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Performance and Gaming Preferences 
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Abstract—State of the art research shows that gamified learning can be used to engage students and help them perform 

better. However, most studies use a one-size-fits-all approach to gamification, where individual differences and needs are 

ignored. In a previous study we identified four types of students attending a gamified college course, characterized by different 

levels of performance, engagement and behavior. In this paper we present a new experiment where we study what data best 

characterizes each of our student types and explore if this data can be used to predict a student’s type early in the course. To 

this end we used machine-learning algorithms to classify student data from one term and predict the students’ type on another 

term. We identified two sets of relevant features that best describe our types, one containing only performance measurements 

and another also containing data regarding the students’ gaming preferences. Results show that performance alone can be 

used to predict student type with 79% accuracy by midterm. However, its accuracy improves when paired with gaming data at 

earlier stages of the course. In this paper we clearly describe our findings and discuss the lessons learned from this experiment. 

Index Terms—Gamified learning, Cluster analysis, Student classification, Adaptive learning 

——————————      —————————— 

1 INTRODUCTION

n the last decade, we have witnessed the proliferation of 
the use of games in learning. This was greatly motivated 

by the ability of that medium to captivate its users and lead 
them to endure and strive to complete their goals [1], [2]. 
Unlike traditional learning materials, games deliver infor-
mation on demand and within context [3]. This is para-
mount to prevent players from getting either frustrated or 
bored [1], [2], which could ultimately lead them to forfeit. 
Indeed, games have a great potential to engage students 
and facilitate learning [4], [5], [6]. This is supported by sev-
eral works, which demonstrate that videogames can suc-
cessfully be used to motivate students to learn and to im-
prove their learning outcomes [7], [8], [9]. 

Leveraging on the motivational qualities of games, 
Gamification uses game-design elements in non-game con-
texts [10], [11], to engage users into adopting specific be-
haviors and add value to their experience [12]. For exam-
ple, gamification has been used to raise fitness and health 
awareness [13], help in driving instruction [14], improve 
productivity [15], and promoting loyalty to a brand [16]. 

Gamification has also been explored as a means to edu-
cate, with prominent online services such as Khan Acad-
emy [17] and Codecamedy [18] using game elements like 
points and badges to track user progress and encourage 
them to learn. Undeniably, research suggests that gamifi-
cation may significantly increase student activity [19] and 
performance [20]. However, little has been done to under-
stand how different students learn with gamification and 
how their particular needs should be addressed. 

We have previously gamified a college course where 
several game elements were added, like experience points 
and levels, badges, leaderboards, and challenges [21]. Stu-
dents were more proactive and participate using gamifica-
tion, and they considered our course to be more interesting 
and motivating than other non-gamified courses [22]. 

In an early exploratory study, we analyzed how differ-
ent students performed in our course and classified them 
into several types using cluster analysis [23]. We then ana-
lyzed how they differed in terms of performance and gam-
ing preferences. We identified four student types: the 
Achievers, who focused on the achievements and strived 
to acquire all the available experience points; Regular stu-
dents, who had above average performance and balanced 
the achievements with the traditional evaluation compo-
nents; Halfhearted students, who presented below average 
performance and seem to have neglected some aspects of 
the course; and the Underachievers, who had the lowest 
performance seem to have done just enough to pass the 
course. While the first two types comprise highly-perform-
ing and engaged students, the other two include students 
that were seemingly disengaged with the course. 

In this paper we address an issue that was never ex-
plored in any previous research: how can we take ad-
vantage of what differentiates students in a gamified learn-
ing environment to predict their behavior early in the 
term? This could potentially be used to customize content 
and help students with different needs. We used our 
course as the test bed for a new study, guided by the fol-
lowing research questions: 

1. Were the clusters identified in both experiments the same, 
i.e., had the same meaning? This step aimed at verify-
ing the consistency of our clusters between years. If 
this does not hold, there is nothing to predict. 

2. Is there a subset of relevant features that can be used to 
predict the student type in this experiment’s sample? 
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This feature-selection process aims at identifying a 
robust set of relevant features. 

3. Can the relevant feature set be used to predict the stu-
dents' class in another instance of the course? This inter-
mediate step would help to further assess the ro-
bustness of the clusters across years. 

4. Can student types be predicted by midterm? This is our 
main research question. 

 In this paper we describe how we used cluster analysis, 
feature selection and classification to answer each of the 
four questions. We discuss the lessons learned from this 
study and propose that the use of the information, which 
can be found by applying our approach to existing learn-
ing environments, may be the basis for allowing them to 
promptly adapt to students with different traits and needs. 

2 BACKGROUND 

Serious Games, which are games designed to educate and 
not necessarily to entertain, have long been used in educa-
tion with success, with notable gains in terms of motiva-
tion, understanding of taught topics, and even perfor-
mance. Notable examples can be found on distinct sub-
jects, such as programing [24], numerical methods [7], elec-
tromagnetism [9] or biology [8], and at several academic 
levels [7], [25], [26]. 

Gamification draws on the engagement qualities of 
good games to encourage students to adopt behaviors that 
can help them learn better. It can be told apart from Serious 
Games as it uses game design elements (only) in non-game 
contexts, instead of full-fledged games [10], [11]. Although 
there is no formal list of what game elements should be 
used in gamification, the most consensual seem to be [27], 
[28]: 1) experience points and levels, serving the main pur-
pose of transmitting feedback and progress; 2) challenges 
or quests, providing tasks with clear goals, progress assess-
ment and training users for more complex tasks; 3) badges, 
collectible artifacts that aim at boosting the user’s motiva-
tion by appealing to her natural desire to collect; and 4) 
leaderboards, which spur competitiveness and encourage 
users to continually strive to achieve their desired ranking. 

Recent research has focused on how gamification can be 
used to improve learning. On his book, Sheldon [29] 
showed how a conventional course could be turned into an 
exciting game, where students start with an F grade and go 
all the way up to an A+, by completing challenges and 
gaining experience points. Domínguez et al. [20] made a 
comparative study of an e-learning ICT course, where stu-
dents undertook optional exercises either via a PDF docu-
ment or a gamified system. In the latter, students were 
awarded with badges and medals on completion. Students 
who completed the gamified experience performed better 
in practical assignments and had higher overall score. 
However, they appear to have performed poorly on writ-
ten assignments and participated less on class activities. 
Cheong et al. [30] used a gamified quiz to evaluate IT un-
dergrad students, where they received points for answer-
ing questions and used a leaderboard to compare scores 
with others. Students self-reported that the quiz helped 
them perform better and also improved their enjoyment 

and engagement, but no empirical results were presented. 
Haaranen et al. performed another study where they 

added badges to an evaluation component of a college 
course [31], which were earned by merit and had no fur-
ther social meaning. Results show that the addition of 
badges did not have a significant impact over student per-
formance and behavior, and overall, students were neither 
engaged nor disengaged by them. In a follow-up study, 
Hakulinen and Auvinen observed how students with dif-
ferent goal orientations were motivated by badges [32]. 
The authors divided the student population by goal orien-
tation and collected several measures of student behavior 
and asked students to provide feedback about the badges 
via a questionnaire. The authors found “no statistically sig-
nificant differences in the behavior of the different goal ori-
entation groups regarding badges.” However, their atti-
tudes towards the badges varied. 

