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1. Introduction 
The advancement of modelling, digitizing and visualizing techniques for 3D shapes has led to an 
increasing amount of 3D models, both on the internet and in domain specific databases. 
Determining the similarity between 3D shapes is a fundamental task in shape-based recognition, 
retrieval, clustering, and classification. There have been quite a few experimental search engines, 
such as the 3D model search engine at Princeton University[2], the 3D model similarity search 
engine at the University of Konstanz[1], the 3D model retrieval system at the National Taiwan 
University[3], and the 3D retrieval engine at Utrecht University[4]. 
Recently, a lot of researchers have investigated the specific problem of content based 3D shape 
retrieval. Iyer et al.[6] provide an extensive overview of 3D shape searching techniques. 
Atmosukarto and Naval[7] describe a number of 3D model retrieval systems and methods, but do 
not provide a categorization and evaluation. 
The task of content-based retrieval research is to develop search engines that would allow users 
to perform a query by similarity of content. The fundamental ingredient of a retrieval system is 
shape matching, which is the process of determining how similar two shapes are[9]. 
Unfortunately, there are some difficulties for 3D shape matching ubiquitously in most of 
correlative shape retrieval applications. 3D models are not easily retrieved like text documents, 
but content based 3D shape retrieval methods that use shape properties of the 3D models to 
search for similar models usually perform better than text based methods[5]. On the other hand, 
although 2D shape matching methods have been improved quite well[8], most 2D methods, 
unfortunately, do not generalize directly to 3D model matching. 
There are two main categories of approaches for shape matching: (1) matching by feature 
correspondences; (2) matching by global descriptors. The general idea of the former approach is 
to compute multiple local shape features for every object and to assess the similarity of any pair 
of objects by optimizing a cost function determined by the optimal set of feature 
correspondences at the optimal relative transformation. On the other hand, the global descriptor-
based paradigm[10], which is considered as a mapping from the space of 3D objects to some 
finite-dimensional vector space, is the more common approach to shape matching. The vector 
encodes the information about the object’s shape by storing a vector of numerical attributes for 
each 3D object in the database as a representation, hereby, allow fast and reliable similarity 
searches. Such representations are named shape descriptors, which usually are high-dimensional 
vectors. When a query is presented, the retrieval engine calculates its descriptor(s) and compares 
it to all of the stored descriptors by a distance function. After the distance function measures the 
dissimilarity between the query and all of the objects in the database, the engine sorts database 
objects in terms of increasing distance values. Therefore, in order to improve the efficiency and 
effectiveness of 3D shape recognition and retrieval engines, appropriate 3D shape descriptors 
should be constructed, and the corresponding matching strategies are a crucial point in 3D object 
retrieval, especially when dealing with a large object database. 
This survey reviews some of the most popular 3D shape descriptors for 3D object classification 
and retrieval. We analyze the important and fundamental problems on feature representation and 
spatial partition, and engage in the classification and comparison of these shape descriptors. This 
survey also chooses several appropriate 3D shape descriptors for shape recognition. 
In the following section we introduce some important theoretical context of 3D shape 
descriptors. In section 3 we classify the most commonly used 3D shape descriptors, describing 
and comparing them with respect to the 3D shape categories they belong to. Finally in section 4, 
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we present some conclusions, describe the 3D objects involved in our work, and discuss and 
compare the descriptors we choose for our 3D shape classification. 

