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Abstract

Background: Despite the advancements in multiagent chemotherapy in the past
years, up to 10% of Hodgkin’s Lymphoma (HL) cases are refractory to treatment
and, after remission, patients experience an elevated risk of death from all causes.
These complications are dependent on the treatment and therefore an increase in
the prognostic accuracy of HL can help improve these outcomes and control
treatment-related toxicity. Due to the low incidence of this cancer, there is a lack
of works comprehensively assessing the predictability of treatment response,
especially by resorting to machine learning (ML) advances and high-throughput
technologies.

Results: We present a methodology for predicting treatment response after two
courses of Adriamycin, Bleomycin, Vinblastine and Dacarbazine (ABVD)
chemotherapy, through the analysis of gene expression profiles using
state-of-the-art ML algorithms. The presented approach combines dimensionality
reduction procedures and hyperparameter optimization of various elected
classifiers to retrieve reference predictability levels of refractory response to
ABVD treatment using the regulatory profile of diagnostic tumor samples. In
addition, and foremost, we propose a data transformation procedure to map the
original data space into a more discriminative one using biclustering, where
features correspond to discriminative putative regulatory modules. This
methodology presents increased performance against reference levels, with the
proposed space transformation yielding improvements in the majority of the
tested predictive models (e.g. Decision Trees show an improvement of 20pp in
both precision and recall).

Conclusion: Taken together, the results reveal improvements for predicting
treatment response in HL disease by resorting to sophisticated statistical and ML
principles. This work further consolidates the current hypothesis on the structural
difficulty of this prognostic task, showing that there is still a considerable gap to
be bridged for these technologies to reach the necessary maturity for clinical
practice.

Keywords: Hodgkin’s lymphoma; cancer; machine learning; gene expression;
discriminative patterns; biclustering

Background
Hodgkin’s Lymphoma (HL) is a type of blood cancer that originates in the lym-

phatic system, more precisely in lymphocytes, with the patient age peak of di-

agnostics occurring at the 20s and 30s. In 2018, HL represented 0.4% of all new
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tumors (79990 new cases) and 0.3% of all cancer deaths (26167 deaths) world-

wide [1]. Survival of Hodgkin’s Lymphoma patients has significantly improved over

the past years. Still, after initial remission, patients experience an elevated risk of

death from all causes [2], such as cardiotoxicity diseases like myocardial infarction

and congestive heart failure [3], and secondary cancers [4], diseases that are often

treatment-related [5].

The current prognosis for HL is largely based on the International Prognostic

Score (IPS) [6] which predicts for 5-year freedom from progression. Moccia et al.

[7] concluded that this scoring does not identify with certainty low or high risk

groups, and recommends the use of molecular markers and/or fluorodeoxyglucose

Positron Emission Tomography (FDG-PET) scanning for this purpose. Despite the

proven relevance of FDG-PET for HL prognostic, this medical exam is: i) intrusive,

with the need to inject a radioactive tracer; ii) expensive, estimated at 1020 Eur

per exam [8]; and iii) impossible to perform in remote locations and ambulatory

settings as it requires large machinery.

The transcriptional activity of tumor cells is a viable proxy candidate to assess

regulatory response to treatment, thus being positioned as a possible alternative

to the FDG-PET exam. Nevertheless, the role of differential gene expression in HL

has not been exhaustively studied as it is a relatively rare cancer (2.86 cases per

100,000 persons annually [9]). Specific approaches, such as hierarchical clustering

[10, 11], Cox regression [12] and sparse multinomial logistic regression [13] have

been explored in other works, but some of the state-of-the-art machine learning

(ML) approaches successfully applied to more common cancers have not yet been

comprehensively employed.

