memorizing
a sequence of letters and recalling them in the correct order. The OSPAN
measure provides insights into individuals’ ability to maintain and manipu-
late information in working memory. In our study, we replaced letters with
icons for the test.
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3. User Study

Since incidental graphical perception has already been validated, and we
are aware that incidental visualizations can coexist with a primary task, we
shifted our focus to the primary task itself. Our objective was to examine
the extent to having an incidental visualization influences people’s perfor-
mance, response time, and confidence in the primary task, while system-
atically varying three complexity contributory factors of the primary task:
input complexity, output complexity, and pressure. Additionally, we aimed
to determine the accuracy of perceiving the information conveyed by the
visualization regardless of the primary task performance.

According to Liu and Li framework (Liu and Li, 2012), input and output
are related to the size task complexity dimension, and pressure belongs to
the temporal demand dimension:

e Input: Number of criteria to be satisfied;
e Output: Number of values to retrieve;
e Pressure: Time available to finish the task.

As the primary task, we asked participants to explore a choropleth map
and select regions according to a set of creteria: selecting a region with a
high population density, selecting a region with a high hotel count, selecting
a region near the sea, and selecting a region with warm weather. This last
criterion was the only where the information needed to satisfy it was conveyed
by the incidental visualization. All the other could be satisfied by exploring
the choropleth map.

We included the incidental visualization in the task to evaluate how par-
ticipants would perceive it. While participants knew that the visualization
would appear at some point, they were unaware of the exact timing, ensur-
ing that their perception of it would be incidental. As a result, they began
to meet the other criteria, thus avoiding the need to wait for the incidental
visualization. Further details can be found in Section 3.1l

There are two insights to discover: how input, output, and pressure in-
fluence performance, and how they influence the perception of the incidental
visualization. Although the task performance depends on the perception ac-
curacy of the visualization, we still wanted to isolate the visualization score.
For example, if the task performance was low, we would still want to know
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if people correctly perceived the visualization. Therefore, our research ques-
tions are the following:

e RQ1: How much input, output, and pressure complexity contributory
factors impact the accuracy, response time, and confidence of the pri-
mary task?

e RQ2: How much input, output, and pressure complexity contributory
factors impact the perception accuracy of the incidental visualization?

Our hypothesis is that modifying task complexity factors will result in no-
ticeable impacts on task performance and the perception of incidental visual-
izations. In particular, we believe that as we increase the input, output, and
pressure, the accuracy, response time, and confidence in performing the pri-
mary task will likely decrease. Additionally, we anticipate a decrease in the
perception accuracy of incidental visualizations. Nevertheless, we contend
that it is imperative to validate these findings in the context of incidental
visualizations, given the scarcity of relevant literature. This underscores the
need to proceed cautiously, taking incremental steps before delving into a
more in-depth exploration of these aspects.

3.1. Study Design

We conducted a crowdsourced online user study. Using a Crowdsourcing
platform for information visualization solves one major issue recurrent in
laboratory studies: small participant sample sizes. However, several details
must be carefully considered (Borgo et al., [2017)). To simplify this process,
a checklist was proposed (Borgo et al. 2018)) for reporting crowdsourcing
experiments, that we used for our experiment. This checklist summarizes
the six key aspects identified by the authors (Borgo et al., [2018)) as critical
for the successful explanation of crowdsourcing experiments. By considering
all of these aspects, the experiment is likely to be more sound. Our study
followed a mixed design with one between-subjects variable and two within,
all of them with three levels. It was conducted using Prolific and only required
a desktop computer.

Our between-subjects variable was the input (two, three, or four cri-
teria), and our within-subjects variables were the output (one, two, or
three selected regions) and pressure (15s, 20s, or 25s to finish the
task). The pressure values were obtained from a pilot study involving 10
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participants. On average, participants took 20 seconds to select three re-
gions and satisfy four criteria. Therefore, we tested slight variations from
the average as different levels of pressure time. Therefore, we divided our
participants into three groups, and in each one, each participant underwent
nine trials. We measured the performance of the primary task (variable
named accuracy), which was the percentage of items correctly retrieved, the
response time for each trial (variable named response time); the confidence of
each trial submission (variable named confidence) measured using a 5-point
Likert scale, 1 - Very Low, and 5 - Very High; and the participants’ accuracy
at perceiving the incidental visualization (variable named vis effectiveness),
which was the percentage of regions selected that only satisfied the
criterion related to the visualization.