Aguilar et al. studied correlations between college stu-
dent’s perceptions of gamified grading systems and adap-
tive outcomes associated with gameful course [33], [34] 
and found those perceptions to be positive and motivating. 
They observed that “whether students ‘like’ the grading 
system is positively related to whether they feel encour-
aged to work harder”. Schutter [35], [36] compared formal 
measurements of student intrinsic motivation and engage-
ment for a gamified and a non-gamified course on the prin-
ciples of game design. They concluded that “gameful in-
struction did not necessarily lead to higher levels of intrin-
sic motivation or engagement in comparison to traditional 
teaching methods, and that further improvements to the 
design and documentation of the course are necessary.” 

The usage of gamication in education has been some-
what controversial. Indeed, it presents a great potential to 
shape student behavior and to encourage them to perform 
better. Most approaches rely on external rewards like 
badges, but these are prone to decrease the person’s intrin-
sic motivation to perform the task [37], [38] – this is called 
“overjustification” [39]. Deterding posits that gamified ap-
proaches usually miss three ingredients [11]: 1) Meaning – 
game elements are meaningless unless they are connected 
to a goal the user has interest in; 2) Mastery, which emerges 
from providing interesting challenges, clear and varied 
goals, scaffolded and appropriately paced; and 3) Auton-
omy, the ability for one to make choices of her own. If used 
as the main motivator to perform a task, a reward is per-
ceived as control. However, if paired together with goals 
that are meaningful to the user, more autonomous and in-
ternalized behaviors are likely to emerge [38].  

Another problem of gamification is its typical reliance 
on elements that publically display performance. Studies 
suggests that failure in a public setting can have a negative 
effect on one’s self-esteem and learning performance [40], 
[41]. However, a recent studies in gamified settings did not 
support a negative impact by the usage of a leaderboard 
on the users’ intrinsic motivation [42], [33].  

Student differentiation and classification has been a hot 
topic in educational research. Several studies have tried to 
classify gifted students regarding their achievement and 
underachievement [43], [44], [45], or to distinguish differ-
ent learning styles [46], [47]. Machine-learning techniques 
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have also been used to predict student performance and 
comprehension. Larkey [48] trained Naïve Bayes classifiers 
and k-nearest-neighbors classifiers to assign scores to man-
ually-graded essays. Pattanasri et al. [49] used Support 
Vector Machines to predict student comprehension of 
slides displayed in class, based on self-reported compre-
hension levels. Minaei-Bidgoli et al. [50] used several clas-
sifiers to classify students using logged data in an online 
learning system and predict their final grade. 

Differences in users of gamified services and applica-
tions were recently addressed Koivisto and Hamari [51], 
which studied demographic variations on the perceived 
benefits of using a gamified fitness service. The authors 
found that ease of use was negatively influenced by age 
and gender, with women perceiving more social benefits 
from gamification, both reciprocal benefits and recogni-
tion. On the other hand, social influence was negatively af-
fected by time using the service, and network exposure 
was predicted by gender and time using the service. The 
authors also found that perceived playfulness was posi-
tively predicted by gender and negatively by time using 
the service. Time using the service also had a negative ef-
fect on enjoyment and usefulness. 

Research shows that we can already predict several as-
pects of student performance and perception on regular 
courses. However, a gamified environment presents a 
whole new learning experience, which is not yet well stud-
ied and to which applicability of previous research is ques-
tionable. To our knowledge, no prior studies tried to un-
derstand how different students of gamified courses can 
be characterized and if these differences can be used to 
somehow predict their performance and behavior. 

3 PREVIOUS FINDINGS 

In our previous research we investigated how different 
types of students performed in a gamified learning envi-
ronment and how these types were related to the students’ 
gaming preferences [23]. To achieve this we monitored 
how students of a college course named Multimedia Con-
tent Production (MCP) progressed over a term. We then 
used cluster analysis to identify different progression pat-
terns, which defined four student types. In this section we 
briefly describe the course and the experiment that led to 
our student classification model. 

3.1 The MCP Course 

MCP is a gamified semester-long MSc course, taught 
yearly at Instituto Superior Técnico, University of Lisbon. 

The course follows a blended learning model, where stu-
dents attend live theoretical lessons and lab classes, but 
also engage in discussion on the course forums, powered 
by the Moodle platform [52]. Theoretical lectures cover 
multimedia topics such as capture, editing and production 
techniques, multimedia standards, copyright and Digital 
Rights Management. In lab classes, varied concepts and 
tools are introduced on image, audio and video manipula-
tion, and there are regular assignments as well.  

Instead of receiving traditional grades, students earn 
experience points (XP) in a game-like experience, by un-
dertaking and completing diverse course activities. These 
include a multimedia presentation (20% of total XP), lab 
assignments (15%), a final exam in the first instance of the 
course, which was replaced by regular quizzes in the sec-
ond year (30%), Skill Tree participation (10%), and a set of 
collectible achievements (30% plus a 5% extra). These re-
quire students to perform specific tasks, such as attending 
lectures, finding relevant resources related to specific sub-
jects, finding bugs in class slides, or completing challenges, 
in exchange for XP and badges. Challenges are time lim-
ited tasks were students have to produce creative content 
in response to a specific request from faculty, related to 
subjects taught in class. 

The entry point of our gamified experience is the lead-
erboard, which displays students sorted by descending or-
der of amount of XP (see Fig. 1). It takes the form of an 
online webpage that is available from the forums, and that 
is updated several times a day, to keep student data up to 
date. Students participate mostly via posts to dedicated 
threads on forums, which are rated with a score between 0 
and 4 by faculty. Student contributions are measured by 
the sum of their posts’ ratings. 

Students start with 0XP and earn more by completing 
course activity. For each 1000XP students increase in expe-
rience level. They have to reach level 10 to pass the course, 
with the top level being 20 (20000XP). Experience levels di-
rectly translate to the traditional 20-point grading system 
used in our university. 