In this context, this work proposes a superior methodology to predict the result of

an interim FDG-PET performed after two courses of Adriamycin, Bleomycin, Vin-

blastine and Dacarbazine (ABVD) chemotherapy treatment through the analysis of

gene expression profiles using state-of-the-art ML techniques. Transcriptomic data

of Hodgkin’s Lymphoma patients’ diagnostic tumor samples acquired by Luminari

et al. [14] are used with the objective of better understanding the predictability of

a patient’s response to a specific chemotherapy regimen. To this end, we resort to

gene expression profiles obtained from Formalin Fixed Paraffin Embedded (FFPE)

diagnostic tumor samples [15].

Our work advances the current status quo on this task placed by Luminari et al.

[14], which is grounded on a more traditional statistical analysis of the data, re-

sorting to multivariate logistic analysis, filtering by Fold-Change (FC) and False

Discovery Rate (FDR) values and multivariate logistic regression. In contrast, we

conduct a thorough optimization and assessment of preprocessing and ML tech-

niques to develop a predictor that can, at the moment of diagnosis, classify pa-

tients’ future interim PET after two courses of ABVD chemotherapy according to

treatment response.

In addition to the end-to-end assessment of state-of-the-art predictors, our work

proposes the use of biclustering principles to transform the original high-dimensional

feature space into one consisting of features given by discriminative gene expression

patterns, and shows that the new space yields relevant statistical properties. The

gathered results show that this novel transformation yields statistically significant

improvements on predictive performance.
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Methods
To tackle the introduced research problem, we propose the methodology presented

in Figure 1. This methodology starts with essential data preprocessing, followed

by a feature analysis stage divided into two phases, resulting in a reduced data

space conducive to the subsequent predictive analysis stage. Along the predictive

analysis stage, we propose a bicluster-based space transformation that converts the

gene-centric space to a pattern-centric one. State-of-the-art ML models can then be

applied along the original or pattern-centric data space for the targeted prognostic

ends.

Figure 1: Schematic workflow of proposed solution for the treatment response predic-
tion in HL disease.

Data

This work uses the data from the cohort study conducted by Luminari et al. [14],

available at the National Center for Biotechnology Information Gene Expression

Omnibus, GSE132348[1]. It consists of 106 samples of patients diagnosed with Clas-

sical Hodgkin’s Lymphoma. Each individual has associated the normalized expres-

sion levels of 765 different genes, obtained using the NanoString’s nCounter platform

[15] over the RNA extracted from FFPE diagnostic tumor samples. The following

clinical variables are also included: gender, age, stage of disease according to the

Lugano classification [16], and Lymphocyte-to-Monocyte Ratio (LMR), LMR>2.1.

Finally, each record contains the result of an interim PET realized after two courses

of ABVD chemotherapy (iPET2), which was classified as “positive” or “negative”

according to its classification on the Deauville 5-point scale [17], with PET defined

as positive when its ordinal value is greater or equal than 4. More information on the

data collection process can be found in the original work [14]. The data is relatively

imbalanced, with 84 (80%) iPET2 negatives, and 21 (20%) iPET2 positives.

Data Preprocessing

Samples with missing values were removed, resulting in a new distribution of 82

(79.6%) iPET2 negatives and 21 (20.4%) iPET2 positives. The variable stage was

encoded as an ordinal variable, ranging from 1 (corresponding to“I A”) to 8 (corre-

sponding to “IV B”), indicating that both a larger stage number and the B variant

are worse prognostic factors. The mRNA counts were log2 transformed in order

to better handle the variability of expression within and across genes. Since the

dataset is considerably imbalanced, with a target’s distribution of around 80/20,

balancing methods were assessed through a comparative analysis of their effects

on predictive performance, with the combination of both oversampling and sub-

sampling techniques being compared. Oversampling using Support Vector Machine

[1]https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132348 (accessed June 28, 2021)
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Synthetic Minority Oversampling Technique (SVM-SMOTE)[2] [19] yield the best

result, being the balancing procedure selected for the target experiments.

