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Abstract. The task of expert finding has been getting increasing at-
tention in information retrieval literature. However, the current state-
of-the-art is still lacking in principled approaches for combining differ-
ent sources of evidence. This paper explores the usage of unsupervised
rank aggregation methods as a principled approach for combining mul-
tiple estimators of expertise, derived from the textual contents, from the
graph-structure of the citation patterns for the community of experts,
and from profile information about the experts. We specifically exper-
imented two unsupervised rank aggregation approaches well known in
the information retrieval literature, namely CombSUM and CombMNZ.
Experiments made over a dataset of academic publications for the area
of Computer Science attest for the adequacy of these methods.

1 Introduction

The automatic search for knowledgeable people in the scope of specific user
communities, with basis on documents describing people’s activities, is an in-
formation retrieval problem that has been receiving increasing attention [20].
Usually referred to as expert finding, the task involves taking a short user query
as input, denoting a topic of expertise, and returning a list of people sorted by
their level of expertise in what concerns the query topic.

Several effective approaches for finding experts have been proposed, explor-
ing different retrieval models and different sources of evidence for estimating
expertise. However, the current state-of-the-art is still lacking in principled ap-
proaches for combining the multiple sources of evidence that can be used to
estimate expertise.

More recently, several authors have also proposed unsupervised learning to
rank methods, based on rank aggregation approaches originally proposed in areas
such as statistics or the social sciences [1, 16]. This paper explores the usage of
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unsupervised rank aggregation methods in the expert finding task, specifically
combining a large pool of estimators for expertise. These include estimators
derived from the textual similarity between documents and queries, from the
graph-structure of the citation patterns for the community of experts, and from
profile information about the experts. We have built a prototype expert find-
ing system using rank aggregation methods, and evaluated it on an academic
publications dataset from the Computer Science domain.

The rest of this paper is organized as follows: Section 2 presents the main
concepts and related works. Section 3 presents the rank aggregation approaches
used in our experiments. Section 4 introduces the multiple features upon which
we leverage for estimating expertise. Section 5 presents the experimental evalua-
tion of the proposed methods, detailing the datasets and the evaluation metrics,
as well as the obtained results. Finally, Section 6 presents our conclusions and
points directions for future work.

2 Concepts and Related Work

Serdyukov and Macdonald have surveyed the most important concepts and rep-
resentative previous works in the expert finding task [20, 18]. Two of the most
popular and well-performing types of methods are the profile-centric and the
document-centric approaches [8, 24]. Profile-centric approaches build an expert
profile as a pseudo document, by aggregating text segments relevant to the ex-
pert [2]. These profiles are latter indexed and used to support the search for
experts on a topic. Document-centric approaches are typically based on tradi-
tional document retrieval techniques, using the documents directly. In a prob-
abilistic approach to the problem, the first step is to estimate the conditional
probability p(q|d) of the query topic q given a document d. Assuming that the
terms co-occurring with an expert can be used to describe him, p(q|d) can be
used to weight the co-occurrence evidence of experts with q in documents. The
conditional probability p(c|q) of an expert candidate c given a query q can then
be estimated by aggregating all the evidences in all the documents where c and
q co-occur. Experimental results show that document-centric approaches usually
outperform profile-centric approaches [24].

Many different authors have proposed sophisticated probabilistic retrieval
models, specific to the expert finding task, with basis on the document-centric
approach [2, 19, 20]. For instance Cao et al. proposed a two-stage language model
combining document relevance and co-occurrence between experts and query
terms [6]. Fang and Zhai derived a generative probabilistic model from the prob-
abilistic ranking principle and extend it with query expansion and non-uniform
candidate priors [12]. Zhu et al. proposed a multiple window based approach for
integrating multiple levels of associations between experts and query topics in
expert finding [25]. More recently, Zhu et al. proposed a unified language model
integrating many document features for expert finding [26]. Although the above
models are capable of employing different types of associations among query
terms, documents and experts, they mostly ignore other important sources of



evidence, such as the importance of individual documents, or the co-citation
patterns between experts available from citation graphs. In this paper, we offer
a principled approach for combining a much larger set of expertise estimates.

