

Instituto Superior Técnico Universidade Técnica de Lisboa

Learning To Rank Academic Experts

Catarina Moreira

Outline

- Introduction
- ✓ State of the Art Problems
- ✓ Features to Estimate Expertise
- ✓ Datasets
- Approaches and Results
 - ✓ Rank Aggregation Framework
 - Learning to Rank Framework
- Conclusions and Future Work

Expert Finding

Gerard Salton

Information Retrieval

Bruce Croft

Ricardo Baeza-Yates

State of the Art Problem

Usage of Generative Probabilistic Models

 $P(q|\theta_d) = \prod_{t \in q} (1 - \lambda_t) P(t|d) + \lambda_t P(t)$

Heuristics are too simple and do not reflect expertise

Heuristics only based on the documents' textual contents

Contributions

I. Different Sets of Features to Estimate Expertise

2. Rank Aggregation Framework for Expert Finding

3. Learning to Rank (L2R) Framework for Expert Finding

Outline

- ✓ Introduction
- ✓ State of the Art Problems
- ✓ Features to Estimate Expertise
- ✓ Datasets
- Approaches and Results
 - Rank Aggregation Framework
 - ✓ Learning to Rank Framework
- Conclusions and Future Work

Features: Hypothesi

Multiple estimators of expertise, based on different sources of evidence, will enable the construction of more accurate and reliable ranking models!

Textual Similarit

Term Frequency

$$TF_{q,a} = \sum_{j \in Docs(a)} \sum_{i \in Terms(q)} \frac{Freq(i, d_j)}{|d_j|}$$

Inverse Document Frequency

$$IDF_q = \sum_{i \in Terms(q)} \log \frac{|D|}{f_{i,D}}$$

BM25

$$BM25_{q,a} = \sum_{j \in Docs(a)} \sum_{i \in Terms(q)} \log\left(\frac{N - Freq(i) + 0.5}{Freq(i) + 0.5}\right) \times \frac{(k_1 + 1) \times \frac{Freq(i,d_j)}{|d_j|}}{\frac{Freq(i,d_j)}{|d_j|} + k_1 \times (1 - b + b \times \frac{|d_j|}{\mathcal{A}})}$$

TF.IDF

Profile Information

- ✓ Number of Publications with(out) query topics
- Vumber of Journals with(out) query topics
- ✓ Years Between Publications with(out) query topics
- ✓ Average Number of Publications per year

✓ Total/Max/Avg citations of the authors' papers

Graphs

✓ Total Number of Unique Collaborators

✓ Publications' PageRank

✓ Academic Indexes

Hirsch Index

11/34

Other Indexes

a-Index

$$a = Citations/h^2$$

Contemporary h-Index (extension of h Index)

 $S^{c}(i) = \gamma * (Year(now) - Year(i) + 1)^{-\delta} * |CitationsTo(i)|$

Trend h-Index (extension of h Index)

$$S^{t}(i) = \gamma * \sum_{\forall x \in C(i)|} (Year(now) - Year(x) + 1)^{-\delta}$$

12/34

Datasets

DBLP - Computer Science Dataset

- Covers journal and conference publications
- Contains abstracts and citation links
- All this information was processed and stored in a database

Property	Value
Total Authors	1 033 050
Total Publications	1 632 440
Total Publications containing Abstract	653 514
Total Papers Published in Conferences	606 953
Total Papers Published in Journals	436 065
Total Number of Citations Links	2 327 450

Datasets

Arnetminer - Validation

- Contains experts for 13 query topics
- Experts collected from important Program Committees

related to the query topics

Query Topics	Rel. Authors	Query Topics	Rel. Authors
Boosting (B)	46	Natural Language (NL)	41
Computer Vision (CV)	176	Neural Networks (NN)	103
Cryptography (C)	148	Ontology (O)	47
Data Mining (DM)	318	Planning (P)	23
Information Extraction (IE)	20	Semantic Web (SW)	326
Intelligent Agents (IA)	30	Support Vector Machines (SVM)	85
Machine Learning (ML)	34		

Outline

- ✓ Introduction
- ✓ State of the Art Problems
- ✓ Features to Estimate Expertise
- ✓ DataSets
- Approaches and Results
 - ✓ Rank Aggregation Framework
 - ✓ Learning to Rank Framework
- Conclusions and Future Work

How can we combine these features?

Question

Answer Traditional IR techniques use frameworks inspired traditional search engines to combine different sources of evidence!