Feature Analysis

The data at hand is high-dimensional, 770 gene features with variable expression,

and has a low number of samples, 103 patients. In this context, the posterior pre-

dictive analysis can benefit from dimensionality reduction. Following the practice

suggested by Saeys et al. [20], we pre-reduced the feature space using univariate

filter methods Wilcoxon Rank Sum Test[3] [22] and Mutual Information[4] [24], and

subsequently applied a more complex embedded method Support Vector Machine

- Recursive Feature Elimination (SVM-RFE)[4] [25]. This decision is supported by

results in the literature where univariate filter methods have similar or better per-

formance than more complex embedded methods [26–28].

Initial Feature Selection. As most preprocessed features do not follow a normal

distribution according to Shapiro-Wilk test [29], we resort to the non-parametric

Wilcoxon Rank Sum Test [22] and Mutual Information (MI) [24] criteria. For each

independent variable yj and the target response outcome z, the former Wilcoxon

statistic tests whether the distributions yj |z = 0 and yj |z = 1 are equal. The latter

MI statistic does not test a hypothesis, but a p-value is subsequently generated

using a one-sided permutation test. As these approaches are univariate, not taking

into account interactions between variables, a less strict than usual significance

threshold of 0.1 is considered to prevent the removal of potentially relevant genes.

Secondary Feature Selection. Grounded on empirical evidence, we subsequently em-

ploy the embedded Support Vector Machine - Recursive Feature Elimination (SVM-

RFE) [25], an adaption of the RFE selection method that replaces an external rank-

ing function with the magnitude of the weights of a Support Vector Machine. This

algorithm has been in fact proposed for gene selection in cancer classification tasks

and stands out for its good results, especially when considered in combination with

Support Vector Machine (SVM) classifiers [30].

Predictive Analysis

The literature on classification tasks in the oncotranscriptomics domain shows a rel-

ative predominance of specific machine learning (ML) models [31, 32]. Accordingly,

Support Vector Machines (SVM) [33], k-Nearest Neighbors (KNN) [34] and Ran-

dom Forest [35] are selected as adequate classifier candidates. Given the consistently

state-of-the-art performance of XGBoost [36] in other domains, we further disclose

its predictability performance. Complementarily, additional predictive models are

further considered in our study, including Decision Trees [37] as the learnt associa-

tions can reveal important insights about the genetic component of HL, and Naive

Bayes [38] to offer a baseline stance on predictive accuracy.[4]

In order to obtain the best classification possible, all the predictors are subjected

to parameter optimization through the Tree Parzen Estimator algorithm [39], in ad-

dition to an optimized application of the aforementioned preprocessing techniques.

[2]implemented using imbalanced-learn [18]
[3]implemented using SciPy [21]
[4]implemented using scikit-learn [23]
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Evaluation Methodology

Given the small population size (103 samples), a nested Cross-Validation (CV)

schema is considered using 10 folds. Nested Cross-Validation is used to separate the

data used for hyperparameterization from the data used for testing the model [40].

Without this separation, the model would learn its parameters in data in which it

would be tested, resulting in an overestimated predictive capability. In a nested CV,

inside each CV loop used for model evaluation, another CV must be performed in

the training data for parameter tuning and preprocessing.

Performance Metrics

A core contribution of this work is the possibility to create a reliable decision support

system that can help decide the intensity of the treatment a patient must undergo,

with a positive prediction indicating that a more aggressive regime is necessary.

Attending to this observation, the following evaluation metrics were chosen: i) AUC

as an overall indicator of how the predictor performs when the decision threshold

is not optimized; ii) recall and precision to ensure that the predictor does not skew

towards the majority class, especially important due to the imbalanced data nature;

and iii) specificity to guarantee the identification of patients who will react well

to the standard treatment, avoiding the prescription of an unnecessarily stronger

chemotherapy regimen. The metric optimized in the hyperparameterization step

is the F1 score, so that the classifiers can attain a balanced performance in both

precision and recall. Precision-Recall curves are further plotted to offer a more

comprehensive comparison of the predictors.