In the Scientometrics community, the evaluation of the scientific output of a
scientist has also attracted significant interest due to the importance of obtaining
unbiased and fair criteria. Most of the existing methods are based on metrics
such as the total number of authored papers or the total number of citations.
A comprehensive description of many of these metrics can be found in [22, 23].
Simple and elegant indexes, such as the Hirsch index, calculate how broad the
research work of a scientist is, accounting for both productivity and impact.
Graph centrality metrics inspired on PageRank, calculated over citation or co-
authorship graphs, have also been extensively used [17].

Previous studies have addressed the problem of combining multiple infor-
mation retrieval mechanisms through unsupervised rank aggregation, often with
basis on methods that take their inspiration on voting protocols proposed in the
area of statistics and in the social sciences. Given M voters (i.e., the different
estimators of expertise) and N objects (i.e., the experts), we can see each voter
as returning an ordered list of the N objects according to their own preferences.
From these M ordered lists, the problem of unsupervised rank aggregation con-
cerns with finding a single consensus list which optimally combines the M rank-
ings. There are different methods for addressing the problem which, according
to Julien Ah-Pine [1], can be divided into two large families of methods:

– Positional methods - For each object, we consider the preferences (i.e.,
the scores) given by each voter, aggregating them through some particular
technique and finally re-ranking objects using the aggregated preferences.
The first positional method was proposed by Borda, but linear and non-
linear combinations of preferences, such as their arithmetic mean or the
triangular norm, are also frequently used [14, 1].

– Majoritarian methods - Pairwise comparison matrices are computed for
the objects, mostly based upon the aggregation of order relations using as-
sociation criteria such as Condorcet’s criterion, or distance criteria such as
Kendall’s distance. Other majoritarian methods have also recently been pro-
posed, using Markov chain models [10] or techniques from multicriteria de-
cision theory [13].

Fox and Shaw [14, 1] defined several rank aggregation techniques (e.g., Comb-
SUM and CombMNZ) which have been the object of much IR research since,
including in the area of expert search [18]. In our experiments, we compared the
CombSUM and CombMNZ unsupervised rank aggregation methods, which are
detailed in Section 3.

3 Rank Aggregation for Expert Retrieval

Given a set of queries Q = {q1, . . . , q|Q|} and a collection of candidate experts
E = {e1, . . . , e|E|}, each associated with specific documents describing his top-
ics of expertise, a testing corpus consists of a set of query-expert pairs, each



(qi, ej) ∈ Q×E, upon which a relevance judgment indicating the match between
qi and ej is assigned by a labeler. This relevance judgment can be a binary label,
e.g., relevant or non-relevant, or an ordinal rating indicating relevance, e.g., def-
initely relevant, possibly relevant, or non-relevant. For each instance (qi, ej), a
feature extractor produces a vector of features that describes the match between
qi and ej . Features can range from classical IR estimators computed from the
documents associated with the experts (e.g., term frequency, inverse document
frequency, BM25, etc.) to link-based features computed from networks encoding
relations between the experts in E (e.g., PageRank). The inputs of an unsuper-
vised rank aggregation algorithm comprise a set of query-expert pairs corpus,
their corresponding feature vectors, and the corresponding relevance judgments.
The output produces a ranking score resulting from the aggregation of the mul-
tiple features. The relevance of each expert ej towards the query q is determined
through this aggregated score. In this paper, we experimented with the Comb-
SUM and CombMNZ approaches.

The CombSUM and CombMNZ unsupervised rank aggregation algorithms
were originally proposed by Fox and Shaw [14]. These algorithms are used to
aggregate the information gathered from different sources (i.e., different fea-
tures) in order to achieve more accurate ranking results than using individual
scores. Both CombSUM and CombMNZ use normalized sums for the different
features. To perform the normalization, we applied the Min-Max Normalization
procedure, which is given by Equation 1.

NormalizedV alue =
V alue−minV alue

maxV alue−minV alue
(1)

The CombSUM score of an expert e for a given query Q is the sum of the
normalized scores received by the expert in each individual ranking, and is given
by Equation 2.

