
2016 23◦ Encontro Português de Computação Gráfica e Interação (EPCGI)

GatherMySteps
Rui Gil

Instituto Superior Técnico
Universidade de Lisboa

Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Email: ruipgil@tecnico.ulisboa.pt

Daniel Gonçalves
INESC-ID

Rua Alves Redol, 9
1000-029 Lisboa, Portugal

Email: daniel.goncalves@inesc-id.pt

Abstract—Smartphones have become ubiquitous and a part of
ourselves. Since we carry them everywhere, they are the perfect
devices to record our memories: through photos, videos and
through lifelogging. One specific form of lifelogging is geographic
lifelogging, which consists in recording our own trajectories.
Anyone with a GPS enabled device, can effortlessly record
their own trajectories. Those recordings, however, often contain
noise introduced by the lack of accuracy of commercial GPS
devices or even regions where no recording was made, due
to sensor or human error. Also, the raw recordings do not
contain any explicit personally relevant information, such as
the relevant places that we moved between, the purpose of
our visits, or the transportation modes used in our trajectories.
Furthermore, the recordings that need to be processed in a
geographic lifelogging context may range from a few, to dozens,
on a daily basis. Within this frame, we propose GatherMySteps.
GatherMySteps is an application focused on simplifying the
processing of GPS recordings — tracks, with an emphasis on
usability and proactivity (suggesting the most likely corrections
and annotations to the user) to make the lifelogging process
as efficient as possible. It provides simplification, editing and
learning capabilities so that the user can correct and validate
the tracks. Then, a fast and powerful semantic editor is used
to annotate the locations and transportation modes of all the
trajectories in a day. We evaluated our system using usability
user tests, with the help of 20 participants. We conclude that our
solution is efficient to process and annotate tracks, with a small
amount of clicks and time.

Index Terms—GPS trajectories, Infer transportation mode,
User collection, Location based systems, Life-logging, Geographic
Applications, Web applications, Graphic information systems,
Geographic information systems, Geospatial analysis

I. INTRODUCTION

The ubiquity of smartphones in our day to day life made a
wide range of usage scenarios possible, that were previously
difficult or impossible. Phones that we carry everywhere
started sensing the world around us. Soon, they started being
used to log our daily routines, our steps, our sleep habits and
our trajectories. This process of collecting personally relevant
information is called lifelogging.

Lifelogging, a mainly manual and burdensome process until
recently, is one area that benefited from having a small
computer always present and ready to capture the world around
us. It is now possible for users to more easily record personally
relevant information thanks to specialized mobile applications.

Recording our life, however, is only one part of lifelogging.
The second part of the process is to analyze the data collected
to understand our past life. Its objective is to provide an
effective way to reminisce about the past and elicit forgotten
memories. While for certain lifelogging domains several easily
usable solutions exist, geographic lifelogging is one area that
still lacks a complete chain that allows users to record and
analyze personally relevant geographic information. Although
the recording part is solved, with a wide range of applications
available to record trajectories, there are still problems with
those recordings.

A recording is a list of Global Positioning System (GPS)
point coordinates, where personally relevant information (such
as personally relevant locations and transportation modes) are
not immediately accessible. Also, recordings often contain
points that are inaccurate or there may be parts of a trajectory
missing. The latter can be caused by human error, as users
may forget to start the recording when leaving a personally
relevant location or to stop when they reach their destination.
GPS recordings need to be processed so that they can be ap-
proximated to the real trajectories, eliminating errors, making
changes and completions to the original tracks.

Annotating lifelogging data is not a simple process. When it
comes to geographic lifelogging it is no different, there needs
to be an efficient and flexible way to accommodate most use
cases. The user needs to see their trajectories, at what time
they left and at which time they arrived at a personally relevant
location. As with any User Interface (UI), it is important to
maintain simplicity and flexibility. This is even more important
when lifelogging, where users commit their time to process
everyday of their lives. Streamlining this process can cut the
time users spend cleaning and annotating their recordings.

With this in mind we have created GatherMySteps, which
is a semi-automatic, user-assisted application to process GPS
tracks. Our main goal is to provide users with interactive
tools to efficiently process track data from personal GPS
tracks, taking into consideration meaningful personal se-
mantics regarding location and travel information.