There is a special kind of achievement that comprises 
participating in the MCP Quest, an online treasure hunt 
where students start from a webpage with a multimedia 
artifact, which they have to edit and manipulate to find the 

 

Fig. 1. The MCP leaderboard. 

 

Fig. 2. The MCP Skill Tree. 
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URL for the next clue of the quest. The amount of XP 
earned is proportional to the quest level reached and the 
number of students that actively participate (the more they 
collaborate, more XP everyone gets).  

Apart from the Achievements, there was another game 
element: the Skill Tree (see Fig. 2). It consists of a prece-
dence tree where each node represented a thematic task, 
which would earn students XP upon completion. To un-
lock a new node, the preceding ones had to be completed. 
This allowed students to earn the maximum grade from 
this component through different paths, doing more of 
what they liked or were proficient at. 

Course evaluation was identical in both instances of the 
course, with the exception of the exam. In the second year 
it was replaced by regular quizzes, occurring usually every 
other week. By the end of the first year we asked students 
whether they would prefer to have an exam or quizzes in-
stead, using a Likert scale (1 = Exam, 5 = Quizzes). The ma-
jority preferred the quizzes (median: 5, mode: 5). 

We have previously shown that our approach is effec-
tive at engaging students [21], [22], with them presenting 
higher levels of participation as compared to previous non-
gamified versions of the course, and reporting to be more 
motivated, interested and learning easier, compared to 
other regular courses. 

3.2 Student Classification 

In a previous experiment we identified different types of 
students based on how they accumulated XP over time [23, 
53]. We used Weka [54], a collection of machine learning 
algorithms for data mining tasks in Java, to perform cluster 
analysis and group learners by similarities of XP acquisi-
tion over time. The algorithm used to achieve this was the 
Expectation-Maximization (EM) algorithm [55], which 
does not require the number of clusters to be specified be-
forehand and works well with small datasets [56]. After 
identifying the different student clusters, we then ob-
served the average values for several performance and 
participation measures, as well as the median and modes 
of their responses to a survey devised by us. This survey 
inquired the students about their gaming preferences and 
their classification as a player, according to the BrainHex 
model [57]. This model characterizes players based on neu-
robiological responses inherent to playing games, and it 
builds on the popular and validated Demographic Game 
Design 1 (DGD1) model [58]. 

We identified four clusters, which we encoded as four 
student types with different levels of performance, partic-
ipation and engagement with the course. First we had the 
Achievers, which presented the highest XP accumulation 
curve, with the steepest slopes. They exceled on all compo-
nents of the course but they were a minority, representing 
only 13% of all student population. The second cluster had 
above average overall performance and their weakest 
points regarded some components such as the Skill Tree, 
where they have average performance. Because these stu-
dents represented the bulk of the population, around 43%, 
we named them the Regular. Both Achievers and Regular 
students were highly participative. 

The Halfhearted students composed 24% of the student 

population and they were represented by a below average 
overall performance, neglecting a few components such as 
the Skill Tree, the Exam and the Quizzes. These students 
were not particularly participative, but they managed to 
explore and complete a moderate amount of achievements. 
Finally, the Underachievers, who comprised around 20% 
of the population, presented the lowest XP accumulation 
curve, with fewer pronounced slopes. They had the poor-
est performance and participation levels on all components 
and they seemingly only did enough to pass the course. 

Students’ responses to the gaming survey did not reveal 
any significant differences among clusters regarding their 
playing habits and preferences. However, interesting pat-
terns emerged regarding their classification according to 
the BrainHex player mode. Achievers were predominantly 
classified as the Socializer (29%) and the Mastermind 
(29%), Regular students as BrainHex’s Achiever (26%) and 
Mastermind (26%), Halfhearted as Conquerors (67%) and 
Underachievers as Conquerors (36%) and Seekers (27%). 
These patterns suggested that our gamified experience 
might be more appealing to players that enjoy social expe-
riences, using strategy to make efficient decisions, and to 
collect artifacts and achieve long term goals. 

4 STUDY AND EXPERIMENTS 

We performed a new multi-step study to determine if the 
students’ type could be predicted by midterm, based on 
the particularities that characterize each student. A new 
sample was used for the new experiment, which consisted 
of the enrolled students in the course instance following 
that described in the previous section. We had 76 students, 
of which 9 were female, and a large majority of which had 
finished their undergraduate computer science degree on 
the previous year. The study was designed in four steps, 
each portrayed by a research question: 

Q1. Were the clusters identified in both experiments the same, 
i.e., had the same meaning? Used to validate our clus-
tering model. If this does not hold, there would be 
nothing to predict. 

Q2. Is there a subset of relevant features that can be used to 
predict the student type in this experiment’s sample? This 
feature-selection process aims at identifying a robust 
set of relevant features that best discriminate our 
data. These will be used to train classifiers. 

Q3. Can the relevant feature set be used to predict the stu-
dents' class in another instance of the course? This inter-
mediate step would help assessing the robustness of 
the set’s predictive power across years. 

Q4. Can student types be predicted by midterm? This is our 
main research question. 

We used data from both years, where students were al-
ready classified, and compared performance and partici-
pation data to assess type consistency and answer Q1. 
Then, we used a process called feature selection to identify 
relevant features that could discriminate our students, and 
thus answer Q2. We proceeded to plot student perfor-
mance and participation measurements in several points in 
time for both years, and used data from one year to train 
classifiers and data from another to test them, to assess 
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whether the students’ type could be predicted by the end 
of the term and by midterm, thus answering Q3 and Q4. 

In this section we will describe in detail how each of the 
four steps were performed and the inherent results. 

4.1 Cluster Consistency 

This step aimed at answering the first questions. To this 
end, we performed a second experiment, where we re-
peated the procedure described in section 3.2, but with the 
new batch of students. The course lasted for 138 days, but 
the first nine were excluded from the analysis, during 
which there were no activity and some students were not 
fully enrolled in the course. The same criteria was used in 
the previous experiment to prevent clustering algorithms 
from overweighting the first days, where there were no 
significant activity [23]. Like in the previous experiment, 
our variables did not fit a normal distribution. We checked 
for differences between clusters using a Kruskal-Wallis 
test, with post hoc Mann-Whitney’s U tests and Bonferroni 
correction, with a level of significant of 0.8%. Significant 
differences are reported in Table 1. 

