
Decision Tree Learner in the Presence of
Domain Knowledge

João Vieira and Cláudia Antunes

Instituto Superior Técnico, Universidade de Lisboa
{joao.c.vieira, claudia.antunes}@ist.utl.pt

Abstract. In the era of semantic web and big data, the need for ma-
chine learning algorithms able to exploit domain ontologies is undeniable.
In the past, two divergent research lines were followed, but with back-
ground knowledge represented through domain ontologies, is now possi-
ble to develop new ontology-driven learning algorithms. In this paper,
we propose a method that adds domain knowledge, represented in OWL
2, to a purely statistical decision tree learner. The new algorithm tries
to find the best attributes to test in the decision tree, considering both
existing attributes and new ones that can be infered from the ontology.
By exploring the set of axioms in the ontology, the algorithm is then
able to determine in run-time the best level of abstraction for each at-
tribute, infer new attributes and decide the ones to be used in the tree.
Our experimental results show that our method produces smaller and
more accurate trees even on data sets where all features are concrete,
but specially on those where some features are only specified at higher
levels of abstraction. We also show that our method performs substan-
tially better than traditional decision tree classifiers in cases where only
a small number of labeled instances are available.

Keywords: Semantic aspects of data mining, Classification, Decision trees,
Background Knowledge, Ontologies

Topics: Data Mining, OLAP, and Knowledge Discovery; Semantic Web and
Databases

1 Introduction

The automatic generation of simple and accurate classifiers from data is one of
the major fields of data mining. Classification algorithms are supervised methods
that look for and discover the hidden associations between the target class and
the independent variables [12]. In a traditional supervised inductive learning
scenario, the classifier is produced solely from a given set of already labeled
instances or observations, ignoring any existing domain knowledge available.



However, with the advances of the semantic web, this knowledge is becoming
increasingly available through domain ontologies, in many areas of application.
Moreover, it is usual that the instances to be classified are described by features
at different levels of abstraction. That is, the values of a particular attribute are
specified at different levels of abstraction on different instances.

One of the most widely known data sets in classification is the Mushroom data
set [3,11]. One might think that there is not much interest or knowledge about
mushrooms beyond the circle of professional biologists or amateur witches but as
it turns out there is a vibrant community of mushroom enthusiasts (and not only
of the psychadelic kind) across the globe. As such, over time, there have been
numerous guides and books about the subject and a great number of people have
learned to correctly identify mushrooms through luck and experience, which is
remarkable in an area where learning from one’s mistakes might not be advisable.

One of the characteristics that are important when identifying mushrooms is
its odor. Experts with gifted noses will tell you that an odor of anise or almonds
is a good sign as is no odor at all. However if you smell creosote for example,
it will probably be a good idea to have dinner somewhere else. But can we help
amateurs with less sensitive noses avoid death by mushroom poisoning? Suppose
that while some experts input an exact odor, other people can only input if
it smells good or bad. One can certainly leverage existing domain knowledge
to make an automated classifier aware of which odors are pleasant to humans
and which are not and if possible classify the mushroom with this less precise
information.

More generally if experts learn from guides and books in addition to examples
and experience, why can’t classifiers also make use of existing domain knowledge
in addition to a set of training labeled instances?

If we start to read a book about mushrooms, we soon realize that if we
want to survive a dinner of these dangerous delicacies, we will need more than
knowing attribute values at different levels of abstraction. Often we are teached
to infer new attributes, like species, from a combination of existing ones. For
example, there is a common species of mushrooms called Parasol. Mushrooms
in these species share, of course, the same basic characteristics, like cap surface
and color, gill size and spacing and so on. However there is another species that
share almost the same characteristics and their distinction is only possible by
looking at a combination of two attributes, a bad smell and a greenish spore
print color.

This is also very common in medical diagnosis, when some conditions can
only be considered when certain specific combinations of symptoms occur. For
example, weakeness and fatigue combined with weight loss and yellow discol-
oration of the skin points to liver problems. It is not enough to know the cause
or the treatment but it helps narrow it down. The classifier we propose can, for
example, use domain knowledge to determine probable liver problems and then
use that extra information and a set of labeled instances to arrive at a concrete
diagnosis.