To conduct our user study, we first needed to define our primary task.
We examined a scenario similar to real life where an incidental visualization
could enhance the overall performance of the primary task. Participants
used a computer to search for regions on a choropleth map that
encoded three pieces of information via three visual channels: hue, text,
and position. However, a fourth piece was needed, but there was no op-
timal way to encode that information on the choropleth map. Therefore,
an incidental visualization was used to convey that additional in-
formation for one second to avoid distracting participants from their main
focus. Participants were aware that the visualization would appear but were
uncertain about the timing. We chose one second due to the results of a pre-
vious study on incidental visualizations (Moreira et al.,[2023b) where authors
determined that exposure times between 300ms and 1000ms were effective.
Also, although participants were unaware of when the visualization would
appear, it was not triggered randomly. We ensured that it always appeared
at the same moment for participants within a specific testing group. For
instance, if a participant had to select three regions, the visualization would
appear after they hovered over two regions.

3.2. Visual Design

Maps are used for this type of task (Quadri and Rosen, 2022)), retrieving
values that satisfy a given set of specific criteria. These criteria corresponded
to our input factor, and the retrieved values to our output factor. Finally,
the time to perform this primary task corresponded to our pressure factor.

To create the regions of the map, we used the NUTS (EurostatNUTS)
classification (Nomenclature of territorial units for statistics), which is a hier-
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archical system for dividing up the economic territory of the EU and the UK.
Our map contained the NUTS regions of Portugal, from which only the ’"Con-
tinente’ NUTS-I region was selected. In total, there are five NUTS-II and 23
NUTS-III regions in ’Continente’, and the NUTS-III regions corresponded
to the items that people needed to retrieve for completing the primary task.
Depending on the trial, each participant either selected one, two, or three
NUTS-III regions.

In our visualization, the hue within each region represented the popula-
tion density, with higher saturation of green indicating higher density. To
ensure accessibility, we selected a color scheme with four distinct classes us-
ing ColorBrewer (ColorBrewer]), taking care to ensure colorblind friendliness.
We ensured that only one of these four color classes appeared in each region
to prevent interpolated colors, which could introduce additional variability
in our results. Additionally, we incorporated text tooltips to provide specific
information about each region, which appeared when the mouse cursor was
placed over a region. Moreover, the position of the sea was indicated on
the map, presented on the left side of Portugal using a blue hue. To main-
tain clarity and minimize unnecessary elements, we included only essential
graphic components required for participants to complete the tasks. Further-
more, since participants received a tutorial beforehand, they were familiar
with the search objectives and the meaning of each visual property. As a
result, apart from the tooltip text, no additional text labels were included
on the map.

Regarding the incidental visualization, due to the effectiveness of bar
charts for retrieving values (Quadri and Rosen, 2022)), and due to the subitiz-
ing mechanism (Chen et al.l 2022)) studied in incidental visualizations (Mor-
eira et al., 2023b)), we encoded the temperature using a horizontal bar chart
with four bars, each with a green hue, where each one was aligned with the
corresponding NUTS-ITI region. However, since there are five, we had to dis-
card one. We discarded the *Area Metropolitana de Lisboa’ region (Fig.
because there were already several regions aligned with the third bar of the
bar chart. Lastly, similar to the choropleth map, the bar chart also lacked
labels and conveyed information solely through the length of the bars.