Bicluster-based Space Transformation

The various biological mechanisms present in our bodies rarely originate due to

a single gene’s expression values. Instead, the majority of gene regulation is done

in a modular way, in which sets of genes interact with each other to enforce a

certain mechanism. With this in mind, it is important to not reduce the analysis

of transcriptomic data to individual genes but instead to study these values and its

contributions in the context of putative gene modules.

Furthermore, although the feature selection process here presented is heavily ex-

plored in order to obtain the best possible feature space for classification, this

approach has its limitations. It relies on univariate methods that do not take into

consideration gene interactions and on an embedded method that can show biases

towards specific predictors.

In this context, we propose a novel transformation procedure in high-dimensional

data spaces that can map individual gene expression features with loose discrimi-

native power to discriminative pattern-centric features given by discriminative reg-

ulatory modules able to better represent complex interactions between multiple

genes.

The biclustering task is suggested towards this end as it has been largely em-

ployed for the efficient and effective mining of gene expression patterns [41–43],

with pattern-based biclustering showing relevant performance indicators in diverse

biological data contexts [44, 45]. Biclustering based on PAttern Mining Software

(BicPAMS) [46] integrates dispersed state-of-the-art contributions on pattern-based
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biclustering, allowing for a high level of parametrization while performing efficient

searches with guarantees of optimality, statistical significance and discriminative

power [47, 48]. BicPAMS is applied to find discriminative patterns on the training

data. Multiple parameterizations are tested in order to obtain the best space trans-

formation for the classification task. The dataset is then transformed so that each

feature corresponds to one gene expression pattern encompassing multiple genes.

Each value of the transformed dataset will then represent the similarity between

the gene expression expectations associated with a given pattern and the actual

levels of gene expression observed for an individual. Figure 2 shows an example of

the described process.

Figure 2: Example of space transformation using biclustering, showing a found

bicluster and corresponding pattern (left), and the resultant values on the trans-

formed dataset using Euclidean distance (right).

Results
The proposed methodology is applied on the cohort study conducted by Luminari

et. al [14] to assess the limits to the predictability of the quality of HL patient

response to ABVD treatment. The gathered results are presented in two major

steps: i) a comparison of predictive levels from the optimized application of state-of-

the-art ML models against the current reference levels; and ii) an assessment of the

improvement yield by the proposed pattern-centric data space transformation. The

methodology is implemented in Python 3.8.5 and the experiments run on Intel®
Core™ i7-5600U CPU running at 2.60GHz.

Predictive performance under state-of-the-art ML

The initial phase of feature selection by the Mutual Information and Wilcoxon Rank

Sum algorithms identified a total of 250 features out of the initial 770. These features

correspond to 248 genes and the clinical variables stage and LMR>2.1. The work

of Luminari et al. [14] found, during a first analysis, a 13-gene signature positively

correlated with iPET2 in addition to the variable LMR>2.1. In comparison, we

find that our most influential feature set contains 9 out of the 13 genes and the

LMR>2.1 variable. The selection of the variable stage by our algorithm points to
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a relation with the target iPET2 not identified through the multivariate logistic

analysis performed by Luminari et al. [14]. The second and final phase of feature

selection, performed by the algorithm SVM-RFE, identified a set of 14 genes. Out of

these 14 genes, only 2 were also found in the 13-gene signature identified by Luminari

et al. [14], indicating a discrepancy between the two gene sets and confirming the

difficulty of the task of identifying a concise set of discriminative genes.

In order to provide a reference random baseline for the interpretation of classifica-

tion results, we performed twenty iterations of training and validation of a random

classifier in our dataset. It is the convergence value of these metrics that should be

interpreted as the reference minimum value for this classification task, namely, a

precision of 0.21, and a recall, specificity and AUC of approximately 0.5.

Considering these reference values, we present the results obtained following the

previously described methodology using two settings. The first setting purposefully

corresponds to an approach similar to the one followed by Luminari et al. [14],

so that our results can be compared to the ones obtained in this work. We first

apply the two configurations of feature selection introduced in the Methods section.