Our solution is divided into three stages: preview, adjust
and annotate. The preview stage allows the user to view raw
GPS tracks of a certain day. In the adjust stage, tracks have
passed through the automatic processing to clean the data. The
result is a better approximation to the ground truth. Those
two steps allow users to make corrections as they deem fit,978-1-5090-5387-2/16/$31.00 c©2016 IEEE

2016 23◦ Encontro Português de Computação Gráfica e Interação (EPCGI)

through a track editor. Lastly, users are prompted to annotate
their personally relevant locations and transportation modes
used during each trajectory. To further ease the work that
the user has to do, we infer locations and transportation
modes. When a day is reviewed by the user, our system learns
new locations and adjusts existing ones. This is also true for
transportation modes: our system learns using a classifier that
supports dynamic machine learning. This way, suggestions
adapt continuously to the user.

Our application was tested using usability user tests with
20 users, using the same data for all of them. This allowed us
to understand if our goals of simplicity and ease of use were
achieved. The results show that, as intended, our application is
easy to use and understand. The metrics collected during the
tests show that generally there is a low tendency to err when
executing an action, and days are particularly easy to process
and annotate.

The rest of the paper is organized as follows. In Section II
we discuss related work of systems that display and process
GPS tracks. In Section III we look at the problems regarding
geographic lifelogging. In Section IV we describe the auxiliary
TrackToTrip library. Section V presents the auxiliary backend
module, ProcessMySteps, and an overview of the system.
In Section VI we present the main module, GatherMySteps.
Section VII is dedicated to the evaluation of our system.
Finally, in Section VIII, we draw conclusions upon our work,
and reflect about how to improve this project.

II. STATE OF THE ART

GeoLife [1] is a system that aims to present GPS recordings
in a meaningful way. The map is the main focal point of the
system, having the trajectories always visible, displaying de-
tails on demand. They have also conducted an experiment [2]
with 36 users, where they explored how having spatiotemporal
queries, media cues, like photos improved recollection of past
experiences. The results show that, even though memory dete-
riorated over time, having visual cues can greatly increase the
ability to remember past experiences. GeoLife can also extract
the transportation modes used in the GPS recordings [3]. The
initial track is segmented based on changes in transportation
modes, which are identified by checking for spatiotemporal
pauses. They then label each transportation mode as either
bike, bus, car or walk. They tested four classifiers: Decision
Tree, Bayesian Net, Support Vector Machine and Conditional
Random Field Classifiers. From those, the Decision Tree was
the method with the most accuracy.

The MOPSI [4] system allows users to explore tracks in
a map. It follows the same approach as GeoLife, presenting
the map as the focal point of the system. To avoid scalability
problems while displaying tracks with hundreds of thousands
of points, they simplify each track and only send to the
UI the region to render, which is 50% bigger than the
viewport size. MOPSI is also capable of the transportation
mode inference [5]. It starts by segmenting the original track
into segments with similar speeds. They soft-classify each
segment based on a priori probabilities, which will label

them either stop, walk, run, bicycle or motor vehicle. A
Hidden Markov Model (HMM) is used to exploit correlations
between neighbor segments, providing a better accuracy to the
inference.

To infer personally relevant locations, Umair et al. [6] uses
the location history of a user, clusters them and extracts the
locations of each cluster. To prevent problems with the lack
of accuracy of GPS recordings, outliers are ignored.

To infer personally relevant locations, Kirmse, et al. [7]
explore Leader-Based Clustering (LBC) and Mean Shift Clus-
tering (MSC) [8] a set of tracks. LBC consists in checking if a
given point already belongs to a computed cluster, while MSC
finds the centroid or centroids, of a point cloud by gravitating
a centroid to a region. The results show that, while MSC
generally produces better clusters, its computation cost and
the fact that it produces similar clusters makes LBC a better
option. Work and home locations can be inferred by checking
the denser clusters, and at what time they occur: home clusters
have more points in the morning and at night, while work
clusters have more points during the rest of the day.

To extract transportation modes from GPS tracks, Brunauer
et al. [9] use Multilayers Perceptrons (MLP), Logistical Model
Trees (LMT) and C4.5 classifiers, which have an accuracy of
92.24%, 92.09% and 84.48%, repectively. Using a set of 54
features. All three methods are likely to misclassify car and
bus, because of their similarity.