CombSUM(e,Q) =

k∑
j=1

scorej(e,Q) (2)

Similarly, the CombMNZ score of an expert e for a given query Q is defined
by Equation 3, where re is the number of non-zero similarities.

CombMNZ(e,Q) = CombSUM(e,Q)× re (3)

4 Features for Estimating Expertize

The considered set of features for estimating the expertize of a given researcher
towards a given query can be divided into three groups, namely textual features,
profile features and network features. The textual features are similar to those
used in standard text retrieval systems (e.g., TF-IDF and BM25 scores). The
profile similarity features correspond to importance estimates for the authors,
derived from their profile information (e.g., number of papers published). Fi-
nally, the network features correspond to importance and relevance estimates
computed from the author co-authorship and co-citation graphs.



4.1 Textual Similarity Features

To build some of our estimators of expertise, we used the textual similarity be-
tween the query and the contents of the documents associated to the candidate
experts. In the domain of academic digital libraries, the associations between
documents and experts can easily be obtained from the authorship information.
For each topic-expert pair, we used the OkapiBM25 document-scoring function,
to compute the textual similarity features. Okapi BM25 is a state-of-the-art IR
ranking mechanism composed of several simpler scoring functions with differ-
ent parameters and components (e.g., term frequency and inverse document fre-
quency). It can be computed through the formula in Equation 4, where Terms(q)
represents the set of terms from query q, Freq(i , d) is the number of occurrences
of term i in document d, |d| is the number of terms in document d, and A is the
average length of the documents in the collection. The values given to the pa-
rameters k1 and b were 1.2 and 0.75 respectively. Most previous IR experiments
use these default values for the k1 and b parameters.

BM25(q, d) =
∑

i∈Terms(q)

log

(
N − Freq(i) + 0.5

Freq(i) + 0.5

)
×

(k1 + 1)× Freq(i,d)
|d|

Freq(i,d)
|d| + k1 × (1− b+ b× |d|A )

(4)

We also experimented with other textual features commonly used in ad-hoc IR
systems, such as Term Frequency (TF) and Inverse Document Frequency (IDF).

Term Frequency (TF) corresponds to the number of times that each individ-
ual term in the query occurs in all the documents associated with the author.
Equation 5 describes the TF formula, where i ∈ Terms(q) represents the set
of terms from query q, j ∈ Docs(a) is the set of documents having a as au-
thor, Freq(i, dj) is the number of occurrences of term i in document dj and |dj |
represents the number of terms in document dj .

TFq,a =
∑

j∈Docs(a)

∑
i∈Terms(q)

Freq(i, dj)

|dj |
(5)

The Inverse Document Frequency (IDF) corresponds to the sum of the val-
ues for the inverse document frequency of each query term and is given by
Equation 6. In this formula, |D| is the size of the document collection and fi,D
corresponds to the number of documents in the collection where the ith query
term occurs.

IDFq =
∑

i∈Terms(q)

log
|D|
fi,D

(6)

We also used other simpler features such as the number of unique authors
associated with documents containing the query topics, the range of years since



the first and last publications of the author containing the query terms and the
document length.

In the computation of the textual features, we considered two different sources
of evidence extracted from the documents, namely (i) a stream consisting of the
titles, and (ii) a stream using the abstracts of the articles. Separate features were
computed for each of these streams.

4.2 Profile Information Features

We also considered a set of profile features related to the amount of published
materials associated with authors, generally taking the assumption that highly
prolific authors are more likely to be considered experts. Most of the features
based on profile information are query independent, meaning that they have the
same value for different queries. The considered set of profile features are based
on the number of publications in conferences and in journals with and without
the query topics in their contents, the average number of papers and articles per
year, and the temporal interval between the first and the last publications.

4.3 Co-citation and Co-authorship Features

Scientific impact metrics computed over scholarly networks, encoding co-citation
and co-authorship information, can offer effective approaches for estimating the
importance of the contributions of particular publications. Thus, we considered a
set of features that estimate expertise with basis on co-citation and co-authorship
information. The considered features are divided in two sets, namely (i) citation
counts and (ii) academic indexes. Regarding citation counts, we used the total,
the average and the maximum number of citations of papers containing the query
topics, the average number of citations per year of the papers associated with
an author and the total number of unique collaborators which worked with an
author.