Like the year before, cluster analysis revealed four dis-
tinct clusters, with similar XP accumulation curves (see 
Fig. 3) and levels of participation and performance (see Ta-
ble 1) to those of the first experiment. Thus, clusters re-
tained the same names between experiments. As seen in 
Fig. 3, the Achievers present the highest XP accumulation 
curve, with the steepest slopes, again excelling on all as-
pects of the course and being the most participative. Regu-
lar were again represented by an above average overall 
performance and participation levels, lagging behind in 
the Skill Tree and MCP Quest in comparison to the Achiev-
ers. The Halfhearted students had a below average XP ac-
crual, and performed worse that the Achievers and Regu-
lar on the Skill Tree, MCP Quest, the quizzes and multime-
dia presentation. Again, Underachievers had the lowest 
performance and participation, and seem to have done just 
enough to pass the course. 

In this experiment, we had 11 Achievers (14.5% vs. 
12.9% of 1st experiment), 29 Regular students (38.2% vs. 
42.6% of 1st experiment), 23 Halfhearted (30.3% vs. 24.1% 
of 1st experiment), and 13 Underachievers (17.1% vs. 20.4% 
of 1st experiment). These numbers suggest that clusters on 
both experiments present comparable proportions, with a 
minor increase in size of the Achievers and Halfhearted, 
and slight decrease of the Regular and Underachievers. 

We collected gaming data from students via a question-
naire at the beginning of the course and obtained 75 re-
plies. Again, we did not observe any significant differences 
between student types, but BrainHex classification pat-
terns diverged in comparison to the previous year.  Our 
clusters appeared to be more homogeneous regarding this 
subject, with the mode being the Conqueror for the 
Achievers, Regular and Halfhearted, covering 30%, 32% 
and 50% of the respective populations. For the Undera-
chievers, the modes were the Conqueror and the Seeker, 
each representing 23% of the population. 

Given that our clusters were determined by perfor-
mance over time, we considered that the similarity be-
tween proportions, performance and participation meas-

TABLE 1 

CLUSTER PERFORMANCE DATA FROM THE NEW EXPERIMENT. 

GREEN AND RED DENOTE THE HIGHEST AND LOWEST LEVELS. 

 

 

Fig. 3. XP accumulation curves in the new experiment. 
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Significant 

Differences

(p < 0.008)

Quizzes Grade (%) 74.05 72.4 66.96 65.58 69.83 none

Labs Grade (%) 94.62 88.59 85.29 74.49 86.05 (A, D)

Presentation Grade (%) 83.64 81.12 71.81 72.58 77.21 none

Final Grade (%) 89.53 81.4 68.01 57.84 74.5
(A, B), (A, C), (A, D), 

(B, C), (B, D), (C, D)

Attendance (%) 92.64 94.42 79.5 78.02 86.84 (A, D), (B, C), (B, D)

Posts (#) 70 47.17 24.57 12.62 37.72
(A, C), (A, D), (B, C), 

(B, D), (C, D)

First Posts (#) 4.27 3.41 1.04 0.54 2.33 (A, D), (B, D)

Reply Posts (#) 65.73 43.76 23.52 12.08 35.39
(A, C), (A, D), (B, C), 

(B, D), (C, D)

Rated Posts (#) 43.64 28.97 15.83 7.62 23.46
(A, B), (A, C), (A, D), 

(B, C), (B, D), (C, D)

Mean Rate 3.06 2.95 3.01 2.88 2.97 none

Challenge Posts (#) 17.45 17.38 12 7.54 14.08
(A, C), (A, D), (B, C), 

(B, D)

XP from Challenges (%) 100 95.07 73.91 42.12 80.33
(A, C), (A, D), (B, C), 

(B, D), (C, D)

Theoretical Challenge Posts (#) 10.09 9.93 6.61 4.23 7.97
(A, C), (A, D), (B, C), 

(B, D)

XP from Theoretical Challenges (%) 100 96.55 69.57 41.03 79.39
(A, C), (A, D), (B, C), 

(B, D)

Lab Challenge Posts (#) 7.36 7.45 5.39 3.31 6.11 (A, D), (B, D)

XP from Lab Challenges (%) 100 93.1 79.71 43.59 81.58 (A, D), (B, D), (C, D)

Skill Tree Posts (#) 19.82 12.03 5.91 1.69 9.54
(A, C), (A, D), (B, C), 

(B, D), (C, D)

XP from Skill Tree (%) 75.68 47.07 23.7 5.96 37.11
(A, B), (A, C), (A, D), 

(B, C), (B, D), (C, D)

Explored Skill Tree Nodes (#) 9 5.86 3.09 0.77 4.61
(A, B), (A, C), (A, D), 

(B, C), (B, D), (C, D)

MCP Quest Posts (#) 8.45 3.66 1.91 0.31 3.25 (A, C), (A, D), (B, D)

XP from MCP Quest (%) 90.91 82.76 47.83 7.69 60.53 (A, D), (B, D)

Badges (#) 46.27 38.55 27.65 21.38 33.43
(A, B), (A, C), (A, D), 

(B, C), (B, D), (C, D)

XP from Achievements (%) 97.95 89.9 64.84 43.37 75.52
(A, B), (A, C), (A, D), 

(B, C), (B, D), (C, D)

Completed Achievements (#) 14.45 10.62 5.87 3.46 8.51
(A, B), (A, C), (A, D), 

(B, C), (B, D), (C, D)

Explored Achievements (#) 20.55 18.21 14.96 12.54 16.59
(A, B), (A, C), (A, D), 

(B, C), (B, D), (C, D)
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urements amid experiments suggests Q1 can be affirma-
tive, although it does not prove it. The ideal way to verify 
Q1 would be to assess concordance between the classifica-
tions of the models, resultant from cluster analysis on both 
course instances. However, this is not feasible owing to the 
different number of days and differences in the evaluation 
criteria between experiments. As alternative, we assumed 
Q1 to be true, and proceeded to verify Q2 and then Q3. If 
Q3 holds true, then Q1 is more likely to be true as well.  

4.2 Relevant Feature Selection 

Our second question consisted on whether a subset of rel-
evant features can be found that best describes our stu-
dents. This problem is solved through a process named 
Feature (or Attribute) Selection, which uses a search algo-
rithm to search through possible features subsets and an-
other to evaluate the selected attributes by running the 
model on the subset.  The one with the best descriptive 
power is selected. 

We performed features selection by using the “Select 
Attributes” feature of Weka. For attribute evaluation we 
used the Correlation based Feature Selection (CFS) algo-
rithm [59], with the search algorithm being the Best First. 

Given that we had more information available in the 
second year (i.e., lager number of cases), we used student 
data from that experiment to perform feature selection. We 
considered two sources of data: a) student performance 
data, which consisted of automatically collected perfor-
mance measures for all the 76 students (described below); 
and b) student gaming preferences and BrainHex classifi-
cation, which we collected via a questionnaire at the begin-
ning of the course from 75 students. We performed feature 
selection on the two datasets in order to assess whether 
gaming data, which can be collected before the course 
starts, would be considered relevant or not. 