The resulting preprocessed data is then subjected to internal bootstrapping for

evaluation purposes. Our results are presented in Figure 3, where each color encodes

a given performance metric and the horizontal lines correspond to the random

classifier’s results in said metric.

We can observe that the combination of our two feature selections steps, data

balancing using SVM-SMOTE and the classifier SVM, can achieve a superior mean

result of 0.97 AUC (against an AUC of 0.84). The high predictive power of an

SVM in this setting is to be expected due to its recurrent good performance in this

type of data [49, 50], and the fact that is being paired with the SVM-SMOTE data

balancing technique and the SVM-RFE feature selection algorithm, both using an

SVM as the base of its decisions.

The second setting guarantees the soundness of the acquired predictability levels

by ensuring that feature selection step is performed inside each fold of the nested

cross-validation, as previously described. The results obtained in this setting are

presented in Figure 4. In this case, the XGBoost algorithm achieves significantly

better results than the previous best performer SVM, with an AUC of 0.77, a

precision of 0.67, a recall of 0.52 and a specificity of 0.94.

Figure 3: Optimized classifier’s performance in the prediction of iPET2 (setting I)

In contrast, KNN has notably poor performance in comparison with the defined

baseline, which can be explained by two major factors: i) a high percentage of
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Figure 4: Optimized classifier’s performance in the prediction of iPET2 (setting II)

outliers in our dataset; and ii) high gene expression variability, leading to inflated

differences between individuals that belong to the same class. Two out of the three

associative classifiers, Decision Tree (DT) and Random Forest (RF), also present

comparable performance to the random classifier, suggesting that a decision tree is

unable to fully take advantage of all the discriminative gene interactions present in

the dataset. Since the RF and XGBoost classifiers are both ensembles of DTs, the

discrepancy between their results must originate due to the embed feature engineer-

ing capabilities of XGBoost and differences on the pursued bagging and boosting

strategies. Since bagging uses multiple independently trained DTs to make predic-

tions, the fact that a DT cannot assimilate the knowledge in the data will lead to

an overall lack in performance for the RF. Boosting on the other hand trains the

trees iteratively, allowing for each consequent model to improve where the previous

one failed, resulting in a classifier that can better model more complex interactions.

Overall, it is observable that all the classifiers can attain a high specificity, but

at the cost of a reduced precision and recall. In other words, classifiers have an

easier time correctly classifying patients with negative iPET2, guaranteeing that

the patients that will react well to the ABVD regimen are correctly identified. The

main difficulty with this predictive problem is in the correct classification of positive

patients, possibly due to the low number of samples of this class. In addition,

treatment response is being assessed with regards to iPET2 results, which may

not be an optimal representative of the true quality of patient response to ABVD

chemotherapy.

The predictive results can be further analyzed through the study of the classifiers’

Precision-Recall curves presented in Figure 5. KNN is omitted from these graph-

ics due to its dependence on an ineffective method to calculate the appropriate

thresholds.

It is in our interest to better understand what leads a certain patient to be misclas-

sified by our models. We plot some of the characteristics of the correctly classified

individuals against wrongly classified ones by the best predictor in the second con-

figuration, XGBoost. This analysis is provided for the four clinical variables, age,

gender, stage and LMR>2.1 in Figure 6. Starting with the variable gender, no sig-

nificant trend is noted. LMR>2.1 on the other hand shows a more clear inclination

for correctly classifying positive cases when this variable is “False”, with the per-

centage of True Positives (TP) being substantially higher than the False Positives

(FP) percentage. Regarding the stage variable, the values “I A” and “III B” are
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Figure 5: Precision-Recall curves for configuration one (left) and configuration

two (right) for each machine learning model.

omitted due to the low number of samples corresponding to each one. In the obser-

vation of the remaining values only “III A” shows a significant deviation from the

others, with all the positive cases correctly predicted but with a low performance

in the false cases. The final plot is dedicated to the variable age and is presented

in a stacked view, where the bins encompassing a 10-year period from each class

(TN, FN, TP or FP) are stacked to facilitate a comparative analysis between them.