For automated classification methods to be adopted in practice, it is crucial
that a relationship of trust can be established between domain experts and the
models generated. When the cost of making mistakes is very high, numerical
validation is usually not enough. This is why it is so important that the generated
models are simple, understandable, and somewhat aligned with certain facts that
are known to be true in the domain.

Beside the inability of using anything other than labeled examples, one of
the major problems faced during classifiers training is the overfitting of the
learned model to the training data. Usually resulting in excessively complicated
models, with low predictive power for unseen data [6]. Overfitting is then the
production of models that include more terms or use more complicated rules
than necessary, compromising the fundamental rule of machine learning – the
Occam’s razor principle.

Adding irrelevant predictors can make models perform worse because the
coefficients fitted to them add random variation to the subsequent predictions.

By ignoring the relationship between attribute values, e.g., the fact that anise
and pleasant odors are not two unrelated features, but the same at different
levels of abstraction, most current algorithms produce models that have very
low portability [9].

We believe that adding domain knowledge is the key to the solution of these
problems. The introduction of ontologies, as a means to formally represent exist-
ing background knowledge, in the learning process will give rise to the production
of simpler and more accurate models. Since, through ontologies will be possible
to consider different levels of abstraction and explore the relationship between
the concepts instantiated in the data set.

In this paper, we overview the related work and propose an approach that
introduces domain knowledge, represented as an ontology written in a standard
format, OWL 2, in the context of classification. We propose a method that given
a set of examples and an ontology expressing existing domain knowledge will
automatically classify instances making use of the available domain knowledge
when, and in the extent that, it helps produce simpler, more accurate decision
trees and more probable classifications.

2 Literature Review

Two major approaches have dominated research in artificial intelligence: one
based on logic representations, and one focused on statistical ones. The first
group includes approaches like logic programming, description logics, rule in-
duction, etc. The second, more used in machine learning, includes Bayesian net-
works, hidden Markov models, neural networks, etc. Logical approaches tend
to focus on handling the complexity of the real world, and statistical ones the
uncertainty [7] that is present in field applications.

This duality is clearly represented in classification, where a lot of efforts were
taken in the last decades in the research and development of algorithms that
explored certain principles of statistics to build predictive models. Examples



of algorithms following this approach include SVMs [5], back-propagation [20],
Naive Bayes, KNN [1], C4.5 [18], among others. These algorithms are usually
very efficient in learning a model. Moreover, the models produced yield good
levels of accuracy for unseen data, if training sets were properly balanced and
sized. These kind of algorithms were the focus of most research in the last decades
and saw wide adoption and acceptance by the industry.

On the other hand, Inductive Logic Programming (ILP) is the most known
representant of the logic approach to classification [4]. In this kind of approach,
in addition to the training set, an encoding of the known background knowledge
is also provided. An ILP system will then derive a logic program as a hypothesis
which entails all the positive and none of negative examples.

Although ILP systems benefit from relevant background knowledge to con-
struct simple and accurate theories more quickly [21], background knowledge
that contains large amounts of information that is irrelevant to the problem
being considered can, and have been shown to, hinder the search for a correct
explanation of the data [17]. Experimental results [19,8] also show that perfor-
mance (in terms of time complexity) is much worse than statistical approaches,
like C4.5. Further, traditional ILP is unable to cope with the uncertainty of
real-world applications such as missing or noisy data, a known drawback when
compared to the statistical approach.

Although probabilistic ILP takes a step further in terms of dealing with
uncertainty it does not perform consistently better than equivalent statistical
approaches in terms of accuracy. The computational complexity of the learning
phase is also much higher.

There has been surprisingly little work on probabilistic learning with datasets
described using formal ontologies [14]. Ontologies are crucial to deal with seman-
tic interoperability and with heterogeneous data sets.The strenghts of purely
statistical methods are related with their relative simplicity and ability to work
with data that underwent less preparation than required by the logic approach
(where data and existing knowledge must be represented or transformed to first
order logic). It is also able to scale up relatively well and is robust, i.e., per-
forms well even when its assumptions are somewhat violated by the true model
from which the data is generated. This is related with the inherent ability of the
statistical approach to deal with uncertainty.