Our Performance dataset consisted of several distinct 
performance measurements, which included those de-
scribed in Table 1 plus the number of badges acquired per 
student for all of the achievements. Feature selection on 
this dataset yielded, with a merit of 0.686, the following 
seven features: 

 Current Grade (%) – the total amount of XP, in per-
centage, accumulated so far. 

 Rated Posts (#) – the number of rated posts. 
 Skill Tree Posts (#) – the number of Skill Tree posts. 
 Badges (#) – the number of collected badges. 
 XP from Achievements (%) – the amount of XP 

earned from Achievements, in percentage. 
 Completed Achievements (#) – the number of com-

pleted Achievements. 
 [A] Artist – the number of badges acquired in the 

Artist achievement. This was a three-level achieve-
ment that required students to make four, six and 12 
posts with the top rating. 

The second dataset, which we named Gaming dataset, 
contained data from the gaming characterization question-
naires, which included the BrainHex classes, plus the same 
data from the Performance dataset for the 67 students that 
answer the questionnaire. Feature selection returned the 
following attributes, with a merit of 0.687: 

 Current Grade (%) 
 Challenge Posts (#) – number of challenge posts. 
 Skill Tree Posts (#) 
 Badges (#) 
 XP from Achievements (%) 
 Completed Achievements (#) 
 [A] Artist 
 BrainHex Main – the student’s BrainHex Main class. 
Attribute selection from both datasets produced com-

prehensive and concise subsets of features, with high lev-
els of merit, which is a good predictor of accuracy [59]. Six 
features are common to both feature sets, which include 
the student’s current grade, number of Skill Tree Posts, 
badges acquired in the Artist achievement, completed 
achievements, total number of badges, and amount of XP 
earned from achievements. The number of rated posts 
were considered relevant only for the performance dataset 
whereas the number of posts made in challenges and the 
student’s BrainHex main class were only discriminant in 
the gaming dataset. These findings seems to support a pos-
itive response to our second question: we found not only 
one but two subsets of relevant features, one with perfor-
mance data only and another with gaming data too. 

4.3 Classifier Selection 

We examined a set of candidate classification algorithms to 
later assess the predictive capabilities of our feature sets. 
The assessment consisted of feeding both the aforemen-
tioned datasets to the classification algorithm and perform-
ing ten folds cross-validation, using Weka. The resulting 
performance is the average of the ten classifiers. We evalu-
ated five different classifiers that seem to best fit our data. 
These algorithms were available in Weka. They were: 

 BayesNet – a Bayesian Network. 
 SimpleLogistic – a classifier for Logistic Regression 

models. 
 SMO – a sequential minimal optimization algorithm 

for training a support vector classifier. 
 IB1 – a nearest-neighbor classifier. 
 J48 – a classifier based on C4.5 decision trees.  
We then compared all the algorithms regarding their re-

liability using the Area under the ROC curve and the 
Kappa statistic. Kappa (K) measures the agreement be-
yond that expected by chance [60]. The magnitude of 
Kappa might be interpreted into difference levels of 
strength of agreement: poor (≤0), slight (≤0.2), fair (≤0.4), 
moderate (≤0.6), substantial (≤0.8), almost perfect (≤1) [61]. 
The Receiver Operating Characteristic (ROC) curve is an-
other way to summarize classifier performance, by plot-
ting true positive rate against false positive rate [62]. The 

TABLE 2 

CROSS-VALIDATION ACCURACY AND RELIABILITY RESULTS. 

 

AUC Kappa Acc. AUC Kappa Acc.

BayesNet 0.90 0.63 73.68% 0.91 0.70 78.67%

SimpleLogistic 0.90 0.67 76.32% 0.89 0.58 70.67%

SMO 0.88 0.61 72.37% 0.87 0.56 69.33%

IB1 0.71 0.43 59.21% 0.74 0.49 64.00%

J48 0.84 0.65 75.00% 0.85 0.59 70.67%

Classifiers
Participation Dataset Gaming Dataset
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Area Under the [ROC] Curve (AUC) is an accepted perfor-
mance metric [63], where a value of 1 (100%) means all pos-
itive examples were correctly classified and no negative 
were classified as positive, and 0.5 (50%) means that there 
were as many positive examples correctly classified as neg-
ative examples misclassified, which may be compared to 
random guessing and has similar meaning to K = 0. 

We selected the classifiers with AUC of approximately 
0.9 and above, which subjectively indicates excellent accu-
racy [64], and with at least moderated agreement (K>0.4). 
The results from cross-validation can be found in Table 2. 
Our criteria led us to select BayesNet and SimpleLogistic 
as the classifiers, which seem to be the most reliable for 
both datasets. The high accuracy, AUC and Kappa levels 
for both datasets support a positive response to our second 
question, further confirming that the selected features in 
the previous step have a high predictive power. 

To summarize, we used the feature sets identified in the 
previous section to evaluate several classifiers, using cross-
validation. The classifiers based on Bayesian Networks 
and Logistic Regression presented the best results. 

4.4 Inter-Year Prediction 

Our last two questions (Q3 and Q4) aimed at verifying if 
we could predict the student’s type from another year, not 
only by the end of the course but also early on. We trained 
models with data from the second year, using the classifi-
ers identified in the previous step, and tested them with 
data from the first experiment. We used both the perfor-
mance and the gaming feature sets, in four points in time: 

1) five weeks, roughly one month of classes (~25-28% of 
total time span), 2) seven weeks, around one month and 
half of classes (~35-38%), 3) nine weeks, around midterm 
(~45-50%, and 4) end of last week of the course (100%). The 
fourth time point was considered mainly to answer Q3 
whereas the other three served to assess how early and 
how well we could predict a student’s type, and thus an-
swer Q4. For each point in time, features were computed 
based on how students performed until then. For example, 
Current Grade represents the total amount of XP accumu-
lated by then, and Challenge Posts represents the amount 
of posts made on challenges up until that date. 

Our data presented a few particularities that required 
special attention. Firstly, both years presented a small 
amount of cases, hence the choice of using the second year 
– the one with the larger number – as the training set. Sec-
ondly, both datasets were imbalanced, with some clusters 
being two to three times larger than others. To deal with 
this limitation we considered three options: 1) randomly 
under-sampling the largest clusters, 2) randomly over-
sampling the smaller clusters, and 3) Ensemble Learning. 
We excluded the first two because the former can poten-
tially exclude important data and the latter can lead to 
overfitting [65]. We opted for Ensemble Learning, which 
consists of combining several classifiers to improve predic-
tion accuracy. We tested two forms of Ensemble Learning: 
Voting, which combines the probability estimates of sev-
eral classifiers; and Stacking, which uses a meta-classifier 
to learn from the predictions of the other classifiers. There-
fore, besides predicting with BayesNet and SimpleLogistic, 

TABLE 3 

INTER-YEAR PREDICTION PERFORMANCE FOR THE PERFORMANCE DATASET. 