2. Theoretical context 
3D descriptor research has concentrated exclusively on shape, as given by the object’s surface or 
its interior, rather than the attributes like color and texture that are commonly used in 2D image 
recognition and retrieval. The main reason is probably the fact that the most information about 
the similarity between 3D objects is beared and congregated by their shapes, and furthermore, 
color and texture information is not always guaranteed to be provided during recognition or 
retrieval processes. Thus, many researches focus on designing 3D shape descriptors, especially 
depending on surface information of 3D objects, which results in a variety of representation 
formats. For instant, a 3D object is usually represented by a collection of parameterized surface 
patches, such as implicit surfaces, superquadrics, NURBS(non-uniform rational B-splines) 
surfaces, or using constructive solid geometry techniques, such as voxel data, ray-based data, and 
point clouds. However, the most popular format of representation is the polygonal mesh(usually 
triangular mesh), which arises in virtual reality, entertainment, and web applications. A certain 
application demands a specific representation more suitable for application dependent tasks, 
while, there is always a possible mapping to switch one format of representation to another. 
In our opinion, shape representation is not simply a direct process of feature extraction from 3D 
objects. Actually, it often consists of some preprocesses, for example, original feature 
representation, spatial partition, and pose normalization. 

2.1 Original feature representation 
Much work has been done on 3D pose determination and shape recognition on polyhedral 
objects yielding good results. The varieties of relative methods of both 3D pose extraction and 
shape recognition are based on different fundamental features of 3D objects, which we call 
original feature representations. Most of these features are implicated in the surfaces of 3D 
shapes. However, the information on object surface itself is usually not used, especially in the 
pose determination process. In practice, a large amount of methods adopt local features, such as 
the object boundaries, creases, limbs, 3D curves, surface patches, and so on. 
Furthermore, besides polyhedral objects, the smooth objects, which are usually not piecewise 
planar but rather smooth and continuous in nature, as curved objects, are also universal in real 
world and significantly more difficult to express. Accordingly, there have been a great amount of 
original feature representation methods for 3D objects. 
In the past two decades, there have been many feature representations based on local features of 
object surface. Faugeras[43][44] proposed a 3D object recognition algorithm based on 
geometrical matching between primitive surfaces. It was actually implemented as planar faces 
although quadric surface algorithms are presented as well. Bhanu[45] uses planar polygonal 
faces to represent the object and later match the object shape with a relaxation-based scheme(so-
called stochastic face labelling). Stein and Medioni[46] use small surface patches(splashes) and 
3D curves corresponding to depth or orientation discontinuities to represent the object for 
recognition and pose normalization. Bolle and Cooper[47] present the approach of collected 
surfaces to 3D pose normalization, and the surface of an object is modelled as a collection of 
planar, cylindrical and spherical patches. Bolles et al.[48] developed 3DPO system based on 
matching of several features or feature clusters involving object-specific features such as circular 
arc of a specific radius and edges. Nevatia and Binford[49] use generalized cylinders to match 
curved objects. Fan et al.[50], use jump boundaries, creases, limbs to match and locate 3D 
objects. Recently, aiming at curved object recognition, Ponce and Kreigman[51] employ a 
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monocular intensity image, considering the image contours as the basis for recognition and 
location of the object, under the assumption that the contour equations are parametrically known. 
Horn[26] uses EGI to represent object with surface information, which avoid the more difficult 
problem of local feature matching by directly extracting the object surface area distribution with 
the surface normal. 
Kang and Ikeuchi[27] introduced Complex EGI(CEGI) which also employed global surface 
features to represent object, including smooth and continuous objects, with surface area as the 
magnitude of the feature weight, additionally with the normal distance of the surface as the phase 
of the weight. 

2.2 Object spatial partition 
Feature representation is strongly related to the partition methods of the spheres on the 3D 
objects. The feature vector achieved by a particular definition of partitions is possibly quite 
better than that of another partition definition in vector sizes, information redundancy and 
robustness. Additionally, shape sphere partitioning is usually integrated into the feature 
extraction processes and can not be divided clearly. The methods for object spatial partition fall 
mainly into two types: basic models and variant models. 