Regarding academic impact indexes, we used the following features:

– Hirsch index of the author and of the author’s institution, measuring both
the scientific productivity and the scientific impact of the author or the
institution [15]. A given author or institution has an Hirsch index of h if h of
his Np papers have at least h citations each, and the other (Np − h) papers
have at most h citations each. Authors with a high Hirsch index, or authors
associated with institutions with a high Hirsch index, are more likely to be
considered experts.

– The h-b-index, which extends the Hirsch index for evaluating the impact of
scientific topics in general [3]. In our case, the scientific topic is given by the
query terms and thus the query has an h-b-index of i if i of the Np papers
containing the query terms in the title or abstract have at least i citations
each, and the other (Np − i) papers have at most i citations each.



– Contemporary Hirsch index of the author, which adds an age-related
weighting to each cited article, giving less weight to older articles [21]. A
researcher has a contemporary Hirsch index hc if hc of his Np articles have
a score of Sc(i) >= hc each, and the rest (Np − hc) articles have a score of
Sc(i) <= hc. For an article i, the score Sc(i) is defined as:

Sc(i) = γ ∗ (Y (now)− Y (i) + 1)−δ ∗ |CitationsTo(i)| (7)

In the formula, Y (i) refers to the year of publication for article i. The γ and
δ parameters are set to 4 and 1, respectively, meaning that the citations for
an article published during the current year account four times, the citations
for an article published 4 years ago account only one time, the citations for
an article published 6 years ago account 4/6 times, and so on.

– Trend Hirsch index [21] for the author, which assigns to each citation an
exponentially decaying weight according to the age of the citation, this way
estimating the impact of a researcher’s work in a particular time instance. A
researcher has a trend Hirsch index ht if ht of his Np articles get a score of
St(i) >= ht each, and the rest (Np − ht) articles get a score of St(i) <= ht.
For an article i, the score St(i) is defined as shown bellow:

St(i) = γ ∗
∑
∀x∈C(i)

(Y (now)− Y (x) + 1)−δ (8)

Similarly to the case of the contemporary Hirsch index, the γ and δ param-
eters are here also set to 4 and 1, respectively.

– Individual Hirsch index of the author, computed by dividing the value of
the standard Hirsch index by the average number of authors in the articles
that contribute to the Hirsch index of the author, in order to reduce the
effects of frequent co-authorship with influential authors [4].

– The a-index of the author or the author’s institution, measuring the mag-
nitude of the most influential articles. For an author or an institution with
an Hirsch index of h that has a total of Nc,tot citations toward his papers,
we say that he has an a-index of a = Nc,tot/h

2.
– The g-index of the author or his institution, also quantifying scientific pro-

ductivity with basis on the publication record [11]. Given a set of articles
associated with an author or an institution, ranked in decreasing order of the
number of citations that they received, the g-index is the (unique) largest
number such that the top g articles received on average at least g citations.

– The e-index of the author [28] which represents the excess amount of cita-
tions of an author. The motivation behind this index is that we can comple-
ment the h-index by taking into account these excess amounts of citations
which are ignored by the h-index. The e-index is given by the Equation 9:

e =

h∑
j=1

√
citj − h2 (9)

In the above equation, citj are the citations received by the jth paper and
h is the h-index.



We also followed the ideas of Chen et al. [7] by considering a set of network
features that estimate the influence of individual authors using PageRank, a
well-known graph linkage analysis algorithm that was introduced by the Google
search engine [5]. PageRank assigns a numerical weighting to each element of a
linked set of objects (e.g., hyperlinked Web documents or articles in a citation
network) with the purpose of measuring its relative importance within the set.
The PageRank value of a node is defined recursively and depends on the number
and PageRank scores of all other nodes that link to it (i.e., the incoming links).
A node that is linked to by many nodes with high PageRank receives a high
rank itself.