 

TABLE 4 

INTER-YEAR PREDICTION PERFORMANCE FOR THE GAMING DATASET. 

 

TABLE 5 

INTER-YEAR PREDICTION PERFORMANCE USING ACCUMULATED XP ONLY. 

 

AUC Kappa Acc. AUC Kappa Acc. AUC Kappa Acc. AUC Kappa Acc.

BayesNet 0.66 0.01 21.05% 0.84 0.50 62.96% 0.95 0.72 79.63% 0.96 0.74 81.48%

SimpleLogistic 0.70 0.19 31.58% 0.61 0.17 29.63% 0.87 0.37 51.85% 0.93 0.66 75.93%

Voting: Average of Probabilities 0.66 0.18 31.58% 0.85 0.19 31.48% 0.93 0.62 72.22% 0.95 0.77 83.33%

Voting: Product of Probabilities 0.79 0.18 31.58% 0.70 0.19 31.48% 0.94 0.69 77.78% 0.97 0.77 83.33%

Stacking: LogisticRegression 0.64 0.00 17.11% 0.88 0.00 20.37% 0.94 0.61 72.22% 0.95 0.77 83.33%

End of the courseAfter 9 WeeksAfter 7 WeeksAfter 5 Weeks
Classifiers

AUC Kappa Acc. AUC Kappa Acc. AUC Kappa Acc. AUC Kappa Acc.

BayesNet 0.72 0.21 39.62% 0.89 0.45 58.49% 0.94 0.62 71.70% 0.95 0.64 73.58%

SimpleLogistic 0.78 0.26 43.40% 0.92 0.53 66.04% 0.89 0.41 54.72% 0.89 0.50 64.15%

Voting: Average of Probabilities 0.76 0.24 41.51% 0.91 0.53 66.04% 0.93 0.47 60.38% 0.92 0.66 75.47%

Voting: Product of Probabilities 0.74 0.24 41.51% 0.93 0.53 66.04% 0.93 0.54 66.04% 0.96 0.66 75.47%

Stacking: LogisticRegression 0.68 0.31 47.17% 0.89 0.53 66.04% 0.94 0.47 60.38% 0.93 0.64 73.58%

After 5 Weeks After 7 Weeks After 9 Weeks End of the course
Classifiers

AUC Kappa Acc. AUC Kappa Acc. AUC Kappa Acc. AUC Kappa Acc.

BayesNet 0.48 -0.02 18.42% 0.76 0.50 62.96% 0.62 0.08 27.78% 0.94 0.75 81.48%

SimpleLogistic 0.65 -0.05 17.11% 0.86 0.47 61.11% 0.76 0.08 27.78% 0.93 0.67 75.93%

Voting: Average of Probabilities 0.64 -0.02 18.42% 0.86 0.50 62.96% 0.77 0.08 27.78% 0.93 0.75 81.48%

Voting: Product of Probabilities 0.66 -0.02 18.42% 0.87 0.49 62.96% 0.77 0.08 27.78% 0.94 0.75 81.48%

Stacking: LogisticRegression 0.48 -0.05 17.11% 0.83 0.47 61.11% 0.68 0.07 27.78% 0.93 0.67 75.93%

After 9 Weeks End of the course
Classifiers

After 5 Weeks After 7 Weeks
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we also tested with Voting and Stacking with these two 
classifiers. For Voting, we tested combining both the aver-
age and the product of the probabilities, and for Stacking 
we used a meta-classifier based on Linear Regression. 

Prediction performance for all classifiers, for both fea-
ture sets, is depicted in Table 3 and Table 4. We have also 
included the results for baseline classifiers, where only a 
single feature was used, the amount of XP accumulate so 
far (Current Grade) (see Table 5). 

Results show that the three feature sets can be used to 
predict the student type at different points in time. After 
five weeks of classes, up to 47.17% of the students’ type 
could be predicted using Stacking in the gaming dataset, 
although with low levels of AUC and Kappa, which sug-
gests that these predictions were not much better than 
chance. SimpleLogistic had slightly lower accuracy 
(43.40%), but presented a higher AUC level. All models 
performed better than the baseline for gaming dataset. For 
this point in time, the performance dataset presented low 
accuracy, AUC and Kappa for every classifier, performing 
only slightly better than the baseline models. 

After seven weeks, prediction accuracies increased. In 
the performance dataset, the BayesNet classifier presented 
the best performance, with a considerable value of AUC 
(0.84), moderate agreement (K = 0.5) and 62.96% accuracy. 
All other classifiers performed poorly. On the other hand, 
for the gaming dataset, all classifiers had a high accuracy 
rate and AUC levels, with the best results being presented 
by voting with product of probabilities, with a classifica-
tion rate of 66.04% (AUC = 0.93 and K = 0.53). Interestingly, 
the baseline classifiers presented a good performance for 
this point in time. The BaysNet classifier performed as 
good as using accumulated XP alone as it did using perfor-
mance features. However, baseline voting and stacking 
classifiers fell behind those using gaming features by 
around 3 to four percentage points. 

After nine weeks, most classifiers on the performance 
dataset started to perform better as compared to the gam-
ing dataset. While with the former, up to 79.63% of the stu-
dents were correctly classified using BayesNet (AUC = 
0.95, K = 0.72), in the latter only 71.70% were matched, also 
using the same classifier (AUC = 0.94, K = 0.62). Surpris-
ingly, baseline classifiers performed poorly in this time 
stamp, only correctly classifying 27.78% of the students 
(AUC = 0.77, K = 0.08). By the end of the course, up to 
83.33% of the students were correctly classified using the 
performance dataset, with both Stacking and Voting (AUC 
≥ 0.95, K = 0.77). The baseline classifiers had the second 
best performance, correctly classifying 81.48% of them us-
ing BayesNet and Voting (AUC = 0.94, K = 0.75). Up to 
75.47% were correctly classified using the gaming dataset, 
with both versions of Voting (AUC ≥ 0.92, K = 0.66). 