2.2.1 Basic models 
Among all the object spatial partition methods, there are several basic partition models that are 
comparably simple in structure, which can be usually modified and improved to construct some 
complex variations. These basic models chiefly include shell model, sector model, ray-based 
model and voxel-based model. 
(1) Shell model 
In shell model[22], the 3D space is decomposed into concentric shells around the center point. 
This representation is particularly independent from the rotation of the objects, i.e. any rotation 
of an object around the center point of the model results in the same histogram. 
(2) Sector model 
In sector model[22], the 3D space is decomposed into sectors that emerge from the center point 
of the model. The sectors are defined as follows: distribute the desired number of points 
uniformly on the surface of a sphere, which usually use the vertices of regular polyhedrons and 
their recursive refinements. This model is invariant against scaling.  
(3) Ray-based model 
Ray-based model is always a popular object spatial partition method. For a normalized object I  
in the canonical coordinate frame, define a unit sphere 2S  with the center in the origin (i.e., 
center of the sphere coincides with the center of mass of the model). Further, one defines the 
function )(ur  

RSr →2:  
{ }}0{|0max Ua Iruru ∈≥ , 

where 0 is the origin. This function )(ur  measures the extent of the object in directions given by 
2Su ∈ . Similarly, one may consider a rendered perspective projection of the object on an 

enclosing sphere. Thus, the function )(ur  is as follows: 
RSr →2:  

)()()( uiyuxur +=  
[ ) [ ] RSyRSx ∈→∈+∞→ 1,0:,,0: 22 , 

where i  is the imaginary unit. The function )(ux  measures the extent of the object from the origin 
0 in directions given by 2Su ∈  
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{ }}0{|0max)( UIxuxux ∈≥= . 
The imaginary part of )(ur  is defined as follows 
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where )(un  is the normal vector of the mesh at the point )0)()(( ≠uxuux . The function )(uy  can also 
be described as a rendered perspective projection of the model on an enclosing sphere. 
In this ray-based partition, a number of samples )(ux  can be used directly as a feature vector in 
the spatial domain. However, this feature vector is sensitive to small perturbations of the object. 
Vranic et al.[13] improved the robustness of the feature vector by taking samples of the spherical 
function a number of samples )(ux  at many points, but characterizing the map by just a few 
coefficients in the spectral domain, such as spherical harmonics, the combination of spherical 
harmonics function(SHF) and fast Fourier transform(FFT). 
(4) Voxel-based model 
A voxel, which is a portmanteau of the words volumetric and pixel, is a volume element, 
representing a value on a regular grid in three dimensional space. This is analogous to a pixel, 
which represents 2D image data. Voxels are frequently used in the visualisation and analysis of 
medical and scientific data. As with pixels, voxels themselves typically do not contain their 
position in space(their coordinates), but rather, it is inferred based on their position relative to 
other voxels, i.e. their position in the data structure that makes up a single volume image. 
3D voxel data can be represented as a collection of spherical functions ),( ϕθrf , where r  
corresponds to the distance from the origin of the voxel grid and ),( ϕθ  to spherical coordinates. 
The binary function is sampled for a sufficient number of radii Rr L,1=  and angles ),( ϕθ . 
The motive for the voxelization is to achieve a better robustness w.r.t variances of the polygonal 
surface, but it is considered that many fine details are lost in the voxel grid[33]. 

2.2.2 Variant models 
The variant models of object spatial partition are relatively complicated in dividing the spheres 
of a certain 3D objects, which are usually improved according to some particular basic partition 
models. In this section, we introduce some variant forms based on the basic shape models 
mentioned in 2.2.1, which are spiderweb model on the basis of shell model and sector model, 
ray-based spherical harmonics and voxel-based variants. 
(1) Spiderweb model 
Spiderweb model[22] is a combined model representing more detailed information than pure 
shell models and pure sector models. A simple combination of two fine-grained 3D 
decompositions results in high dimensionality. However, since the resolution of the space 
decomposition is a parameter in any case, the number of dimensions may easily be adapted to the 
particular application. 
(2) Ray-based spherical harmonics 
Ray-based spherical harmonic 1 (RH1)[33] is a ray-based partition method. It defines a function 
on each sphere using the values of the intersection points between the polygonal mesh and the 
casting rays from the origin uniformly. 
In [33], the RH1 is described as follows. Firstly, it casts rays from the origin in many directions 