SenseMe [10] is a system that aims to answer the questions
”Who, What, Where and When?”. To achieve it, the system
uses the GPS position of the device and a C4.5 classifier
to classify the context as indoor, outdoor or indoor-outdoor.
From the velocities between GPS recordings, using another
C4.5 classifier it can classify segments, of 10 to 60 seconds,
as stationary, walking, running or in-vehicle. If the user is
stationary, the location is inferred using the Locus system,
Google Places API, or FourSquare Venues API. Social con-
text recognition is done, checking the number of persisting
bluetooth connections that are over two minutes. All methods
of inference are accurate, with results above 90%, except the
social context recognition, that has an accuracy of 87.5%.

All of these systems provide a balance between visualizing
trajectories and extracting information from them. They, how-
ever, do not adapt to the personal needs or habits of the users.
However, they do not adapt to the personal needs or habits
of users; in fact, there is a dearth of tools that ask for user
input. Instead, they compute immutable classifiers, or make
hard coded decisions. These constraints are not acceptable for
the lifelogging domain, where the system is expected to fit to
the needs of the user and not the other way around.

III. GEOGRAPHIC LIFELOGGING

We consider two main workflows for recording personally
relevant trajectories: (1) record individual trajectories between
two relevant locations, or (2) record continuously through
more than one trajectory, for instance recording the entire
day. Regardless of how the GPS tracks are recorded, the
user then has to download tracks from the GPS device (or

2016 23◦ Encontro Português de Computação Gráfica e Interação (EPCGI)

mobile phone) to a computer to store and organize them. In
a addition to the recording workflow, users often annotate
manually their tracks with personally semantic information,
such as the locations and times spent at each part of the day
and transportation modes used to reach those places. Those
annotations go beyond what could be inferred automatically
from a general-purpose location service or map, they reflect
the personal semantics a location or trajectory has to the user.
For instance, what in a map can appear as 9 in Liberty Avenue;
for a particular user can be “Mary’s home” (and for a friend
of Mary’s father it could be “Jack’s home”...). So, daily, a
geographic lifelogger has to perform all these steps: recording,
organizing and annotating a set of tracks.

The workflows are complicated by the inevitable imperfec-
tions in the processes involved. Thus, there are a handful of
problems of geographic lifelogging, that we need to address.
Those can be machine or human errors.

Machine errors are coupled with GPS itself: it lacks accu-
racy, the same stationary location often has different readings
that converge to the true coordinates; and it lacks reliability,
either because of the lack of GPS signal or due to the device’s
limitations. This means a trajectory might be missing some
points. Human errors have to do with forgetfulness of when to
start/stop recording, and of the actual places visited (and other
personally relevant information), in the annotation stage.

The Workflow 1 (individually recording every trip) is prone
to human errors, since remembering to start and finish a
recording at the right time, at the right place, is a task that can
be easily forgotten. Often, recordings of trajectories start after
one has left the start location. Workflow 2 (a single recording
for the entire day) is prone to have more GPS errors, since
there will be recordings made indoors, where the GPS signal
is weak, or non-existent.

IV. TRACKTOTRIP

As we have seen in Section III, there are problems that
need to be solved to process and annotate a GPS track. While
correcting a set of tracks sporadically is doable, it is also
tedious. This is a problem of the lifelogging domain, as it
is common to process a dozen or more tracks per day. We
need to automate this process the best we can, putting the
user as a reviewer. We can also learn locations, transportation
modes and their most common trips to give suggestions when
annotating and making corrections to tracks. With that in
mind, we have developed the TrackToTrip library, which helps
the user clean tracks, transforming them into trips, greatly
reducing the amount of work the user has to do.

To extract more meaningful information from a raw GPS
recording, we transform a track into a trip.

A track is a collection of points recorded during a trajec-
tory. It is imprecise because of the inaccuracy of GPS; and it
also may lack some recordings, either due to signal loss, or
because the user forgot to start or stop the recording in the
correct places.

A trajectory is the ground truth. It is the true, continuous,
path taken by the user between two semantically relevant
locations.

A trip is the best approximation to a trajectory. In our
approach, a trip is derived from a track.

Fig. 1: Transforming a track into a trip

We have identified a set of actions that we need to take
to transform a track into one or more trips. As per Figure 1,
those are: smoothing, segmentation and simplification.