3.3. Tasks

Because of our between-subjects variable, each participant performed all
nine trials with two, three, or four criteria. In every case, there was a criterion
to select a region with warm weather. To satisfy it, participants needed
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Figure 1: Example to show how each bar from the horizontal bar chart corresponded to
each NUTS-II region. Each of these regions’ boundaries was highlighted using a red stroke.
The arrows were not shown in the study, only in this image. The gray region was the one
we discarded to create only four bars. In this example, the NUTS-II regions with warm
weather are the ones in the center.

to glance at an incidental visualization that they knew would appear while
interacting with the choropleth map, thus ensuring it stayed hidden until it
was needed. We wanted to simulate a scenario in which there is no more
space in the choropleth map to encode further information, in this case, the
temperature of NUTS-II regions.

Participants were only presented with the other criteria depending on the
testing group. With two criteria, participants had to satisfy the one about the
weather plus selecting one NUTS-III region with a high population
density, which was encoded using a highly saturated green hue. With three
criteria, participants had to satisfy the previous two stated plus selecting
one region with five or more hotels in it, which was encoded using
a text tooltip triggered by a mouse-over event. Finally, with four criteria,
participants had to satisfy the previous three stated plus selecting a region
next to the sea, which was encoded with a blue hue fill.

Before the primary task with the choropleth map, each participant first
was presented with a set of instructions explaining how the study would be
conducted. The first phase consisted of the OSPAN test. Since we only
presented a bar chart with four bars, we designed the OSPAN to test the
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capability of the working memory for four items. From a set of 16 icons, and
using a Latin square distribution, each participant was presented four icons
(Fig. [2)) and four math operations (like this one (2 + 3) % 5).

The workflow (Fig. [3|) was, each icon was shown for one second, followed
by the math operation shown for five seconds. After each operation, par-
ticipants had to answer true or false questions regarding the answer to the
corresponding operation. This process was repeated three more times, and at
the end, each participant had to select the four icons in order of appearance.
The OSPAN was calculated by weighting the score of the operations with
the order of icons selected. For example, with two operations and two icons
correct, the final score would be 0.25 (0.5 % 0.5) out of 1.

The second phase commenced with a video tutorial that explained the
process and objectives of the primary task to each participant. After viewing
the tutorial, participants proceeded to engage in the primary task. The con-
tent of the tutorial and the specified goals varied depending on the between-
subjects group to which each participant belonged, which encompassed two,
three, or four criteria. Consequently, each participant exclusively performed
the task under one of these conditions. Subsequently, participants completed
the task under various combinations of within-subjects variables. Selecting
one, two, or three regions (output) and completing the trial within 15, 20, or
25 seconds (pressure).

In total, each participant had to complete nine trials, which is the number
of possible combinations of within-subjects variables. The order of each
combination of trials was generated using a Latin square distribution. Using
only the computer mouse, each participant had to explore the map to fulfill
all the criteria. During this process, an incidental visualization appeared next
to the choropleth map (Fig. , for one second, conveying information about
the weather in each NUTS-II region. Participants were informed about the
location where the visualization would appear and that it would be displayed
for a duration of one second. However, they were not aware of the exact
timing of its appearance. As the visualization was incidental in nature, it

©I k2

Figure 2: Four of the 16 icons available.
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Select icons in order

Figure 3: Flow of the OSPAN test.

did not appear immediately upon request. Instead, it appeared a few seconds
after participants began hovering over the map. This timing was consistent
for all participants. After every region was selected, participants had to
submit their selection (Fig. 7 report the confidence they felt at submitting,
and move on to the next trial. After nine trials, the study ended.

3.4. Participants

Because we wanted to have 40 participants for each group of our between-
subjects variable we recruited 120 participants using a crowdsourcing plat-
form (Prolific), and we used three prescreen filters. First, the sample needed
to be gender balanced for each group of our between-subjects variable. Sec-
ond, each participant needed to have normal or corrected-to-normal vision.
Finally, every participant needed to have some video game experience (3-6
hours, 6-9 hours) ensure a diverse pool of individuals who were familiar with
gaming. This familiarity would facilitate their interaction with an interface
that involved time-restricted tasks. Of the 120 participants, 60 were female
and 60 male, the median time of each participant was 9m08s, and each par-
ticipant was paid £9/hour on average. This value was based on an average
calculated using the mean time spent by all participants and the total amount
of money paid. Furthermore, 86 participants were between 18 and 28 years
old, 24 between 29 and 38, six between 38 and 48, and four between 48 and
58. People participated from 25 different countries, but 52.5% of participants
were from Portugal, Poland, and South Africa.