However, it ignores the complexities of the real world. First, it is not possible
to express or make use of existing domain knowledge, to explicitate relationships
between attributes or hierarchies of features. And second, it doesn’t allow for
constraining the results according to facts which are known to be true, even if
not represented in the subset of data being fed to the learning algorithm.

EG2 [15] was one of first approaches to extend a purely statistical method,
the ID3 decision tree learner, to make use of background knowledge in order to
reduce the classification cost.

More recently, an ontology-driven decision tree learning algorithm was pro-
posed [24] to learn classification rules at multiple levels of abstraction. Although
called ontology-driven, what the proposed solution really uses is a taxonomy, i.e.,



a set of IS-A relations associated with each attribute. It consists in a top-down
concept hierarchy guided search in a hypothesis space of decision trees.

A variation of the Näıve Bayes Learner making use of attribute-value tax-
onomies (AVT-NBL) was proposed [23]. It starts with the Näıve Bayes classifier
based on the most abstract value for each attribute, and successively moves in
the direction of the more concrete values, i.e., the ones appearing in the data set.
The idea is to stop somewhere in between, in order to achieve a balance between
the complexity of the resulting classifier and its classification accuracy.

It suffers from some of the same problems of EG2, as the authors never specify
a standard format to represent the domain knowledge and the knowledge that
can be represented is restricted to IS-A relations, a small subset of an ontology.
It is however a tentative step in a meaningful direction, facilitating the discovery
of classifiers at different levels of abstraction.

3 Preliminaries

As far as the authors know existing approaches to introducing some form of
domain knowledge in the classification process deal only with taxonomies which
are a fraction of the expressive power of true ontologies.

We need a standard way of expressing domain knowledge, so it can be shared
and reused. The Web Ontology Language, OWL 2 [13] satisfies this criterion and
offers plenty expressive power to use in the context of classification. We assume
that the reader is somewhat familiar with OWL 2 and with the Manchester syn-
tax. Nonetheless we briefly review the main components of an OWL 2 ontology.

3.1 OWL 2

The main components of an OWL 2 ontology are axioms, classes, individuals
and properties. Two types of properties exist: data properties have a literal as a
range and object properties have a class has range.

Note that classes in the ontology have nothing to do with class of the instance
in a classification problem, i.e., the attribute value we are trying to predict.

Classes provide an abstraction mechanism for grouping resources with similar
characteristics. When you think of the concept Parasol, for instance, you are not
thinking of any concrete mushroom. Rather all the mushrooms that share the
necessary characteristics to be considered of that species. However if you embark
in a mushroom hunting adventure you will probably find a mushroom of this
species for dinner. That mushroom is an Individual of the class Parasol.

Characteristics are called properties and odor is an example of a property of
the class Parasol.

So how can one define which individuals belong to the class Parasol? Using
axioms. Axioms are the core of an OWL 2 ontology and are essentially statements
that are truth in the domain. You can then say that mushrooms with white spore
print color and not white gills are of the class Parasol. You can also say that



Parasol is a subclass of Mushroom, i.e., all individuals in the class Parasol are
also in the class Mushroom.

However reasoning in a OWL DL ontology is a problem in NEXPTIME which
is highly undesirable for our intended application.

3.2 OWL 2 EL

Fortunately a subset exists that trades off some aspects of the OWL DL expres-
sive power in return for PTIME complexity in all the standard reasoning tasks.
From now on, whenever we refer to OWL or to ontologies, keep in mind that we
are talking about OWL 2 EL.

We wish to have a set of axioms that define class membership and then
quickly compute which individuals belong to which classes. Although it might
sound simple, it is a rather complex topic and an area of research in itself.

3.3 ELK

We use Elk [10] to determine which individuals in the ontology belong to which
classes. This is called ABox Realization.

Realization is the task of computing the implied instance/type relationships
between all named individuals and named classes in an ontology. Only direct
instance/type relations are returned in the result. In order to determine which
instance/type relations are direct, one needs to know all subclass/superclass
between named classes in the ontology. Therefore, ELK automatically triggers
TBox classification before ABox realization.