Fig. 2: TrackToTrip processing chain

As shown in Figure 2, besides transforming a track into
a trip, the TrackToTrip library is also capable of extracting
personally relevant information about a trip. More precisely,
we can extract personally relevant locations and transportation
modes. To achieve better inference, we learn the locations
and transportation modes of each annotated and validated trip.
Furthermore, we can learn common trips, to suggest possible
completions of missing segments.

A. From a track to a trip

The first step of this transformation is to smooth a track,
applying a Kalman Filter [11], which removes some jitter and
noise points in the recording.

The second step is to turn a track into multiple segments
so that each segment represents a trajectory between two
personally relevant locations. This step is particularly useful to
identify places where the user has forgotten to stop the record-
ing, as described in Workflow 1, and essential for Workflow 2.
To that end we split a track if the temporal distance between
two consecutive points is higher than a given threshold, defined
by the user. Also, if the user is stationary at one location, there
will be a denser concentration of points at that location. This
means that we can split a track at each spatiotemporal cluster.
We use the DBSCAN [12] algorithm to identify spatiotemporal
clusters. DBSCAN was chosen because it does not need to
know, in advance, the number of clusters and because it uses
the distance between nearest points as a metric.

The third step, needed to transform a track into a trip, con-
sists in removing redundant points. We simplify a track while
maintaining its spatiotemporal characteristics. To guarantee
those characteristics we use the Spatiotemporal Trajectory
Compression Algorithm (SPT) [13], which reduces the number

2016 23◦ Encontro Português de Computação Gráfica e Interação (EPCGI)

of points of a track without changing its spatiotemporal
characteristics, such as its speed and distance accuracy.

The ordering in which smoothing, segmentation and com-
pression are executed guarantees that we do not lose spa-
tiotemporal information at each step. We perform the smooth-
ing step first to produce a cleaner track, which in turn,
will benefit the segmentation and simplification steps. If we
simplified the track first, we would remove points that form
clusters, thus making the segmentation step less accurate. The
need to keep the same information is also why we use SPT,
instead of Ramer–Douglas–Peucker (RDP) [14]. While the
latter offers better compression ratios, it does not maintain
the spatiotemporal characteristics of a track.

The result of this chain is a trip that can be validated by the
user where the start and end points mark potentially relevant
locations.

B. Location inference and learning

When dealing with geographic lifelogging, one of the most
important aspects is to identify personally relevant locations.
To that end, and to further improve the inference of locations,
we learn new locations and update existing ones.

Internally, a known location is represented by a group of
points, and a centroid of those points. Given a point, a location
will be inferred by retrieving the nearest location centroid and
its label.

Known locations are updated by identifying the closest loca-
tion centroid with the same location name (based on previous
iterations). The new point will join the list of points (cluster)
that describe the location and the centroid will be updated. We
use DBSCAN to extract one cluster and its centroid. DBSCAN
also marks points as noise (outliers), which improves the
precision of the centroid according to the coordinates of the
location.

C. Transportation mode inference and learning

Before inferring transportation mode, we have to consider
that a trip is often composed of more than one transportation
mode. As so, the first thing we have to do, is to identify
where the transportation mode changes: change points. To
perform change point segmentation, we use the Pruned Exact
Linear Time (PELT) algorithm. The PELT algorithm takes
a data series and identifies where the properties of the data
change. We look for segments that have a different variance,
on normally distributed data. Specifically, we try to identify
changes in variance in the acceleration differences between
each consecutive pair of points. The result is a set of change
points candidates.

From each segment, we extract nine features. Each corre-
sponds to the rounded velocity spent during 10%, 20%, ...,
and 90% of the duration of the segment. We use a Support
Vector Machine (SVM), specifically a Stochastic Gradient
Descent classifier, to label each segment either as vehicle,
train, foot, or airplane. We trained the classifier with the
GeoLife dataset. Using two-fold evaluation we obtain an
accuracy of 84%. Purposefully, our classifier is able to learn

dynamically, adapting to the user patterns after each trip has
been processed.

D. Trip learning

Besides learning locations and transportation modes, we can
also learn the most common trips for a particular user. If so, we
can build a graph that represents that user’s mobility patterns.
Furthermore, it allows the library to complete missing pieces
of a trip between two points, either by identifying a likely trip
from whatever information is available, or by being able to
suggest the most frequently used trip between those places as
a possible replacement, when no information exists.