3.5. Quality Assurance

Due to quality assurance, besides the 120 participants, three participa-
tions were rejected, 100 were returned, and seven were timed out. The rea-
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Choose 3 regions that:

« Has a high population density.
« Currently with hot weather.

Choose 3 regions that:

.

e
1

Submit

Figure 4: On the left, we can see the moment depicted shows the incidental visualization
before disappearing, and the choropleth map with three regions selected, followed by the
moment depicted on the right that shows the submit button that only appears after the
incidental visualization disappears.

sons for rejection were either because participants became idle, or lost focus
on the browser. The former was identified by incorporating timers at each
stage of the study on the website. During the primary task, the timer was
visually represented as a red bar positioned above the choropleth map. The
latter was monitored by continuously checking the cursor’s placement on
the study website. For instance, if a participant minimized the browser or
switched to another tab, their participation would be terminated.
Unfortunately, we had no method to avoid random clickers because we
could not incorporate an attention check to our primary task without it being
too obvious, but we prevented multiple participation using the ProlificID.

4. Results

The data analyzed in this user study is available online [dataset](Figshare]).
A three-way mixed ANOVA was conducted to examine the effects of the
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number of regions selected, time available to answer, and the number of re-
strictions on four dependent variables: accuracy, response time, confidence,
and vis effectiveness. The assumption of normality was violated for all de-
pendent variables. However, ANOVAs are considered robust to deviations
from normality (Statistics, [2015). We analyzed all data and did not exclude
any outliers as they represented genuine unusual values. The assumption of
homogeneity of variances was violated for accuracy, response time, and vis ef-
fectiveness, but not for confidence. Nonetheless, the ANOVA was performed
due to equal or approximately equal group sample sizes (Statistics, 2015).

The assumption of sphericity was met for some within-subject effects but
violated for the within-subject effect of pressure, necessitating a Greenhouse-
Geisser correction. The summary of results, including three-way and two-
way interactions, and main effects, are in Table[I] The conclusions of each
statistical result will be highlighted, and the corresponding consequences will
be explained in Section where we will explicitly state how much metrics
decreased or increased

4.1. Three-Way Interaction

There was no significant three-way interaction between output, pressure,
and input. The value of the dependent variables did not significantly depend
on any combination of the other two independent variables.

4.2. Two-Way Interaction

There was no significant two-way interaction between output and input.
The value of the dependent variables did not significantly depend on the in-
put when choosing the output. Similarly, there was no significant interaction
between pressure and input or between output and pressure. When consid-
ering the covariate of working memory, there was no significant interaction
between output and pressure. The value of the dependent variables did not
significantly depend on the input and was not affected by working memory.

4.8. Main Effects

The main effect of output was found to be statistically significant. With
a greater number of regions available to select from, participants’ perfor-
mance at the primary tasks noticeably decreased, response time exhibited an
increase, confidence levels decreased, and visualization accuracy saw a de-
crease. The main effect of pressure yielded significance in terms of accuracy,
response time, and vis effectiveness. When provided with additional time to
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Table 1: Summary of the three-way mixed ANOVA. Our three independent variables were
input, output, and pressure, our covariate was the OSPAN, and our dependent variables
were accuracy, response time, confidence, and vis effectiveness. The statistically significant
differences are in bold.