),( ϕθu , find all points of intersection with the polygonal mesh, and define several functions on 
the sphere using the intersection points. Definition of function values is depicted in Figure 1. 
Secondly, let a and b  be rays (cast from the origin O ) intersecting the mesh at three and one 
points, respectively. The distances from the intersection points to the origin are 0a , 1a , 2a , and 

3b . Let 1f , 2f  and 3f  be the functions on the spheres 1S , 2S  and 3S , respectively. Finally, for each 
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intersection point we determine the closest sphere and set the corresponding value of the function 
on that sphere. In the given example, we set 11 a(a)f = ,  22 a(a)f = , 03 =(a)f , 01 =(b)f , 02 =(b)f , and 

33 b(b)f = . If two intersection points lying on the same directional vector are closest to the same 
sphere, then the longer distance determines the function value ( 01 aa > ). In practice, Vranic took 
R  concentric spheres to define the functions and 16384 directional vectors u . Centers of all 
spheres lie at the origin. Radii of the spheres take values Rt / , Rt /2 ,…, t , where t  is an 
empirically determined constant (usually set t =8). Using the constant value of parameter t  
rather than the radius of hounding sphere increases robustness w.r.t. outliers. Later, Vranic 
proposed RH2 [33] which is similar to RH1 except for defining several functions on concentric 
spheres instead of a single one. 
 

 
Figure 1 RH1spatial partition 

(3) Voxel-based variants 
(3.1) In the voxel-based variant model mentioned by Kang and Ikeuchi [27], the sphere of a 3D 
object is discretized into 240 sampling view directions located at the center of each face of the 
two-frequency dodecahedron (tessellated pentakis dodecahedron). The normal direction space is 
discretized into 240 cells as well. 
(3.2) Zaharia and Prêteux [32] divide the enclosing sphere of a 3D object into a set of planes by 
uniformly sampling the spherical angle coordinates, which leads to partitions of the unit sphere 
into “meridians” and “parallels”, as shown in Figure 2. 
A plane 3ℜ∈Π   is uniquely defined by a triplet ),,( ϕθs , where 0≥s  denotes the distance from the 
origin of the coordinate system to planeΠ , and )2,0[ πθ ∈  and )2/,2/[ ππϕ −∈  respectively denote 
the two angles(azimuth and elevation) associated with the spherical representation of the plane’s 
unit length normal vector n . 

 
Figure 2 Voxel-based variants partition 

(3.3) Regular polyhedron partition 
A regular polyhedron partition[32] is obtained by projecting the vertices of any regular 
polyhedron(such as octahedron) onto the unit sphere, as seen in Figure 3. The following figure 
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illustrates the nice behavior of the partition cells in grey(as figure 3(a)) being one-to-one mapped 
into corresponding cells(as figure 3(b)), associated with a different principal  component analysis 
(PCA) coordinate system. 

  
Figure 3 Regular polyhedron partition 

(a) Before mapping (b) After mapping 
The advantage of this partition is to make some basic PCA coordinate systems(such as 
generation configurations(GCs)) equivalent, in the sense that there exists a one-to-one mapping 
between them. In addition, multiple granularity levels can be obtained for such partitions, by 
recursively subdividing each of the polyhedral faces. It is possible for construction of other 
invariant partitions, but researchers always retain uniquely the octahedron-based partition for 
reasons of simplicity. 
(3.4) Voxelization with bounding cube 
The bounding cube(BC) of a 3D model is defined to be the tightest cube in the canonical 
coordinate frame that encloses the model, with the center in the origin and the edges parallel to 
the coordinate axes. As described by Vranic and Saupe[36], after determining the BC, one can 
perform voxelization in the following manner: subdivide the BC into 3N (N is a power of 2) 
equal sized cubes and calculate the proportion of the total surface area of the mesh inside each of 
the new cubes(cells). The cell with the attributed value is regarded as the voxel at the given 
position. Obviously, of all voxels inside BC the fraction having values greater than zero 
decreases with increasing N. Thus, a suitable way of storing a voxel-based feature vector is an 
octree structure and then an efficient hierarchical feature representation is constructed. 
(3.5) BF and IDF 
Dutagaci et al. [37] suggest rendering the mesh representation of the object in a 3D voxel grid of 
size NNN ×× , such that the object’s center of mass coincides with the center of the 3D grid. In 
this approach, the object center, centerx , is calculated from the triangular mesh as follows: 