Before learning trips, we have to be able to compare
them. To compare if two trips are equal (the user followed
the same route), we devised the Trajectory-Hausdorff Ratio
(THR). The THR is based on the Trajectory-Hausdorff Dis-
tance (THD) [15], it has more lenient distance functions more
suitable to the noisy GPS readings that we expect.

The THR compares how similar two line segments are by
multiplying parallel and angular distance ratios. The angular
distance ratio is computed by comparing the angles of the two
segments returning a value between 0 and 1, where 0 is given
by an angle difference of 180o; and 1 is given by an angle
difference of 0o. The parallel distance ratio is computed by
calculating the distance between one line segment start and
end points, to the closest point within the other line segment.
The distances are averaged and a ratio is computed against a
given maximum distance threshold so that distances above the
threshold yield a ratio of 0. If the two line segments are either
equal, or cross one another, the resulting ratio is 1.

To obtain the similarity ratio between two two trips we
have to compute the THR between each two segments that
are within a threshold distance. The similarity ratio between
the two trips is given by averaging all THR computations.

To learn a trip, we check whether there are any trips that are
similar to the one we want to learn. If there is a similar trip
(above the 0.8 threshold) we update the existing representation,
to keep refining the existing representation of a particular trip.

V. PROCESSMYSTEPS

ProcessMySteps is the backend module responsible for
managing the processing of tracks, as well as the control flow
between the different stages of the system. It is a lean pro-
cess, exposing a lean Representational State Transfer (REST)
Application Programming Interface (API) with 16 endpoints.
Since our system is designed with lifelogging in mind, we
opted to maintain a single state server; this eliminates concerns
regarding data isolation and privacy between different users.

The API was designed to be simple, yet flexible. The
current state of the system is available at /current endpoint,
while advancing through the different processing stages is
done calling /previous and /next endpoints. When those
endpoints are called a representation of the server state is sent.
The server state representation includes the days left to process
and the current day, which is composed by a list of tracks or
trips.

2016 23◦ Encontro Português de Computação Gráfica e Interação (EPCGI)

Fig. 3: Overview of GatherMySteps

The reason that our backend is this simple is because we
have TrackToTrip, which transforms track into trips and infers
and learns information about them. Furthermore, GatherMyS-
teps implements the necessary actions that allows one to edit
tracks inside the browser, sending the result back to the server.
GatherMySteps and ProcessMySteps use the JavaScript Object
Notation (JSON) format to exchange information. Figure 4,
shows a high-level architecture of the system, which is orga-
nized in a client server architecture, where GatherMySteps is
the client and ProcessMySteps is the server.

Fig. 4: Architecture of our system

When a day is processed we save the trip and its locations
into a PostgreSQL database. Moreover, we create backups
of the original tracks, we generate a GPS Exchange Format
(GPX) file with the resulting trips and a text file of the LIFE
annotations for that day. The LIFE format 1 allows users to
annotate personally relevant information about their days.

1Created by Daniel Gonçalves, https://github.com/domiriel/LIFE, last ac-
cessed in September 28th, 2016

VI. GATHERMYSTEPS

GatherMySteps, Figure 3, is the main component of our
system. Our main premise is to have a fast UI to correct and
annotate GPS tracks as easily as possible. While geographic
lifelogging is an everyday effort, the processing of previously
recorded tracks may happen in burst, where users process
tracks weeks or months old. This, allied to our innate inability
to recall precisely past life events makes correcting and
annotating GPS tracks a hard process.

To help the user, we use the automatic processing and allow
the user to see the tracks of each day. After the first contact,
we ask the user to annotate personally relevant locations and
transportation modes. Moreover, processing is done day-by-
day; grouping different tracks into a single day helps recalling
a past day.

We divided the processing phase into three steps: preview,
adjust and annotate. The preview step allows one to view and
edit the raw GPS track. While edits at this stage may be useful,
it serves as a way to compare with the result of the automatic
processing phase. On the adjust step, every track has been
transformed into one or more trips. By using this step, the
user has the power to correct any incorrect decisions made by
the TrackToTrip library, by editing any trip being processed.
The final step is solely dedicated to the annotation of locations
and transportation modes based on each trip, to that end, we
have developed a semantic editor.

https://github.com/domiriel/LIFE

2016 23◦ Encontro Português de Computação Gráfica e Interação (EPCGI)

A. Track editor
As we have discussed, the track editor is the main com-

ponent that powers the editing of tracks, in the preview and
annotate steps.