Accuracy (0-1)
F(8, 456) = 0.874, p = 0.538
F(4, 228) = 0.961, p = 0.430

Response Time (s)
F(8, 252) = 0.873, p = 0.539

(
F(4, 126) = 2.105, p = 0.084
(
(

input : output : pressure

output : input

pressure : input F(3.702, 221.021) = 1.197, p = 0.313 F(3.034, 95.579) = 2.062, p = 0.110
output : pressure F(4, 288) = 1.838, p = 0.120 F(4, 126) = 0.213, p = 0.931
output : pressure : OSPAN F(4, 288) = 1.416, p = 0.227 F(4, 126) = 0.608, p = 0.657
output F(2, 228) = 5.596, p = 0.004 F(2, 126) = 13.154, p < .001
output : OSPAN  F(2, 228) = 0.552, p = 0.557 F(2, 126) = 3.015, p = 0.053
pressure F(1.851, 211.021) = 7.177, p = 0.001 F(1.517, 95.579) = 5.782, p = 0.008
pressure : OSPAN F(1.851, 211.021) = 4.073, p = 0.021 F(1.517, 95.579) = 0.054, p = 0.905
input F(2, 114) = 0.352, p = 0.704 F(2, 63) = 1.415, p = 0.205

Confidence (1-5)

Vis Effectiveness (0-1)

input : output : pressure

output : input

F(8, 252) = 0.973, p = 0.458
F(4, 126) = 1.739, p = 0.145

F(8, 456) = 0.748, p = 0.649

(
F(4, 228) = 1.482, p = 0.209
(
(

pressure : input F(3.360, 105.855) = 0.461, p = 0.731 F(3.702, 221.003) = 0.962, p = 0.425
output : pressure F(4, 126) = 0.307, p = 0.873 F(4, 288) = 1.733, p = 0.142
output : pressure : OSPAN F(4, 126) = 0.254, p = 0.907 F(4, 288) = 1.308, p = 0.266
output F(2, 126) = 6.708, p = 0.002 F(2, 228) = 7.329, p < .001

output : OSPAN F(2, 126) = 4.448, p = 0.014 F(2, 228) = 1.426, p = 0.242

pressure F(1.680, 105.855) = 1.954, p = 0.154 F(1.851, 211.003) = 10.051, p < .001

pressure : OSPAN F(1.680, 105.855) = 1.374, p = 0.256 F(1.851, 211.003) = 5.603, p = 0.005
input F(2, 63) = 0.079, p = 0.924 F(2, 114) = 1.998, p = 0.140

complete the task, participants’ performance at the primary tasks showed
improvement, response time increased, confidence levels remained relatively
unchanged, and visualization accuracy increased. The main effect of input
did not reach statistical significance. The performance, response time, con-
fidence, and visualization accuracy remained similar when faced with more
criteria to satisfy.

4.4. Main Effects and Working Memory

When considering the covariate, the main effect of output showed no
significant difference in accuracy, response time, and vis effectiveness, but
was significant for confidence. The primary task performance was affected by
working memory when the number of regions to select changed. The main
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effect of pressure was significant for accuracy, indicating that the primary
task performance was affected by working memory when the time available
to finish the task changed.
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Figure 5: Line charts displaying the average values and corresponding confidence intervals
(95%) of our dependent variables across all three levels of each independent variable. The
line charts highlighted represent variables that have a significant impact, as indicated in

Table

4.5. Means

A summary of all measures is presented in Table[2] while Figure[5|provides
a visual representation of all the data. We will present pairwise comparisons
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Table 2: A summary of all means. Our three independent variables were input, output,
and pressure, and our dependent variables were accuracy, response time, confidence, and
vis effectiveness

Output Pressure Input
1 2 3 15s  20s 25s 2 3 4

Accuracy (%) 84.70 79.80 74.10 76.30 7820 84.20 80.90 80.40  77.40
Response Time (s) 8.955 10.983 12.538 9.572 11.08 11.825 10.284 10.875 11.317
Confidence (1-5) 4.427 4.300 4.091 4.232 4.248 4.338 4.242 4312 4.264

Vis Effectiveness (%) 89.00 84.60 79.40 80.50 83.40 89.10 86.60 85.70  80.80

with statistical significance, employing the Bonferroni adjustment for multi-
ple comparisons. For each variable, we will indicate the extent of variation
along with the corresponding error.