Formally, given a graph with N nodes i = 1, 2, · · · , N , with L directed links
that represent references from an initial node to a target node with weights
α = 1, 2, · · · , L, the PageRank Pri for the ith node is defined by:

Pri =
0.5

N
+ 0.5

∑
j∈inlinks(L,i)

αjPrj
outlinks(L, j)

(10)

In the formula, the sum is over the neighboring nodes j in which a link
points to node i. The first term represents the random jump in the graph, giving
a uniform injection of probability into all nodes in the graph. The second term
describes the propagation of probability corresponding to a random walk, in
which a value at node j propagates to node i with probability

αjPrj
outlinks(L,j) .

The PageRank-based features that we considered correspond to the sum and
average of the PageRank values associated to the papers of the author that
contain the query terms, computed over a directed graph representing citations
between papers. Each citation link in the graph is given a score of 1/N , where
N represents the number of authors in the paper. Authors with high PageRank
scores are more likely to be considered experts.

5 Experimental Validation

The main hypothesis behind this work is that unsupervised rank aggregation
approaches can be effectively used in the context of expert search tasks, in or-
der to combine different estimators of relevance in a principled way, this way
improving over the current state-of-the art. To validate this hypothesis, we have
built a prototype expert search system, using two unsupervised rank aggregation
methods, namely the CombSUM and CombMNZ methods.

We implemented the methods responsible for computing the features listed
in the previous section, using the Microsoft SQL Server 2008 relational database
(e.g., the full-text search capabilities for computing the textual similarity fea-
tures) together with existing Java software packages (e.g., the LAW1 package
for computing PageRank).

The validation of the prototype required a sufficiently large repository of
textual contents describing the expertise of individuals within a specific area.

1 http://law.dsi.unimi.it/software.php



In this work, we used a dataset for evaluating expert search in the Computer
Science research domain, corresponding to an enriched version of the DBLP2

database made available through the Arnetminer project. DBLP data has been
used in several previous experiments regarding citation analysis [22, 23] and
expert search [9]. It is a large dataset covering both journal and conference pub-
lications, and where substantial effort has been put into resolving the problem of
author identity resolution, i.e., references to the same persons with other names.

Table 1 provides a statistical characterization for the DBLP dataset. In this
dataset, we have a large collection of articles with a large number of citations
between them, but more than half of the articles have no abstracts associated to
them. Thus, it would be expected for textual similarity features to not perform
particularly well.

Dataset Property Value

Total Authors 1 033 050
Total Publications 1 632 440
Total Publications containing Abstract 653 514
Total Papers Published in Conferences 606 953
Total Papers Published in Journals 436 065
Total Number of Citations Links 2 327 450

Table 1. Statistical characterization for the DBLP dataset used in our experiments.

To validate the different learning to rank methods, we also needed a set of
queries with the corresponding author relevance judgments. We used the rele-
vant judgments provided by Arnetminer3 which have already been used in other
expert finding experiments [27]. The Arnetminer dataset comprises a set of 13
query topics, each associated to a list of expert authors.

In order to add negative relevance judgments (i.e., complement the dataset
with unimportant authors for each of the query topics), we searched the dataset
with the keywords associated to each topic, retrieving the top n/2 authors ac-
cording to the BM25 metric and retrieving n/2 authors randomly selected from
the dataset, where n corresponds to the number of expert authors associated to
each particular topic. Table 2 shows the distribution for the number of experts
associated to each topic in the collection.

To measure the quality of the results produced by the different rank aggrega-
tion algorithms, we used two different performance metrics, namely the Precision
at k (P@k) and the Mean Average Precision (MAP).

Precision at rank k is used when a user wishes only to look at the first
k retrieved domain experts. The precision is calculated at that rank position

2 http://www.arnetminer.org/citation
3 http://arnetminer.org/lab-datasets/expertfinding/



Query Topics Authors Query Topics Authors
Boosting (B) 46 Natural Language (NL) 41
Computer Vision (CV) 176 Neural Networks (NN) 103
Cryptography (C) 148 Ontology (O) 47
Data Mining (DM) 318 Planning (P) 23
Information Extraction (IE) 20 Semantic Web (SW) 326
Intelligent Agents (IA) 30 Support Vector Machines (SVM) 85
Machine Learning (ML) 34

Table 2. Characterization of the Arnetminer dataset of Computer Science experts.

through Equation 11.