TBox classification is the task of computing the implied subclass/super-
class relationships between all named classes in an ontology. Besides finding out
whether a class is subsumed by another one or not, this task involves the transi-
tive reduction of the computed class taxonomy: only direct subclass/superclass
relations are returned in the result.

4 Structuring an Ontology to Support Classification
Problems

Until now we have presented ontologies as a completely separated topic from the
problem of learning to predict a target attribute from a set of labeled examples.

In this section we will make a bridge between the data set and the ontology,
so the algorithm can leverage the available domain knowledge and the labeled
instances in the data set to produce a more precise and compact model.

Attribute values in the data set that we want to use while defining axioms
are added as Individuals to the ontology. Consider that we are interested in the
the following odors: creosote (c), fishy (y), foul (f), musty (m), pungent (p) and
spicy (s) which are bad smells but not in almond (a), anise (l) or none (n). Also
consider that we are only interested in green (r) spore-print-color.



OWL fragment 1.1. What mush-
rooms odors smell bad?

1 Class : BadSmell
2
3 Individual : c
4 Types : BadSmell
5 Individual : y
6 Types : BadSmell
7 Individual : f
8 Types : BadSmell
9 Individual : m

10 Types : BadSmell
11 Individual : p
12 Types : BadSmell
13 Individual : s
14 Types : BadSmell

OWL fragment 1.2. Green spore
print colors make greenish mushrooms

1 Class : Greenish
2
3 Individual : r
4 Types : Greenish

Existing attributes (in the data set) that we wish to mention in our axioms
are added as object properties. Suppose that we are interested in odor and in
spore-print-color.

OWL fragment 1.3. Definition of the attributes odor and spore print color in the
ontology, allowing the definition of axioms that use these attributes

1 ObjectProperty : odor
2 ObjectProperty : spore−pr int−c o l o r

A meta-class “Attribute” that can have two kinds of direct subclasses. New
attributes have no corresponding object property and represent a new dimension
in which instances in the data set can be considered. These kind of new attributes
result from the application of a set of axioms to the existing attribute values or
to an abstraction of them. In the next example we will add a new attribute called
Species.

On the other hand, direct subclasses of the meta-class “Attribute” that have
a corresponding object property represent attributes that already exist in the
data set but will have multiple levels of abstraction. Each direct subclass of one
of this attributes represent a new level of abstraction to be considered. In the
next example we will add a higher level of abstraction to the attribute odor,
called smell. The subclasses of smell are the possible attribute values of the new
attribute smell.

OWL fragment 1.4. Attribute hierarchy showing a new class species and an higher
level of abstraction smell for the attribute odor

1 Class : Odor
2 Class : Smell
3 SubClassOf : Odor
4 Class : Spec i e s
5 Class : Att r ibute



6 SuperClassOf : Odor
7 SuperClassOf : Spec i e s
8
9 Class : BadSmell

10 SubClassOf : Smell

Note that the subclasses of smell and species are the possible attribute values. We
can have how many attributes values we want. However note that it is possible
that some instances are not part if any of these attribute values because they
are not part of any of the corresponding classes. As an example, consider any
instance where the attribute value of the attribute odor is anise. This instance is
not part of the BadSmell class and there are no other subclasses of odor. When
this happens the attribute in question will have a new special attribute value
“NA” that will have all instances that do not belong to any attribute value.
One might be tempted to define a new class GoodSmell as the negation of the
class BadSmell. This is a violation of the EL profile as it does not support class
negation.

At last, suppose that we know that if some mushroom smells bad or has
greenish spore print color it is of the species “FalseParasol”.

OWL fragment 1.5. What characteristics must a mushroom have in order to belong
to the species False parasol?

1 Class : Fa l s eParaso l
2 SubClassOf : Spec i e s
3 SuperClassOf : odor some BadSmell
4 SuperClassOf : spore−pr int−c o l o r some Greenish

5 Ontology Aware Decision Tree Learner

Now that we have a bridge between instances in the data set and domain knowl-
edge in the ontology we will enrich each instance in the data set with what we
can infer from the ontology. Suppose that we have an instance with green spore
print color and a poignant odor. From the ontology we know that the species of
this instance is “FalseParasol” and that it smells bad.