Accuracy significantly decreased between output 1 and 3 (—0.106 £ 0.026,
p < 0.001) and between output 2 and 3 (—0.057 £ 0.022, p = 0.033). Re-
sponse time significantly increased between outputs 1 and 2 (2.028s+0.399s,
p < 0.001), between outputs 1 and 3 (3.583s £ 0.392s, p < 0.001), and be-
tween outputs 2 and 3 (1.555s £ 0.343s, p < 0.001). Confidence significantly
decreased between output 1 and 3 (—0.336 £ 0.074, p < 0.001) and between
output 2 and 3 (—0.208 + 0.074, p = 0.019). The visualization score signif-
icantly decreased between output 1 and 3 (—0.096 £ 0.023, p < 0.001). Ad-
ditionally, it increased significantly between pressure 1 and 3 (0.086 £ 0.023,
p < 0.001) and between pressure 2 and 3 (0.058 £ 0.020, p = 0.015).

5. Discussion

We will address each research question we proposed. Then, we will pro-
vide some insights into our contribution to incidental visualizations.

RQ1 — How much input, output, and pressure complexity con-
tributory factors impact the accuracy, response time, and confi-
dence of the primary task?: By looking at Table [ we can see at a
glance that there were no three-way nor two-way statistically significant in-
teractions. Therefore, for this primary task, we cannot prove that our com-
plexity contributory factors impacted each other, even when considering each
participant’s working memory for retaining four items.

Regarding main effects, our results showed statistically significant differ-
ences in the output and pressure variables, but not in the input variable,
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which means that we cannot prove the number of criteria that needed to be
satisfied (input) had an impact on accuracy, response time, or confidence.
Although this may look promising because it might discard the impact of
the input complexity factor, we were a bit skeptical. First, by analyzing the
means when the input increased, accuracy decreased and the response time
increased. This may indicate a possible trend for these metrics, even though
there was no significant difference. Second, increments of one restriction (in-
put) may not be enough to add enough complexity, which means that going
from two to three/four criteria, or from three to four may not be enough
to induce a significant difference. Third, by restricting the possible regions
to be selected, like we did when people had to choose one or more regions
next to the sea, we may have facilitated the task. We argue that these issues
should be addressed in future work.

In any case, regarding the output and pressure main effects, both pre-
sented significant differences. With more regions to select (output), accu-
racy and confidence decreased, and response time increased. Particularly for
confidence, the working memory impacted the results. Then, with less time
to complete the task (pressure), all metrics except confidence significantly
decreased. Particularly for accuracy, the working memory impacted the re-
sults. In summary, output and pressure are two complexity contributory
factors that significantly impacted accuracy, response time, and confidence
of the primary task. The results aligned with our predictions.

RQ2 — How much input, output, and pressure complexity con-
tributory factors impact the perception accuracy of the incidental
visualization? Results were similar to the other previous three depen-
dent variables. No interactions between input, output, and pressure, but
there were significant main effects. When the number of regions selected in-
creased, and when pressure increased, the less accurate was the perception of
the visualization. Furthermore, working memory impacted the results when
pressure differed. In summary, output and pressure are two complexity con-
tributory factors that significantly impacted the perception of the incidental
visualization. Again, the results aligned with our predictions, and we can
conclude that we proved our hypothesis: modifying task complexity fac-
tors will result in noticeable impacts on task performance and the
perception of incidental visualizations.

Overall Performance: By looking at the charts, the mean accuracy
was always above 70%, which we consider still a high value. Therefore, pri-
mary task performance was usually high. Confidence was always above 4,
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which indicated that performing this type of task plus having an incidental
visualization did not make participants feel less confident. Finally, the re-
sponse time was always below 14 seconds, which is below the lowest pressure
time we tested (15s). Therefore, although people sometimes had 20 or 25
seconds to complete the task, on average, people took less than 15 seconds.
Finally, by looking at the vis effectiveness chart, accuracy was always above
79%. Therefore, regardless of the overall performance of the primary task,
the incidental visualization was usually perceived accurately.

5.1. Insights for Incidental Visualizations

Having answered all proposed research questions, we now can discuss
these results in the context of the current state of the art. The first two
questions were about the impact of three complexity factors, and the last
two were about overall results.