∑=
t

tt
t

center xA
N

x 1 , 

where tA  is the area and tx  is the center of mass of triangle t , and tN  is the number of triangles 
in the object. Then the object is scaled so that the maximum distance from the center of mass to 
the surface is 2/N . Finally, a 3D binary function(BF) )(xv  on the voxel grid is obtained such that 

)(xv  is 1 if ],[ 32,1 xxxx =  is on the object surface, and is 0 otherwise.  
Another voxel representation, )(xvd , called inverse distance function(IDF), is a function of 3D 
distance transform )(xd : 

1)(
1)(
+

=
xd

xvd  

where )(xd  is the minimum 1L  distance of x  to the object surface, and the 3D function )(xvd  is 
equal to 1 on the object surface and decreases as the one moves away from the object surface. An 
example of BF and IDF can be seen in figure 4. 
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Since )(xvd  decays rapidly to zero towards the corners of the bounding box, one can assume that 
the range of )(xvd  does not get affected significantly by rotation. Dutagaci et al. [37] 
demonstrates in the experiment that in fact the features derived from IDF representation are 
almost invariant to rotation. 
IDF is advantageous in that it fills the 3D space so that at any cross section, either planar or 
spherical, one has more information about the shape content. IDF also provides spatial 
smoothing so that high-frequency components due to sharp shape details are reduced. Moreover, 
IDF concentrates the spectral energy at the center while binary function supports the larger 
frequency. However, the IDF representation is not totally rotation invariant due to the distance 
transform values at the corners of the bounding box. Figure 4 shows cross sections of BF and 
IDF of a voxelized object. 

 
  

Figure 4 An example of BF and IDF 
(a) Voxelized object (b) Cross section of the BF (c) Cross section of theIDF 

2.3 Object pose normalization 
The shape of an object is the geometrical information that remains after the effects of translation, 
rotation, and isotropic rescaling, i.e., the effects of affine transformations are removed [11]. A 
shape descriptor should accordingly be invariant to such transformations by itself, or combined 
with a certain pose normalization procedure in advance. Here, the pose of an object specifies 
completely its orientation and position with respect to a predefined frame or coordinate system.  
It is difficult to recommend each of them since current research groups advocate one or another 
and support their favorites with experiments [12][13][14][15].In fact, the descriptors designed 
for invariance come usually with a certain loss of shape information that might be valuable for a 
specific application, while, defining a canonical reference frame is still an open issue. In the 
following sub-sections, we’ll briefly introduce some commonly used pose normalization 
methods: principal component analysis(PCA), per-object alignment method, partial matching of 
SGF, extended Gaussian image(EGI) and complex EGI. 

2.3.1 Principal component analysis 
Principal component analysis(PCA) is the most commonly used method for pose estimation 
before 3D shape description [52] [38]. It employs the local features, such as the object boundary 
and edges to align the 3D object to have a centered canonical reference frame and scale. 
Typically, PCA first determines a rigid-body transformation, such as rotation and a uniform 
scale, which align two models together as closely as possible, before measuring the distance 
between them. Such global alignment method does not discriminate between the details, and can 
easily cause similar local features to be misaligned and, consequently, result in an improper 
global similarity measure. Such a global analysis is prone to errors when the shapes disagree 
even in an apparently minor region. PCA performs better when models are different in global 
geometric features.  
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Conventionally, the PCA is applied only to a set of points, e.g., the centioids of triangles, thus, 
the different sizes of triangles are not taken into account. Vranic and Saupe[52] introduced 
weighting factors associated to vertices in order to account the different sizes of triangles of a 
mesh, which provides improvements to the classical PCA. In [38], continuous PCA(CPCA) is 
presented, with which the accuracy is limited only by the applied arithmetic and one does not 
have any systematical errors. The CPCA is very efficient in many cases and can be applied even 
if the mesh model is not orientable or a closed polygonal surface, while is not time-consuming. 