Algorithm 1 creates an individual in the ontology for each instance in the data
set and makes object property assertions corresponding to the instance attribute
values. After it is run all instances are classified. Note that instances in the data
set are projected into the ontology as individuals and only the attribute values
that can influence class inference are added. In our example the individuals
added to the ontology would have only two dimensions: odor and spore print
color.

Also note that by leveraging incremental reasoning the inner loop does not
trigger a full re-computation. This step can be completed in PTIME.

In Algorithm 2, for each new attribute (as defined in the ontology), we fetch
the individuals for each possible attribute value. After this step we can proceed



Algorithm 1 Projects data set instances into the ontology as individuals

1 procedure ProjectToOntology(instances, ontology)
2 for all i ∈ instances do
3 j ← individual(i) . create individual for instance
4 ontology ← ontology + j . add individual to ontology
5 for all a ∈ attributes(i) do
6 v ← value(i, a)
7 if hasProperty(a, ontology) ∧ hasIndividual(v, ontology) then
8 objectPropertyAssertion(j, a, v, ontology)
9 end if

10 end for
11 end for
12 end procedure

Algorithm 2 Obtains attribute values for the new generated attributes

1 procedure GetAttributeValues(ontology)
2 for all a ∈ subClassOf(′Attribute′, ontology, direct = True) do
3 if hasProperty(a, ontology) then . higher levels of abstraction for a
4 for all ah ∈ subClassOf(a, ontology, direct = True) do
5 for all v ∈ subClassOf(ah, ontology, direct = True) do
6 instances(ah, v)← individuals(v, ontology)
7 end for
8 end for
9 else . a is not an abstraction of an existing attribute

10 for all v ∈ subClassOf(a, ontology, direct = True) do
11 instances(a, v)← individuals(v, ontology)
12 end for
13 end if
14 end for
15 end procedure

to attribute selection as we usually would in a normal decision tree algorithm.
In our implementation we use a simple version of the ID3 algorithm.

5.1 Attribute Selection Criterion

The information gain IG(Ai) of an attribute Ai is calculated as follows:

IG(Ai) = H(T ) −
∑

f∈F (Ai)

p(f)H(tAi=f ) (1)

where H(T ) is the entropy of the training set and H(tAi=f ) is the entropy of
a subset of the training set formed by the instances of T where the value of
attribute Ai is f . The entropy of a set T is given by:

H(T ) = −
∑
cj∈C

p(cj) log2 p(cj) (2)



One might think that as ID3 recursively selects the attribute with the highest
information gain it would naturally pick attributes at higher levels of abstraction
if those led to simpler, more accurate trees.

This is, however, not the case. The information gain metric is biased through
attributes with a greater number of features [22].

Proposition 1. Given an attribute Ai and an attribute A1i where at least one
feature of A1i is at an higher level of abstraction and all others are at least at
the same level then IG(Ai) ≥ IG(A1i).

Proof. The case where exactly one feature from Ai appears in A1i at an higher
level of abstraction and all other remain the same is a mere renaming of one
feature in pratical terms and is trivial to observe that no counts change because
of it and consequently, in this case, IG(Ai) = IG(A1i).

Now consider the case where n features f1, . . . , fn from Ai are represented by
a common ancestor fa in A1i and all other features remain the same. Equivalently
we might say that Ai can be obtained from A1i by splitting fa in n features.
This is exactly the case where it has been shown [16,22] that the information
gain of the attribute with more features is greater than or equal to the attribute
with less features even if the features of the later are already sufficiently fine for
the induction task at hand.

This is highly undesirable when dealing with attributes at different levels of ab-
straction. As we climb up in the feature hierarchy, more features will be aggre-
gated and the attribute representing that level of abstraction will consequently
have less possible values. Using information gain this attribute will never be
selected.

The gain ratio attribute selection measure [16] minimizes this bias and can
be calculated as follows:

IG(Ai)

−
∑

f∈F (Ai)
p(f) log2 p(f)

(3)

5.2 Ontology Aware Decision Tree Classifier

The model produced can be used to classify instances where most of the at-
tributes are missing as long as there is enough information to infer the value of
the new attributes and together with the existing ones they are enough to reach
a leaf of the decision tree.