We can then recognize that the majority of False Negatives (FN) occur in patients

between 30 and 40 years, and the False Positives (FP) are more evenly distributed

with a slightly higher concentration in patients between 20 to 30 years.

Figure 6: Distribution of predictions for the clinical variables

As some of our results indicate, the majority of useful information about how the

patient will react to treatment is contained on gene expression features, and there-

fore it is imperative that the analysis of the factors inducing wrong classifications

be extended towards these features. In Figure 7 we can see the distributions of the

nine more discriminative genes according to their Mutual Information [24] with the

response outcome. The red vertical lines highlight the expression associated with

the six patients that were misclassified by all our predictive models.
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Figure 7: Distribution of top discriminative genes according to Mutual Informa-

tion with highlighted values (red vertical lines)

We can then observe that, as expected, the majority of the highlighted values are

found in the intersection of both distributions, where the classification is harder to

perform.

Bicluster-based Space Transformation

The results presented until here correspond to the classification task in a feature

space reduced by a composition of feature selection procedures. This approach lacks

the ability to effectively represent the complex gene interactions responsible for

the outcome of the patient. In accordance with the introduced methodology, we

capture these interactions through discriminative biclusters using BicPAMS [46].

The found biclusters are then used to create new features representing discriminative

and statistically significant gene expression patterns.

With the goal of better understanding the impact that BicPAMS’ parameters

have on predictive performance, we performed a comparative analysis of how dis-

tinct parameterizations affect the behavior of a baseline Naive Bayes predictor. The

evaluated parameters are: i) number of iterations, indicating how many times the

mining process is repeated, masking the found biclusters in each new iteration and

forcing the mining process to find other less trivial biclusters but resulting in greater

computational cost; ii) minimum lift, a placed threshold to determine whether a

given bicluster is sufficiently discriminative [48]; iii) number of labels, corresponding

to the number of overlapping gene expression levels [45]; and iv) maximum number

of biclusters, the number of mapped features in the transformed data space by the

postprocessing filtering of the bottom discriminative biclusters according to their

lift. The results for each of these parameters are shown in Figure 8. We can see

in the plotted results that in respect to most of the parameters there is a gain in

performance by increasing its respective values, but only until a certain threshold

is reached, from which there are no further advantages. The minimum lift is an

exception to this, showing almost no effect in this specific problem and pointing to

the importance of less discriminative patterns in the learning process.
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Figure 8a: Variation of performance according to the number of iterations

Figure 8b: Variation of performance according to the minimum lift

Figure 8c: Variation of performance according to the number of labels

Figure 8d: Variation of performance according to the maximum number of biclusters

Finally, we further assessed the impact of different dissimilarity functions to assess

the how likely is a given gene expression pattern for a specific patient, determining

how the values present in the transformed dataset are computed. To this end, we

consider both the Euclidean distance and a binary value indicating if a patient

possesses a given pattern or not. In the second case, a tolerance threshold can be

included to accommodate for noise. Figure 9 shows the performance of a Naive Bayes

classifier in three different settings: the binary transformation with thresholds of 0.5

and 1, and the transformation using Euclidean distance. As expected, by using a

numeric representation instead of a binary one, there is less loss of information,

and consequently, we can achieve better results in the most difficult metrics for this

classification task, precision and recall.

To assess the effects of the pattern-centric feature space mapping, we applied

the target transformation using BicPAMS algorithm with the following parameters

(placed according to previously gathered empirical evidence): number of iterations

= 9; minimum lift = 1.3; number of labels = 10; maximum biclusters = 250; and

distance criterion = Euclidean distance. Under this configuration, it is possible
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Figure 9: Variation of performance according to the distance criterion

to carry out a comprehensive exploration of the discriminative biclusters by per-

forming multiple iterations while maintaining a relatively low minimum lift so that

the computational requirements do not get too high. The high number of labels

guarantees that the found patterns discriminate fine levels of expression while the

relatively high number of biclusters ensures that most discriminative and statisti-

cally significant biclusters are retrieved. Figure 10 provides a direct comparison of

each individual metric between these results and the ones previously obtained by

our second setting (Figure 4).