Fig. 5: Representation of a track/trip

The focal point of the track editor is the map, where tracks
and trips are shown. This allows the user to explore and
to identify locations. Every track segment is identified by a
color, from a set of eight different colors, generated using
ColorBrewer2.0 2. In addition to the map, each track and
trip is represented in the left pane, as shown in Figure 5.
It is from there that the user can correct tracks and trips to
better represent their trajectories. Users can use the following
functions to edit their tracks and trips:

• Edit points: add, remove, move, or edit the time of any
track or trip point, individually;

• Split: split a track or trip into two;
• Join: join two trips into one;
• Inspect point: inspect position, time, ordering, velocity

and distance of a point.

Fig. 6: Suggestions to join two tracks

From those, the join action is the only one that calls the
server, asking for suggestions for a possible path to join, as

2http://colorbrewer2.org, last accessed on September 28th, 2016

shown in Figure 6. The alternatives are displayed in differ-
ent colors, with different line width. Thicker line segments
represent more common trips.

To help users identify tracks and trips more easily, we have
also implemented buttons to center the start and end points of
a track or trip on a map, and actions to toggle visibility and
to zoom to a specific track or trip.

B. Semantic editor

The semantic editor, Figure 7, is used to annotate locations
and transportation modes using the LIFE format.

Fig. 7: Semantic editor, for LIFE annotations

It works, seamlessly, in two ways: as a drop-down form,
where users click and select suggestions, and it also works
as a text editor. This allows users more experienced with the
system, the flexibility of text editing, while having help from
our suggestion engine.

The editor works like an Integrated Development Environ-
ment (IDE) for the LIFE format and the current day (and
respective tracks) that are being processed. We create an Ab-
stract Syntax Tree (AST) of the text and associate the existing
tracks with parts of the text. This allows us to decorate LIFE
elements, such as time, spans, trips and locations, and makes
possible highlighting point and a segment when the mouse
hovers above those decorated elements. Initial suggestions,
computed in server, provide users with a starting point, from
which they can change. Furthermore, to help the user, we show
suggestions for locations and transportation modes, Figure 7.
This is what allows the text editor to work like a drop-down-
like HTML form.

VII. EVALUATION

Our objective was to create a system to simplify the
processing of GPS tracks by having a simple, yet powerful, UI
that allows to edit and annotate tracks. To evaluate how user-
friendly and how effective our application is, we have devised
usability user tests.

A. Methodology

We have selected 20 users unfamiliar with GatherMySteps
to test our application. Every user was submitted to the same
procedure and used the same data during the whole procedure.
The tests were executed in a controlled environment, without
distractions, during a maximum period of 45 minutes. Every

http://colorbrewer2.org

2016 23◦ Encontro Português de Computação Gráfica e Interação (EPCGI)

user used the same computer and pointing device (a generic
mouse). The tests began with a preparation period, where users
started by reading a handout containing a brief description
of the system, the tasks to execute and a map marked with
the semantic locations present in those tasks (necessary since
the users were not using their own data and, thus, would
otherwise have no reason to assign particular meanings to
any of the locations referred to in the dataset). We did a
four minute demonstration of our system, where we showed
the major functionalities of GatherMySteps. Furthermore, to
avoid unnecessary frustration during the test, caused by the
initial contact with the system, they were given four minutes
to explore the application. During this period they could ask
further questions about the system. After the adaptation period
users started executing the tasks. Each and every user executed
the tasks in an unique, randomized order.

The dataset consisted of six days worth of tracks, recorded
by us, with a total of eight files, which contained 16 trips.
When recording, we set up our devices to collect GPS record-
ings as often as possible; the result is a median sampling rate
of one point captured every five seconds, with an average of
567.6 points per file.

The users being tested had a total of eight tasks to perform.
Tasks 1 to 5 were focused on actions, designed to evaluate
how visible and easy an action was. An example of such is:
“September 22, 2016: Split a track near the grocery store.”