The high prediction accuracy by the end of the course 
seems to support our assumption that clusters were con-
sistent between both years (Q1), and it suggests that Q3 is 
also positive. We observed that with the features from the 
performance dataset we could correctly predict 62.96% of 
students’ type with moderate agreement as early as of 
seven weeks. This prediction rate increases to 66.04% for 
the same milestone with the gaming dataset. By midterm, 

we could correctly predict the student’s type with 79.63% 
and 71.70% accuracy, using the performance and gaming 
datasets respectively, which suggest that the answer to Q4 
is affirmative.  

To summarize, we have plotted, for both years, the two 
feature sets identified in section 4.2 into four points in time, 
roughly ¼, ⅓ and ½ of the semester, and by the end of the 
term. We then trained classifiers with data from the second 
year, which had a larger population, and tested with data 
from the first year. Results show that the gaming dataset 
provided a better performance during the first two mile-
stones, but from midterm on, the performance dataset was 
more discriminant of the students’ type. 

5 DISCUSSION 

With this study we wanted to ascertain whether or not stu-
dent differences regarding performance and gaming pref-
erences could be used to identify their type by midterm. To 
attain this, we conducted a new experiment to answer four 
research questions, which we address in this section. 

Q1) Were the clusters identified in both experiments the 
same, i.e., had the same meaning? Yes. The main goal of this 
question was to assess cross-years cluster integrity, i.e., if 
all clusters meant the same in both years. We performed 
student clustering based on XP accrual on our second year 
and compared several performance metrics to those of the 
first year. Clusters appeared to be consistent with only 
slight divergences regarding their classification according 
to the BrainHex model. Given that our clusters are based 
on performance accrual, we assumed Q1 to be true and 
proceeded to answer the other questions. We sought for 
further validate Q1 by answering Q3 in a later step. 

Q2) Is there a subset of relevant features that can be used to 
predict the student type in this experiment’s sample? Yes. We 
performed feature selection on two datasets from our sec-
ond year, one containing only performance measurements 
(the performance dataset), and another containing perfor-
mance data and also the students’ classification according 
to the BrainHex model (the gaming dataset). Ten-fold 
cross-validated classification showed that both could be 
used to correctly classify more than 75% of the students’ 
type, which allows us to answer Q2 with a “yes”. 

Q3) Can the relevant feature set be used to predict the stu-
dents' class in another instance of the course? Inter-year pre-
diction using both feature sets on four different milestones 
revealed that accuracy grows with time. Because we were 
dealing with a classification problem that comprises four 
categories, we considered 60% to be reasonable minimum 
acceptable accuracy rate. By the end of the course we could 
correctly predict 83.33% of the students’ type using perfor-
mance features, 75.47% using the gaming features, and 
81.48% with the baseline classifier. This answers Q3 affirm-
atively and further supports Q1’s answer to be positive as 
well. We could correctly predict more that 60% of the stu-
dents’ type, using both sets of features, starting from the 
seventh week. Gaming features presented a 3% advantage 
over performance features alone, whereas these did not 
yield better results than the baseline feature. By the end of 
the first five weeks, only gaming features could be used to 
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predict 47.17%, with only a fair level of agreement. By mid-
term, we could predict 71.70% and 79.63% using the gam-
ing and performance feature sets respectively with sub-
stantial agreement, which answers with a “yes” our fourth 
question: Q4) Can student types be predicted by midterm? 

5.1 Implications for Research 

We learned a few lessons from this experiment which we 
hope can help people do better-informed decisions on fu-
ture research. Our results suggest that, of the two feature 
sets we explored, one had better predictive power during 
the first weeks than the other. It is the case of the gaming 
features, which included several performance metrics and 
also the students’ classification using the BrainHex player 
model. Classifiers using these features performed better on 
the five- and seven-week milestones and worse on the 
nine-week and end-of-the-course marks, as compared to 
the feature set containing performance metrics only. This 
suggests that the BrainHex classification has some power 
to predict student behavior and performance. Because it 
can be measured when the course starts, it appears to be an 
important asset during the first weeks, where student per-
formance data is yet scarce. By midterm, student perfor-
mance is more well-defined and consistent, and is better 
portrayed by automatically collected performance metrics, 
whose predictive ability outperforms that of the gaming 
features. This is further corroborated by the fact that, by 
the end of the course, classifiers using these features actu-
ally performed worse than using accumulated XP only. We 
believe this matter should be subject to further research. 

Dealing with imbalanced datasets in classification is 
problematic, especially with a small number of cases. In an 
attempt to overcome this barrier, we used two methods of 
Ensemble Learning: Voting and Stacking. Neither of them 
presented a substantial boost in comparison to the solo 
classifiers, with the exception of the five-week milestone in 
the gaming dataset, where Stacking BayesNet and Sim-
pleLogistic together presented the best performance.  

We are not certain on whether the clusters and feature 
sets identified in this experiment can or should be general-
ized to other studies and gamified learning environments. 
For now they might serve as a starting point for future re-
search, although this subject should be further investi-
gated. However, we believe that one of our major contri-
butions is the approach presented in this paper, which pro-
vides the means that may enable a gamified learning envi-
ronment adapt to different student needs and traits.  

5.2 A New Approach to Gamified Learning 

The approach here proposed consists of characterizing stu-
dents in a gamified learning environment, using diverse 
sources of data, and adequately training statistical models 
to predict their behavior and/or performance. Although it 
was only tested within our course setup and thus was not 
validated, we believe it can easily be replicated in and 
adapted to other gamified learning contexts. 
This approach has three main assumptions:  

1. Student data must be from at least two instances of 
the course, for a considerable amount of students in 
each instance (above 50). The nature of the data in 

our experiment comprised both performance met-
rics and classification according to a player model, 
but other sources should be considered as well, such 
as formal measurements of student engagement or 
classification according to different learning styles. 
Let’s call this the student characterization data. 

2. It must be possible to sample a significant part the 
student data regularly in the course. 

3. There must be a single measurement of progress 
that can be plotted over time, which in our case was 
XP accrual. Let’s call this the student progression data. 

Our approach leverages on student data to identify dif-
ferent student categories that code different performance 
and behavior patterns. Classifier algorithms are then used 
to create models capable of predicting a student’s type in 
another year. Our approach consists of two phases: Stu-
dent Characterization and Prediction phase. 

5.2.1 Student Characterization Phase 

This phase aims at identifying what data distinguishes one 
student from another and then characterizing them accord-
ingly. It comprises of two steps: 

1. Student clustering: clustering analysis should be per-
formed on the student progression data; the Expecta-
tion-Maximization algorithm is preferable if sam-
ples are small. Each case should represent a student 
and the performance measurements for each day 
should be regarded as attributes. The resulting clus-
ters encode different progression patterns. 

2. Inter-cluster analysis: Descriptive statistics and tests 
to analyze differences between the clusters’ means 
should be performed for the student characterization 
data. This will reveal which metrics best character-
izes each cluster, and to what degree. 