2.3.2 Per-object alignment method 
Podolak et al. proposed a per-object alignment method based on finding symmetry axes[16]. 
Whenever such symmetries exist within the object, this approach may be promising and useful 
for obtaining semantically more meaningful reference frames. However, the computational 
complexity is not comparable to that of PCA, which makes PCA more attractive and be widely 
used as a pose normalization tool. 

2.3.3 Partial matching of SGF 
Partial matching of the salient global features(SGFs) [53][54] can be used to align two models 
that have little global similarity. At first, this method searches for matches between pairs of 
salient features one from each model. For each such match, the associated transformation gets a 
grade that reflects the number of salient features it successfully aligns. Then, the most successful 
transformation is voted, and applied to bring the two given models close wherever possible. 
Afterwards, the voted transformation defines a correspondence between the two models. Once 
this correspondence is defined, the corresponding features can be brought closer in the least-
squares sense. 

2.3.4 Complex extended Gaussian images 
Extended Gaussian images(EGI) is designed mainly for pose determination and the application 
of object recognition in an industrial environment. As a pose determination method, EGI 
representation uses surface information. Extended Gaussian images(EGI)[29] is defined as a 
histogram that records the variation of surface area with surface orientation[26]. The weights in 
EGI represent the associated visible face area of the object, which are scalars and do not contain 
any direct distance information. Thus, it is translation invariant, and it can be seen that the EGI 
representation rotates in the exact manner as the object in space. 
Complex extended Gaussian images(CEGI) also employs the object surface information as 
features[27]. Its difference from EGI is that the complex weight is composed of the magnitude 
denoting the corresponding visible face area and the phase denoting the normal distance of the 
face from the designated origin in the direction of the normal. This method combines the pose 
determination into shape descriptors and even into the shape matching process. 

3. Descriptors for 3D shapes 
A shape descriptor, in general, can be viewed as a mapping from the space of 3D objects to some 
high-dimensional, yet finite, vector space. The main purpose of the shape descriptor researches is 
to design such mappings that can preserve as much information as possible and to build the 
resulting representing vector in a possibly low-dimension, which can be considered as 
effectiveness and efficiency, respectively. These two criteria are contradictory, but also 
somewhat complementary, and we will discuss it in section 4. 
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There are lots of 3D shape descriptors being reported since a decade before. The most up-to-date 
and complete reviews in this rapidly developing field are given in[9][10]. Among all these shape 
descriptors, some are suitable to describe the simple-structural shapes, and also easy and fast in 
matching process, while yield poor results when representing and discriminating relatively 
complicated shapes, which have more detailed information on surfaces of the objects than simple 
shapes. 

3.1 Classification of 3D shape descriptors 
Shape descriptors can be roughly divided into three categories as shown in figure 6: (1) feature 
based shape descriptors, (2) graph based descriptors and (3) other descriptors. The categories of 
shape descriptors are not completely disjoined. For example, a distribution-based descriptor, in 
some way, describes the global features of the shape, such as shape distribution descriptor; shape 
histograms descriptor can be considered a spatial map-based method as well as a global feature 
distribution-based one according to the different partitions of object surfaces and the histogram 
structures. Similarly, a graph-based shape descriptor can also be viewed as a global feature-based 
descriptor. 

 

Feature based

Graph based

Others 

Global features 

Local features 

Distribution based

Spatial map 

Model graph 

Skeleton 

Reeb graph 

EGI 

CEGI 

3D Zernike moments

3D shape 
descriptors 

 
Figure 5 Classification of 3D shape descriptors 

In the context of 3D shape matching, features denote geometric and topological properties of 3D 
shapes. Thus, 3D shapes can be discriminated by measuring and comparing their features. 