Tasks 6 to 8 required the users to process a day’s worth of
tracks. To do that, they were given a scenario where they had
to make adjustments when needed and annotate a track, such
as: “September 19, 2016: I left home, at 1:24pm, to go to the
gym. I finished training at 2:35pm and went back home. At
2:37pm I was on my way to Starbucks, by bus.”

After completing all tasks, users had to fill a questionnaire
where they answered questions about themselves and about
our solution.

B. Results & Discussion

Users that tested our system averaged 22.5 years old, 10%
of them never use the GPS, 50% of them use the GPS once a
week, 20% of them one to three days a week, 5% of them four
to six days a week and the rest 15% use the GPS everyday. For
those who use GPS, accessing maps and localization services
are the main usage scenarios. From the 20 users, two had
already done geographic lifelogging before.

Task 1 2 3 4 5 6 7 8
Minimum 2 2 2 2 2 7 7 10

Median 6 4 3 2 2 10 10.5 11.5

TABLE I: Minimum amount of clicks required and the median
clicks registered for each track

Table I describes the number of minimum clicks necessary
to complete each task, determined before the start of the tests,
and the median of clicks registered during the experiments.

Figure 8 plots the clicks necessary to complete each task,
using Tukey box plots. With this data, we can see that tasks

Task 1 2 3 4 5 6 7 8
First Quartile 1 1 0 0 0 0 0 0

Median 1 1 0.5 0 1 1 1 2
Third Quartile 2 2 1 1 2 1.25 3 3.25

TABLE II: Errors for each task

more focused in single actions (tasks 1 to 5), using the track
editor, require a low amount of clicks. This is highlighted by
the number of clicks that tasks 2 to 5 registered. Task 1, which
requires the user to find a point, takes more clicks than the
other action focused tasks. Since it is exploratory, the time
spent per click in task is lower than in others, because users
perform successive clicks until they find the answer. The same
is true for the more complex tasks. More complex tasks, such
as 6, 7, and 8, require users to explore, make small adjustments
and annotate a day using the semantic editor.

Using Table II, we can see that there was not a significant
amount of error introduced by the semantic editor, as the
median or errors is similar to the simpler tasks. Also, the time
per click is more similar to other complex tasks, which can
be seen in Figure 9.

1 2 3 4 5
2

3

4

5

6

7

8

9

10
C

lic
ks

6 7 8
6

8

10

12

14

16

18

20

22

24

Tasks

Fig. 8: Clicks to complete each task

As we can see in Figure 9, complex tasks have a similar time
per click ratio, which also are comparable to focused tasks.
This is because of the efficiency of the semantic editor. Often,
the annotations were correct, or accessible through suggestions
that require a two clicks: one to open the suggestions, the other
to open suggestions. Users that choose to type the locations,
when annotating, while they did less clicks, often spent more
time than those who used suggestions.

When asked if the application was easy to understand, the
average score was 4.1, in a scale of zero to five, where zero
is very hard and five is very easy to understand. Regarding
usability, our solution had an average score of 4.15, in a scale
of zero to five, where zero is very hard and five is very easy to
use. Also, since lifelogging is a continuous process, we asked
the users to rate how easy GatherMySteps was to use, again,
in a scale of zero to five, where zero is very hard and five

2016 23◦ Encontro Português de Computação Gráfica e Interação (EPCGI)

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

S
e
co

n
d
s

p
e
r

cl
ic

k

Tasks

Fig. 9: Time spent per click at each task

is very easy to learn. We obtained an average score of 4.45,
which goes in line with what we observed during the tests —
last tasks were done more quickly, with less clicks, and errors.

During and after the tests, they also made some remarks
about the system, praising the ease of use, especially for the
semantic annotator. They, however, pointed to some areas that
could be improved. Specifically, the ability to suggest locations
that were not learned, but were used before, in the current
annotation. Some users also found the buttons to split (in
task 3) and join (in task 4) tracks not clear enough. This is
supported by Table II, where the third quantile of both tasks
have one error. They knew that one was the opposite of the
other, but were not sure of the function of each button.

Overall, the results show that our application is simple and
easy to use. The results also show that the semantic editor
improves the speed with which they annotate tracks, specially
using the suggestions.