At their core, our results proved that the primary task, on average, was
performed accurately with some required information being displayed using
an incidental visualization. Therefore, we argue that incidental visualizations
can convey additional information while people are focusing on performing
a primary task without disrupting it. Furthermore, having this information
shown only for a specific moment did not affect people’s confidence. More-
over, our results match the effectiveness predicted by using the horizontal
bar chart because the search tasks people went through were supported by
a bar chart whose encodings are technically the most effective. Therefore,
the bar chart chosen as an incidental visualization proved to be an effec-
tive choice. Finally, we were able to conclude that people’s working memory
should be taken into consideration. Although our independent variables did
not always interact, future work should dive more into detail about this type
of individual difference.

Regarding task complexity, although Liu and Li’s framework (Liu and
Li, 2012)) contemplated many complexity contributory factors, the ones we
tested were relevant enough to be taken into consideration in this primary
task with incidental visualizations. However, many factors were left out that
may be relevant for specific primary tasks. Nonetheless, we argue that these
three may be easier to use in defining tasks because they relate closely to the
task’s goals, restrictions, and time available.

In summary, incidental visualizations were effectively perceived during
an ongoing task, while allowing people to perform it accurately, quickly, and
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with high confidence levels. Although our scenario is too specific, the major
implications of our study are:

e Information needed for a primary task conveyed using an incidental
visualization can be effectively perceived.

e Performance in a primary task will not be disrupted by a horizontal
bar chart as an incidental visualization.

e Working memory should be taken into consideration when using inci-
dental visualizations with a primary task.

e Output and pressure are complexity contributory factors that will sig-
nificantly impact the overall results of the primary task.

5.2. Limatations

Although our results show promise, there are several limitations. The
primary one is the empirical nature of our study, which stems from the fact
that we have dealt with a toy problem scenario. While we have successfully
demonstrated the effectiveness of incidental visualizations in this simplified
context, it’s crucial to recognize that our investigation has been confined to a
specific primary task and visualization. In the future, it will be interesting to
test other combinations to better delineate the frontiers of the design space
for effective incidental visualization use.

Furthermore, as we stated previously, our input variable should probably
be tested with more levels, with a higher complexity gap between, or with
a different nature. We cannot conclude if having more criteria facilitated
the task, or if three levels are enough to retrieve significant differences. We
also acknowledge that having each participant perform only once for each
of the nine combinations may have introduced some level of noise in the
data. Then, the confidence measure used in our study was treated as a
quantitative variable in the analysis, despite being an ordinal variable. This
decision was made to include the Likert-format variable in the three-way
mixed ANOVA test, although we recognize that this approach may deviate
from strict statistical conventions.

Also, each participant only performed each one of the nine trials combina-
tion once. Although participants knew beforehand what they needed to do,
repeating trials could potentially reduce the noise in the final data collected.
Nest, other complexity factors can still be studied. We only tested three that
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are easily mapped to restrictions, goals, and time, but there are others from
the framework we used that might have the same or bigger importance.

Finally, conducting the experiment in a desktop setting was largely due
to the nature of the toy problem. Since this is a novel area of research,
our goal was to empirically assess first whether incidental visualizations are
viable. As mentioned in the Introduction, augmented reality appears to be
a promising avenue for further exploration in this field.

6. Conclusion

Incidental visualizations are still a novel topic. Although they share core
concepts with glanceable visualizations, they differ in when and how the in-
formation depicted is perceived. We conducted an online user study to under-
stand how a specific set of task complexity factors interfere with a particular
real-case primary task performance and incidental visualization perception
accuracy. Participants had to explore a choropleth map to retrieve regions
that satisfied a set of criteria and glance at an incidental visualization to re-
trieve important information. In the end, we concluded that people usually
had high task performance and high perception accuracy of the incidental
visualization they were exposed to. For future work, it would be interest-
ing to understand which graph characteristics influence the factors’ effect.
What happens if another graph is used? Then, the input variable should
be explored with different values. For which number of criteria will the re-
sults significantly start to differ? Finally, different real-life tasks should be
tested because at this point incidental visualizations are not yet restricted to
specific contexts.
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