3.1.1 Feature-based descriptors 
Feature based methods can be divided into four categories according to the type of shape 
features: (1) global features, (2) local features, (3) distribution based, and (4) spatial features. 
Feature based methods from (1) (3) (4) represent features of a shape using a single descriptor 
consisting of a d-dimensional vector of values, where the dimension d is fixed for all shapes. In 
contrast with them, local feature based methods describe for a number of surface points the 3D 
shape around the point. For this purpose, for each surface point a descriptor is used instead of a 
single descriptor. 
The most common approach to shape based retrieval of 3D objects is to represent every object by 
a single global shape descriptor representing its overall shape. Global features characterize the 
global shape of a 3D model. Examples of these features are the moments, invariants, Fourier 
transform descriptors, and geometry ratios. A lot of efficient ways to calculate these features 
from the mesh representation of an object were demonstrated in[59]. Generally, global features 
analyze the shape in an overview perspective and fail to capture the specific details of a 3D 
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shape. Such feature representation is constrained in describing shapes accurately and 
discriminating among locally dissimilar shapes. 
For example, geometric parameters and ratios are usually used as such shape descriptors. The 
mostly used features are surface area to volume ratio, compactness (non-dimensional ratio of the 
volume squared over the cube of the surface area), crinkliness (surface area of the model divided 
by the surface area of a sphere having the same volume as the model), convex hull features, 
bounding box aspect ratio, and Euler numbers. However, the discriminating characteristics of 
these descriptors are very limited.  
However, the concept of global feature based similarity has been refined recently by comparing 
distributions of global features instead of the global features directly. 
Spatial maps are the representations that capture the spatial location of an object. The map 
entries correspond to physical locations or sections of the object, and are arranged in a manner 
that preserves the relative positions of the features in an object. Thus, the spatial maps based 
methods are more related to the partition approaches of the object space and, consequently, the 
transformation and matching methods of the descriptors are more or less selected or designed in 
terms of the spatial partitions.Spatial maps are generally not invariant to rotations, except for 
specially designed maps. Therefore, typically a pose normalization is needed first. 
Local feature based methods provide various approaches to take into account the surface shape in 
the neighborhood of points on the boundary of the shape. 

3.1.2 Graph-based descriptors 
Graph-based approaches are essentially different from other vector-based descriptors either in 
structures or in design purposes. The graph-based descriptors are more complex and, 
accordingly, difficult to be constructed and derived. On the contrary, they have the potential of 
encoding geometrical and topological shape properties in a more faithful and intuitive manner 
than vector-based descriptors. Therefore, one of the most prominent characteristics is that the 
graph can represent the relationships, even including semantic relationships, between any two of 
the sub-parts of the 3D object. However, they do not generalize easily to all representation 
formats and require dedicated dissimilarity measures and matching schemes. Thus, they are 
consequently not efficient for general-purpose retrieval applications. 

3.1.3 Other descriptors 
As for the other category of descriptors, we consider it including Extended Gaussian 
Image(EGI)[26], complex EGI(CEGI)[27], 3D Zernike moments[42], and so on. 
 
In the following sub-sections, we describe briefly some of the examples of descriptors in the 
three categories of our taxonomy, i.e., feature-based, graph-based and other descriptors, 
depending on whether it is suitable for recognizing shapes of broad categories or for locally 
dissimilar shapes. 

3.2 Descriptors for shapes of broad categories 
Objects from different broad categories are possible to possess quite different features that are 
intuitive for people and can be easily represented by some global shape descriptors. Apparently, 
the global feature based descriptors, such as cord and angle histograms[22][25][26], a typical one 
of this type, and shape distributions[21] which is also a distribution based descriptor, can be used 
to represent objects from different broad categories. However, they are not restricted to the type 
of global feature based descriptors. For example, Shape histograms[22], Radial-cosine 
transform[34], 3D shape contexts[25], and Extended Gaussian Image[29], which are respectively 
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distribution-based descriptor, local feature based descriptor, semi-local feature descriptor and 
histogram-based method, can also be employed for shapes of broad categories. 