This phase should be performed for at least two in-
stances of the course (i.e. two terms). 

5.2.2 Student Prediction Phase 

The main goal of this phase is to develop a statistical model 
capable of using data from previous instances of the course 
to predict the students’ type, as identified in the previous 
phase. This phase has the following steps: 

1. Cluster consistency verification: clusters observed in 
the previous phase must be consistent across in-
stances of the course, i.e., they must represent 
roughly the same student traits. A comparison of 
the student characterization data between clusters 
must be performed here. If the number of attributes 
considered in the first step of the first phase is the 
same in all instances, this step can be extended. The 
model resultant from cluster analysis from one in-
stance of the course can be tested with student pro-
gression data from another year, and classification re-
sults can be compared 

2. Feature selection: relevant features from student char-
acterization data must be selected to train classifiers. 
This step is particularly important to prevent the 
model from overfitting data. This can be done by 
performing feature selection using Correlation 
based Feature Selection. Let’s call the result relevant 
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student characterization data. 
3. Classifier training: classification algorithms must be 

used on relevant student characterization data from 
one or more instances to train a statistical model, ca-
pable of predicting the students’ cluster. The selec-
tion of the algorithms can be done by validating 
their classification capabilities with cross-valida-
tion. Classification accuracy, ROC Area and Kappa 
statistic should be considered to evaluated classifier 
performance and reliability. Models should be 
trained using the best performing algorithms. 

4. Prediction evaluation: here we validate the models 
trained in the previous step, by testing them with 
data from one or more instances of the course, not 
yet used for training. A compromise must be found 
between prediction accuracy and reliability to select 
the best model. If additional samples of relevant stu-
dent characterization data are available from other 
points in time, these should also be processed. 

The second phase yields a statistical model which can 
be fed with sampled student characterization data from a 
new instance of the course, in a particular moment, to pre-
dict what cluster each student belongs to. 

We believe that this study can help develop the concept 
of adaptive gamified learning. We envision a gamified 
learning environment that makes use of our approach to 
help predict student behavior and performance early in the 
course, using both performance and gaming data, and 
adapt to them in near real-time or on-demand. Such a sys-
tem could constantly monitor student activity and feed it 
to a statistical model, which would classify students ac-
cording to their expected behavior. This information could 
be used to build and update meaningful progress visuali-
zations tools, which would provide valuable feedback to 
both students and instructors alike. It could also be used to 
adapt content and take specific measures to help and guide 
students at risk and with different needs, which could be 
either triggered by faculty or pre-programmed. For exam-
ple, in the case of our course, an Underachiever or a Half-
hearted student could be gently reminded of opportunities 
to gain additional XP, and faculty should be automatically 
warned once these fell below a certain performance thresh-
olds, so that adequate measures could be promptly 
adopted. In the same way, an (over)Achiever that is crowd-
ing a specific thread and preventing others from participat-
ing could be automatically restrained in a non-punitive 
way, thus allowing others to post under less pressure. 

5.3 Study Limitations 

Our study has five main limitations. The first one concerns 
the small sample size used on both years, which might 
have affected every step of our analysis. The second limi-
tation relates to the difficulty in verifying cluster con-
sistency between years, which is caused by two re-
strictions: a) there are uncontrolled variables between ex-
periments, such as different number of students, differ-
ences in course materials, and the replacement of the ex-
ams for the regular quizzes; b) given that the number of 
features (days in the course) changes from one year to the 
next, we cannot use the model trained with cluster analysis 

in one instance to test with data from another. 
Our approach to assess cluster consistency relies on two 

steps. The first one, more subjective, depends on evaluat-
ing patterns and relationships among performance varia-
bles and clusters. The second one, more systematic, con-
sists of training a classifier with labeled data from one year 
and test with data from another. We believe this two-step 
approach is robust but may not guarantee full consistency 
among years, which may have impacted the results. 

The third and fourth limitations are of methodological 
nature. Multicollinearity may exist between our features, 
which is a possibility given that they are all forms of per-
formance. This might have a negative impact on the ro-
bustness of our logistic regression based classifier. As such, 
we advise caution when interpreting this classifier’s re-
sults. A workaround would be using Principal Component 
Analysis to convert a set of correlated variables into a 
smaller set of uncorrelated ones. 

Another concern is that automated feature selection 
risks overfitting data, which might undermine model ro-
bustness and correctness. To prevent this, cross-validation 
is often used. However, given that we had very small sam-
ples, simply varying the number of folds in cross-valida-
tion changes the percentage of folds in which a particular 
attribute was selected. Thus, specifying a percentage 
threshold is bound to introduced error and uncertainty. 
Therefore, we assumed a compromise and only introduced 
cross-validation later, to choose an adequate classifier. To 
mitigate overfitting during feature selection, we used a fil-
ter method instead of a wrapper one, which is more robust 
to overfitting. Furthermore, testing the classifier with a 
sample from a different year also minimizes the problem. 

Our fifth limitation concerns the fact that our approach 
was only tested in our learning setup. We would like to 
further explore its applicability to other contexts and en-
courage other researchers experiment and improve it in 
other settings. These are crucial steps towards validation. 

6 CONCLUSION 

In previous work we have identified four different types of 
students, characterized by distinct performance and en-
gagement levels, behavior and gaming traits. In this paper 
we presented a novel experiment where we studied how 
we can take advantage of what differentiates different 
types of students, in a gamified setting, to predict their per-
formance and behavior by midterm. To this effect we ana-
lyzed student data covering both performance measure-
ments and gaming preferences, from one instance of the 
course, and used it to identify relevant features and train 
classifiers to test with data from another term.  

Our study shows that the students’ type can be pre-
dicted with up to 79% accuracy by midterm, using perfor-
mance data only. However, data comprising both perfor-
mance metrics and the students’ player classification ac-
cording to the BrainHex model was more accurate in ear-
lier points in time, providing 66% accuracy after seven 
weeks and 47% even after five weeks of class. 

From this study we learned a valuable lesson. Of course, 
in the particular case of our experiment, where student 
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types were computed based on performance accrual, we 
expected the best predictors to be performance metrics. 
However, we learned that earlier in the course, student 
performance appears to be less discriminative and its pre-
dictive power can be improved by pairing it together with 
data that can be measured beforehand, such as their player 
type. We believe our study lays important groundwork for 
the development of adaptive gamified learning environ-
ments. These should draw on performance and gaming 
data to identify different student profiles in near real-time, 
which could be used to promptly adapt content to fit the 
students’ needs and would be an important tool to assess 
student progress, for both students and instructors alike. 
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