P@k =
r (k)

k
(11)

In the formula, r(k) is the number of relevant authors retrieved in the top k
positions. P@k only considers the top-ranking experts as relevant and computes
the fraction of such experts in the top-k elements of the ranked list.

The Mean of the Average Precision over test queries is defined as the mean
over the precision scores for all retrieved relevant experts. It is given by:

MAP [r] :=

∑n
k=1 P@k[r]× I{grk = max(g)}∑n

k=1 I{grk = max(g)}
(12)

As before, n is the number of experts associated with query q. In the case of
our datasets, max(g) = 1 (i.e., we have 2 different grades for relevance, 0 or 1).

Table 3 presents the obtained results over the dataset, when considering
the complete set of features described in Section 4. The obtained results attest
for the adequacy of both unsupervised rank aggregation approaches, showing
that CombSUM and CombMNZ achieve a similar performance, with CombMNZ
slightly outperforming CombSUM, in terms of MAP. In a separate experiment,

P@5 P@10 P@15 P@20 MAP

CombSUM 0.5076 0.4846 0.4769 0.5115 0.5266
CombMNZ 0.6000 0.6077 0.6141 0.6256 0.5832

Table 3. Results of the CombSUM and CombMNZ methods.

we attempted to measure the impact of the different types of ranking features on
the quality of the results. Using the best performing rank aggregation algorithm,
namely the CombMNZ method, we separately measured the results obtained by
using approaches that considered (i) only the textual similarity features, (ii) only
the profile features, (iii) only the network features, (iv) textual similarity and
profile features, (v) textual similarity and network features and (vi) profile and
network features. Table 4 shows the obtained results, where we also compare
them with the previous results reported by Yang et al. [27] for their supervised
approach for expert finding.



P@5 P@10 P@15 P@20 MAP
Text Similarity + Profile + Network 0.6000 0.6077 0.6141 0.6256 0.5832
Text Similarity + Profile 0.5231 0.5615 0.5487 0.5577 0.5469
Text Similarity + Network 0.5538 0.5692 0.5782 0.5718 0.5655
Profile + Network 0.6923 0.6308 0.6205 0.6077 0.5986
Text Similarity 0.5231 0.5154 0.5436 0.5231 0.5538
Profile 0.5846 0.5769 0.5897 0.5923 0.5895
Network 0.6462 0.6462 0.6121 0.6128 0.5990
Expert Finding (Yang et al.) [27] 0.5500 0.6000 0.6333 – 0.6356

Table 4. The results obtained with the different sets of features.

Since DBLP has rich information about citation links, we can see that the
set of network features achieve the best results for this dataset in terms of MAP.
The results also show that, individually, textual similarity features have the
poorest results. This means that considering only textual evidence provided by
query topics, together with article’s titles and abstracts, may not be enough to
determine if some authors are experts or not, and that indeed the information
provided by citation and co-authorship patterns can help in expert retrieval.
Finally, when comparing our unsupervised method against the supervised learn-
ing to rank approach proposed by Yang et al. [27], showing that our approach
provides very competitive results against the supervised method. Notice that un-
supervised approaches are particularly interesting in the context of expert search
systems for academic digital libraries, since relevance judgments for specific ar-
eas of knowledge, which are required to the usage of supervised approaches, are
hard to obtain.

6 Conclusions

This paper argued that unsupervised rank aggregation methods provide a sound
approach for combining multiple estimators of expertise, derived from the textual
contents, from the graph-structure of the community of experts, and from expert
profile information. Experiments on a dataset of academic publications show very
competitive results in terms of P@5 and MAP, attesting for the adequacy of the
proposed approaches. This is particularly interesting to the application domain
of academic expert search, since the relevance judgments required by supervised
approaches are only scarcely available.

Despite the interesting results, there are also many ideas for future work.
Recent works have, for instance, proposed that there are advanced unsupervised
rank aggregation methods capable of outperforming CombSUM and CombMNZ.
This is currently a very hot topic of research and, for future work, we would for
instance like to experiment with the ULARA algorithm recently proposed by
Klementiev et al. [16].
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