Figure 10: Direct comparison of results with (blue) and without (red) bicluster-

based space transformation

The gathered results show that the transformed feature space has statistically

significant impact on the behavior of the classifiers. SVM and XGBoost, classifiers

that already presented good results, are not as significantly affected by this trans-

formation, but all the others benefit from it and present an increase in performance

in all the studied metrics.
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Discussion
The ability to better discriminate how a patient will respond to a treatment is

essential, especially in the domain of cancer therapy where the majority of treat-

ments are associated with high toxicity and the prognostic exams can be intrusive

and expensive. We comprehensively assess the predictability guarantees achieved

by state-of-the-art ML models. These models are carefully optimized through the

Tree Parzen Estimator algorithm and evaluated in a controlled manner resorting

to nested cross-validation. Despite the placed optimization principles, the obtained

results still fall short on the predictability power necessary to translate decisions in

real-world practice. Transcriptional and iPET2 activity are structurally different,

with the former being better positioned to model regulatory responses to treatment,

even at the cost of iPET2 discordance.

The high specificity attained by most models (0.94) indicates that the classifica-

tion models can correctly identify most of the patients that show disease regression

after the treatment, but are more susceptible to recognize the positive patients. One

possible reason for this bias is the low percentage of positive cases, representing only

20% of the total patients. To correct for this imbalance, we resorted to the use of

balancing with SVM-SMOTE and hyperparameterization of the predictive models

according to F1 score, an evaluation metric sensitive to the positive samples. De-

spite these efforts, the best classifier achieved a precision of 0.67 and a recall of 0.52,

confirming the impact the difficulty of finding a transcriptional exam resembling the

nature of iPET2 activity.

The nature of the target cohort data further introduces generalization challenges

to the target prognostication, with low number of samples and high-dimensionality.

In addition, the transcriptome profiling is susceptible to the infiltration of non-

cancer cells and arbitrarily-high variations to the composition of the target cell

population, further contributing to generalization difficulties. Finally, the biological

mechanisms underlying diseases such as HL are immensely complex and dependent

of interactions between many genes at multiple omics levels.

In order to better represent the complex interactions between genes that originate

biological processes, the proposed space transformation offers an elegant way of

shifting the learning from individual genes towards patterns of gene expression. By

doing this, we group statistically significant and discriminative sets of genes that

partake in regulatory modules correlated with a specific outcome of interest. This

creates more straightforward conditions to guide the learning of predictive models.

We observed that the efficacy of this transformation is proven by the increase in

performance of the majority of classifiers in all the studied metrics.

Conclusion
This work introduces a novel methodology to improve the predictive accuracy of

HL treatment response after two courses of ABVD chemotherapy against refer-

ence predictive levels [14]. This is achieved through a biclustering-based data space

transformation that creates a shift from gene-centric to pattern-centric organiza-

tion of expression data, combined with the thorough optimization of preprocessing

procedures and state-of-the-art ML models.

Despite the yield improvements, the gathered results are indicative of the innate

difficulty of the target predictive task, claiming for further contributions in this
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domain able to translate high-dimensional regulatory profiles into actionable and

reliable results.

In order to deal with this challenge, we suggest the following directions of research:

i) strengthen this methodology by completing the current regulatory stances with

complementary omic layers; ii) further combine the transcription of non-coding

RNAs, recently shown to play an important role in HL [51]; iii) assess the poten-

tial increase in performance by using more specialized classification principles best

suited to deal with the inherent overlapping class-conditional distributions of ex-

pression per gene (Figure 7); iv) place a finer description on the quality of treatment

response, translating the classification task into an (ordinal) regression task; and v)

further assess the impact of alternative pattern-based feature space transformations

on predictive accuracy, namely by resorting to ensembles of biclusters with different

characteristics.
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