Given an instance I with some possibly missing values we compute new
attribute values using a method analogous to the one described in the previous
section and obtain an extended version of I. We use this extended version to
navigate the decision tree as usually.

6 Results

In order to execute some experiments and compare the performance of the pro-
posed algorithm with standard ID3 decision tree algorithm a Java implementa-
tion was developed, as part of the D2PM framework [2].



In spite of data with values specified at different levels of abstraction being
commmon in many domains of application there are few standard benchmark
data sets with these characteristics and with an associated ontology. We selected
the Mushroom data set from the UCI Machine Learning Repository as a starting
point.

Domain knowledge obtained from the book “The Mushroom Hunter’s Field
Guide” was made explicit in an OWL 2 ontology.

Table 1. Accuracy and tree size of ID3 and OADT on the original data

ID3 Accuracy OADT Accuracy ID3 Tree Size OADT Tree Size

S1 0.785 0.999 5 4
S2 0.999 1.000 7 4
S3 0.999 1.000 7 4
S4 0.993 0.999 5 4
S5 1.000 1.000 7 4

Avg. 0.9552 0.9996 6.2 4

Three sets of experiments were then executed. The first compares the ac-
curacy of the proposed Ontology Aware Decision Tree with the standard ID3
algorithm on the original data, where all values are concrete. We also look at
the complexity of the produced decision trees. Figure 1 shows an example of a
decision tree generated by OADT for randomly selected small training sets. This
simple tree has an accuracy over the entire data set of 0.914 while the standard
ID3 algorithm, for the same training set, generates a tree that has an accuracy
of only 0.549.

Odor

NA

Edible

BadSmell

Poisonous

Fig. 1. Example of a decision tree generated by OADT from a small training set (< 50
instances)

The second shows how the accuracy of both algorithms changes with in-
creansingly smaller training sets. A subset with 1000 instances was randomly
selected from the original data set to serve as a test set. Six subsets were ran-
domly selected from the remaining instances of the original data set, with sizes
of 700, 300, 70, 50, 20 and 15 instances to be used as training sets. The results
are shown in Figure 2.

The third studies how the accuracy of both algorithms changes with an in-
creasing number of values being abstract, e.g., not knowing the exact odor of



0.75

0.8

0.85

0.9

0.95

1

100 200 300 400 500 600 700

A
cc

u
ra

cy

Size of the training set

Accuracy with a decreasing training set:

OADT
×××

×

×
×

×
ID3

◦

◦

◦
◦◦◦

◦

Fig. 2. The influence of training set size on the accuracy of ID3 and OADT.

a mushroom but being able to tell if it has a pleasant or bad smell. Starting
from a data set with no abstract values, five data sets were then generated with
an approximate percentage of abstract values of 5%, 10%, 15%, 20% and 25%.
Figure 3 shows these results.

To assess the accuracy of the two algorithms on the original data set, we
used cross-validation by repeated random sub-sampling. Five disjoint subsets
were randomly selected and each was divided in two disjoint subsets, a training
set and a test set. Table 1 shows these results.

These results are in line with our expectations. First, even on data were all
values are concrete, domain knowledge can help build models that perform as
good or better while being considerably simpler. This difference in accuracy is
more pronounced with smaller training sets.

Second, when the specific concrete values are unknown but a more abstract
version is available, OADT maintains its performance remarkably well while the
performance of traditional ID3 decreases as more values are expressed at higher
levels of abstraction.



0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25

A
cc

u
ra

cy

% of abstract features

Accuracy with an increasing number of abstract features:

OADT
× × × × × ×

×
ID3

◦

◦

◦

◦

◦ ◦

◦

Fig. 3. Accuracy of ID3 and OADT in a data set with an increasing number of abstract
values.

7 Summary

In this paper, we have described an approach for learning from ontologies, repre-
sented in a standard knowledge representation language, OWL 2 EL, and from
a set of training data.

We show that it is possible to produce simpler decision trees that perform as
good or better than traditional approaches. We also show that domain knowledge
helps produce classifiers that perform very well in small training sets compara-
tively to traditional algorithms.

