

Instituto Superior Técnico Universidade Técnica de Lisboa

Using Rank Aggregation for Expert Finding

Catarina Moreira, Bruno Martins and Pável Calado

Outline

- ✓ Introduction
- ✓ Related Work
- ✓ Rank Aggregation
- ✓ Features
- ✓ Dataset
- ✓ Experimental Results
- ✓ Future Work

Expert Finding

Information Retrieval

Why Expert Finding?

Too many documents

Information is dispersed

Need answers quickly

Related Work

Candidate Centric Approach

- 1. Gather documents associated to a candidate
- 2. Merge documents into a single profile document
- 3. Rank the profile according to the query

Document Centric Approach

- 1. Gather documents containing query topics
- 2. Uncover candidates and rank them

Problems?

Generative Probabilistic Models

Simple heuristics

Heuristics do not reflect expertise

Only based on textual contents

Our Approach

A set of features to estimate expertise

Features combined in a rank aggregation framework

Rank Aggregation

Feature Extractor

Features

Textual Similarities

Profile Information

Graph Structure

Textual Features

Textual Features

TF

IDF

$$IDF_q = \sum_{i \in Terms(q)} \log \frac{|D|}{f_{i,D}}$$

BM25

$$BM25_{q,a} = \sum_{j \in Docs(a)} \sum_{i \in Terms(q)} \log\left(\frac{N - Freq(i) + 0.5}{Freq(i) + 0.5}\right) \times \frac{(k_1 + 1) \times \frac{Freq(i,d_j)}{|d_j|}}{\frac{Freq(i,d_j)}{|d_j|} + k_1 \times (1 - b + b \times \frac{|d_j|}{\mathcal{A}})}$$

Profile Features

Profile Features

Number of Publications

Years Between Publications

Number of Articles

Graph Features

Graph Features

Citations Graphs

Co-authorship Graphs

Academic Indexes

Academic Indexes Measure Scientific Impact!

Academic Indexes

H-Index

G-Index

A-Index

H Index

A given author has a Hirsch Index of *h*, if *h*

of his N papers have at least h citations each

H Index - Example

G Index

Is the largest number such that the top *g* papers

received on average at least g citations each

Measures the maginitude of the most influential

papers of a given author

$$a = N_{c,tot}/h^2$$

First work using academic indexes

for Expert Retrieval!

Fusion Algorithms

Fusion Algorithms

CombSUM

$$CombSUM(e,q) = \sum_{j=1}^{k} score_j(e,q)$$

CombMNZ

$$CombMNZ(e,q) = CombSUM(e,q) \times r_e$$

Normalization

CombSUM and CombMNZ require normalized scores

 $NormalizedValue = \frac{Value - minValue}{maxValue - minValue}$

Dataset

DBLP Computer Science Bibliography

Covers journal and conference publications

Contains publication abstracts

Contains citation links

Dataset for Validation

Arnetminer

Contains a set of people considered experts

Contains 13 different query topics

Based on people from program committees of important conferences

Experimental Results

CombSUM Wins!

Impact of the Features?

Graph + Academic Features are the Best!

Future Work

The set of features defined in this work are effective!

But, how to combine them in an **optimal way**?

Learning to Rank

Learning Algorithms

Additive Groves by Daria Sorokina

Additive Groves

Training Set: $\{ (X, Y) \}$

Goal: model h = P1 + P2 + P3

Additive Groves

Training Set: { (X , Y) }

Goal: model h = P1 + P2 + P3

Additive Groves

Training Set: { (X , Y) }

Goal: model h = P1 + P2 + P3

Experimental Results

Additive Groves vs CombSUM