VIII. CONCLUSION & FUTURE WORK

In this paper, we presented GatherMySteps — a system
that aims to simplify and improve the processing of GPS
recordings, in the geographic lifelogging domain. The system
achieves this by using a simple, yet power UI that stream-
lines the processing of personal GPS tracks, giving the user
a reviewer role. This is possible because of an automatic
processing phase, that cleans and identifies trips between two
personally relevant places. Furthermore, the system helps users
annotate trips, the start and end locations and the transportation
modes. The system is also able to learn trips, locations, and
transportation modes, further refining and adapting to the
needs of a specific user. We evaluated our system with usability
user tests, with the help of 20 participants. The results show
that our system is easy to use, understand and learn having
scored, respectively 4.15, 4.1, and 4.45, in a scale of 0 to 5.

We now plan to improve our system based on feedback we
have received from the users, making some of the functionali-
ties that were more difficult to use during the test more visible
and clear to the user.

We believe that it is still possible to further improve the
automatic processing of tracks; machine learning methods that
take into account personal patterns could be used to extract
more meaningful and personal information. The UI could
also be improved, by adding the ability to apply automatic
processing methods, such as smoothing, to certain parts of
a track or trip. Systems such as GatherMySteps can greatly
benefit the life of lifeloggers and further allow solutions to
analyze personal information and annotations.

ACKNOWLEDGEMENTS

This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with reference
UID/CEC/50021/2013.

REFERENCES

[1] Y. Zheng, L. Wang, R. Zhang, X. Xie, and W.-Y. Ma, “GeoLife:
Managing and Understanding Your Past Life over Maps,” in The Ninth
International Conference on Mobile Data Management (mdm 2008).
IEEE, apr 2008, pp. 211–212.

[2] Y. Zheng, X. Xie, R. Zhang, and W.-Y. Ma, “Searching Your Life on
Web Maps,” jan 2008.

[3] Y. Zheng, L. Liu, L. Wang, and X. Xie, “Learning transportation
mode from raw gps data for geographic applications on the web,” in
Proceeding of the 17th international conference on World Wide Web -
WWW ’08. New York, New York, USA: ACM Press, apr 2008, p. 247.

[4] K. Waga, A. Tabarcea, R. Mariescu-Istodor, and P. Fränti, “Real Time
Access to Multiple GPS Tracks.” in WEBIST, K.-H. Krempels and
A. Stocker, Eds. SciTePress, 2013, pp. 293–299.

[5] K. Waga, A. Tabarcea, M. Chen, and P. Fränti, “Detecting Movement
Type by Route Segmentation and Classification,” Conference on Col-
laborative Computing: Networking, Applications and Worksharing, pp.
508–513, 2012.

[6] M. Umair, W. S. Kim, B. C. Choi, and S. Y. Jung, “Discovering
personal places from location traces,” in 16th International Conference
on Advanced Communication Technology. Global IT Research Institute
(GIRI), feb 2014, pp. 709–713.

[7] A. Kirmse, T. Udeshi, P. Bellver, and J. Shuma, “Extracting patterns
from location history,” Proceedings of the 19th ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems
- GIS ’11, p. 397, 2011.

[8] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE transactions
on pattern analysis and machine intelligence, vol. 17, no. 8, pp. 790–
799, 1995.

[9] R. Brunauer, M. Hufnagl, K. Rehrl, and A. Wagner, “Motion pattern
analysis enabling accurate travel mode detection from GPS data only,”
in 16th International IEEE Conference on Intelligent Transportation
Systems (ITSC 2013). IEEE, oct 2013, pp. 404–411.

[10] P. Bhargava, N. Gramsky, and A. Agrawala, “SenseMe: A System for
Continuous, On-Device, and Multi-dimensional Context and Activity
Recognition,” in Proceedings of the 11th International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services.
ICST, dec 2014, pp. 40–49.

[11] G. C. Goodwin and K. S. Sin, Adaptive filtering prediction and control.
Courier Corporation, 2014.

[12] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[13] N. Meratnia and A. Rolf, “Spatiotemporal compression techniques
for moving point objects,” in International Conference on Extending
Database Technology. Springer, 2004, pp. 765–782.

[14] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Cartographica: The International Journal for Geographic Information
and Geovisualization, vol. 10, no. 2, pp. 112–122, 1973.

[15] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: a partition-
and-group framework,” in Proceedings of the 2007 ACM SIGMOD
international conference on Management of data. ACM, 2007, pp.
593–604.