We also describe how to change the classifier to leverage available knowledge
to classify instances with values not seen in the training set, by infering values
from the ontology. This is useful to classify instances where the concrete value
of some attributes is not known but the abstract class is, e.g., not knowing the
exact phylum of a bacteria, but knowing it is Gram positive.

References

1. Altman, N.: An introduction to kernel and nearest-neighbor nonparametric regres-
sion. The American Statistician 46(3), 175–185 (1992)

2. Antunes, C.: D2pm: Domain driven pattern mining. Tech. rep., project report,
Tech. Report 1530, IST, Lisboa (2011)

3. Bache, K., Lichman, M.: UCI machine learning repository (2013), http://

archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


4. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees.
Artificial intelligence 101(1), 285–297 (1998)

5. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: Proceedings of the fifth annual workshop on Computational learning
theory. pp. 144–152. ACM (1992)

6. Bramer, M.: Using j-pruning to reduce overfitting in classification trees.
Knowledge-Based Systems 15(5), 301–308 (2002)

7. Domingos, P., Kok, S., Poon, H., Richardson, M., Singla, P.: Unifying logical and
statistical ai. In: AAAI (2006)

8. Dzeroski, S., Jacobs, N., Molina, M., Moure, C., Muggleton, S., Laer, W.V.: De-
tecting traffic problems with ilp. In: Proceedings of the 8th International Workshop
on Inductive Logic Programming. pp. 281–290. Springer-Verlag (1998)

9. Hawkins, D.M.: The problem of overfitting. Journal of chemical information and
computer sciences 44(1), 1–12 (2004)

10. Kazakov, Y., Krtzsch, M., Simank, F.: The incredible elk. Journal of Automated
Reasoning 53(1), 1–61 (2014), http://dx.doi.org/10.1007/s10817-013-9296-3

11. Lincoff, G., Nehring, C.: National Audubon Society Field Guide to North American
Mushrooms. Knopf (1997)

12. Maimon, O., Rokach, L. (eds.): Data Mining and Knowledge Discovery Handbook,
2nd ed. Springer (2010)

13. Motik, B., Patel-Schneider, P.F., Parsia, B., Bock, C., Fokoue, A., Haase, P., Hoek-
stra, R., Horrocks, I., Ruttenberg, A., Sattler, U., et al.: Owl 2 web ontology lan-
guage: Structural specification and functional-style syntax. W3C recommendation
27, 17 (2009)

14. Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K., Srinivasan,
A.: Ilp turns 20. Machine Learning 86(1), 3–23 (2012)

15. Núñez, M.: The use of background knowledge in decision tree induction. Machine
learning 6(3), 231–250 (1991)

16. Quinlan, J.R.: Induction of decision trees. Machine learning 1(1), 81–106 (1986)
17. Quinlan, J.R., Cameron-Jones, R.M.: Foil: A midterm report. In: Machine Learn-

ing: ECML-93. pp. 1–20. Springer (1993)
18. Quinlan, J.R.: C4. 5: programs for machine learning, vol. 1. Morgan kaufmann

(1993)
19. Roberts, S., Jacobs, N., Muggleton, S., Broughton, J., et al.: A comparison of

ilp and propositional systems on propositional traffic data. In: Inductive Logic
Programming, pp. 291–299. Springer (1998)

20. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Cognitive modeling 1, 213 (2002)

21. Srinivasan, A., King, R.D., Muggleton, S.: The role of background knowledge:
using a problem from chemistry to examine the performance of an ilp program.
Transactions on Knowledge and Data Engineering (1999)

22. White, A.P., Liu, W.Z.: Technical note: Bias in information-based measures in
decision tree induction. Machine Learning 15(3), 321–329 (1994)

23. Zhang, J., Kang, D.K., Silvescu, A., Honavar, V.: Learning accurate and concise
näıve bayes classifiers from attribute value taxonomies and data. Knowledge and
Information Systems 9(2), 157–179 (2006)

24. Zhang, J., Silvescu, A., Honavar, V.: Ontology-driven induction of decision trees at
multiple levels of abstraction. In: Abstraction, reformulation, and approximation,
pp. 316–323. Springer (2002)

http://dx.doi.org/10.1007/s10817-013-9296-3

	Decision Tree Learner in the Presence of Domain Knowledge