Rank Aggregation Framewor for Expert Finding

Data Fusion Algorithms

✓ Positional

- \checkmark Based on the position that a candidate occupies in a ranked list
- ✓ Algorithms: Borda Fuse and Reciprocal Rank Fuse

✓ Score Aggregation

- \checkmark Based on the score that a candidate achieved in a ranked list
- ✓ Algorithms: CombSUM, CombMNZ and CombANZ

🗸 Majoritarian

- ✓ Based on pairwise comparisons between candidates
- ✓ Algorithms: Condorcet Fusion

Results Rank Aggregation (MAP)

CombMNZ	48,43% [-10,25%]	
Cond. Fusion	43,82%	
CombSUM	41,34% [+6,00%]	
Borda Fuse	39,99% [+9,58%]	
Rec. Rank Fuse	39,99% [+9,58%]	
CombANZ*	35,61% [+23,06%]	

*Sig. Tests of 0.95 conf. *Mean Average Precision 20/34

Impact of th	e Features with
Condorcet	Fusion(MAP)
Graph	43,86% [- 0,09%]
Text + Profile + Graph	43,82%
Profile + Graph	41,65% [+4,95%]
Text + Graph*	39,08% [+10,82%]
Profile*	36,87% [+15,86%]
Text + Profile*	32,67% [+25,45%]
Text*	29,75% [+32,11%]
*Sig. Tests of 0.95 conf.	*Mean Average Precision 21/34

Outline

- ✓ Introduction
- ✓ State of the Art Problems
- ✓ Features to Estimate Expertise
- ✓ Datasets
- Approaches and Results
 - ✓ Rank Aggregation Framework
 - ✓ Learning to Rank Framework
- Conclusions and Future Work

How can we combine these features in an **optimal way**?

Question

Answer IR literature focuses on Machine learning techniques, They enable the combination of multiple estimators in an optimal way!

The L2R Framewor For Expert Finding

25/34

L2R Algorithms

✓ Pointwise

- ✓ Input: single candidate
- ✓ **Goal**: use scoring functions to predict relevance
- Algorithms: Additive Groves
- ✓ Pairwise
 - ✓ Input: pair of candidates
 - ✓ Goal: loss function to minimize number of misclassified candidate pairs
 - Algorithms: RankBoost, SVMrank and RankNet
- ✓ Listwise
 - ✓ Input: list of candidates
 - \checkmark Goal: loss function which directly optimizes an IR metric
 - ✓ Algorithm: SVMmap, Coordinate Ascent and AdaRank

Results Learning to		
Rank (MAP)*		
Additive Groves	89,40%	
SVMmap	87,02% [+2,66%]	
SVMrank	83,11[+7,04%]	
RankBoost*	78,40 [+12,30%]	
Coord.Ascent*	75,77 [+15,25%]	
RankNet*	65,30% [+26,96%]	
AdaRank*	64,78% [+27,54%]	
*Sig.Tests of 0.95 conf.	*Mean Average Precision 27/34	

THE A

Impact of the Features with Additive Groves(Map) Text + Profile + Graph 89,40% 88,25% [+1,29%] Text + Graph* 87,28% [+2,37%] Profile 87,14% [+2,53%] Text + Profile* 86,60% [+3,13%] Text Graph 85,26% [+4,63%] Profile + Graph* 82,37% [+7,86%]

*Sig. Tests of 0.95 conf. *Mean Average Precision 28/34

Prototype

Outline

✓ Introduction

✓ State of the Art Problems

✓ Features to Estimate Expertise

✓ Datasets

Approaches and Results

✓ Rank Aggregation Framework

✓ Learning to Rank Framework

Conclusions and Future Work

Conclusions

✓ Effectiveness of the Learning to Rank Framework

✓ Best algorithms: Additive Groves, SVMmap and SVMrank

✓ Effectiveness of the Rank Aggregation Approach

✓ Best algorithms: CombMNZ and Condorcet Fusion

✓ Effectiveness of the Proposed Features

 \checkmark Set of full features are the best

Future Work

- ✓ Feature Selection Techniques (ex: PCA)
- ✓ Expert Finding in an organizational environment (TREC dataset)
- ✓ Tasks beyond expert finding
 - ✓ Natural Language Processing
 - ✓ Geographic Information Retrieval

Publications

- C. Moreira, P. Calado and B. Martins, Learning to Rank for Expert Search in Digital Libraries of Academic Publications, In proceedings of the 15th portuguese conference on Artificial Intelligence, 2011
- C. Moreira, B. Martins and P. Calado, Using Rank Aggregation for Expert Search in Academic Digital Libraries, In Simpósio de Informática, INFORUM, 2011
- C. Moreira, A. Mendes, L. Coheur and B. Martins, Towards the Rapid Development of a Natural Language Understanding Module, In proceedings of the 11th conference on intelligent virtual agents, 2011