3.2.1 Cord and angle histograms 
Cord and angle histograms is a global based descriptor[22][25][26]. A cord is defined as a ray 
segment which joins the barycenter of the mesh with a triangle center. The histograms of the 
length and the angles of these rays are used as 3D shape descriptors. This descriptor is easy and 
efficient to be calculated. However, it simplifies triangles to their centers and does not consider 
the size and shape of the mesh triangles[17][18]. Therefore, the triangles of all sizes have equal 
weight in the final distribution. Moreover, centers may not represent adequately the impact of the 
triangle on the shape distribution because of arbitrary triangle orientations. Paquet and Rioux 
[19] improve the similar descriptor to consider the angles between surface normal directions and 
the reference axes. They claim that the bivariate histogram of the angles between the surface 
normal direction and the first two axes of the reference frame is sensitive to the level of detail by 
which the object is represented, although it may contain more information that the univariate 
histograms. They carry out the experiments to prove their claim, which is rather contrast for 
retrieval in a large database experienced by Akgul[20]. 
Since only global features are used to characterize the overall shape of objects this method is not 
very discriminative about object details, but their implementation is straightforward. These 
methods can be used as an active filter, after which more detailed comparisons can be made, or 
they can be used in combination with other methods to improve results. 

3.2.2 Shape distributions 
Shape distributions descriptor is a global feature and distribution based method. Osada et al.[21] 
use a collection of shape functions i.e. geometrical quantities computed with random sampling of 
the surface of the 3D object. The main idea of shape distributions is to represent the signature of 
an object as a shape distribution sampled from a shape function measuring global geometric 
properties of an object. The purpose of it is to reduce the shape matching problem to the 
comparison of probability distributions, which is simpler than traditional shape matching 
methods that require pose registration, feature correspondence, or model fitting. The challenge is 
to select discriminating shape functions, to develop efficient methods for sampling them, and to 
robustly compute the dissimilarity of probability distributions. 
Shape distributions measure properties based on distance, angle, area and volume measurements 
between random surface points. The above shape functions are used as shape features: (1) 
distance of a surface point to the center of mass of the model; (2) distance between two surface 
points; (3) area(square root) of the triangle defined by three surface points; (4) volume(cube root) 
of the tetrahedron defined by four surface points; (5) angle formed by three random surface 
points(mutually visible).  
Firstly, histograms of a set of the following shape functions are constructed. Secondly, 
reconstruct the representation for shape distribution by a piecewise linear function with V 
equally spaced vertices. Finally, store each shape model as a sequence of V integers. The 
randomization of the surface sampling process improves the estimation (over approach in[17]), 
and a more representative and dense set of the surface points is obtained. Additionally, the 
histogram accuracy can be controlled with sampling density. The descriptor of shape 
distributions is fast, simple to implement, and useful for 3D shapes discrimination. It works 
directly on the original polygons of a 3D model, which needn’t model reconstruction from 
degenerate 3D data. Despite all the advantages above, the shape functions used are not adequate 
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to describe the 3D shape effectively, so it is better to be considered as pre-classification prior to 
more exact similarity comparison methods. 
It is noticeable that shape distributions distinguish models in broad categories very well, such as 
aircraft, boats, people, animals, etc. However, they perform often poorly when involving the 
discrimination between shapes that have similar gross shape properties but vastly different 
detailed shape properties, as we mentioned above. 

3.2.3 Shape histograms 
Shape histograms is also a distribution-based method. A shape histogram is defined by 
partitioning the 3D space into concentric shells and sectors around the center of mass of a 3D 
model, and consequently constructed by accumulating the surface points in the bins based on a 
nearest-neighbor rule. Ankerst et al.[22] employ three kinds of models, i.e. shell model, sector 
model and spiderweb(Combined) model, and the experimental comparison shows the histograms 
based on spiderweb model perform best. 
The shape histograms method is an intuitive and discrete representation of complex spatial 
objects. A Mahalanobis-like quadratic form distance functions are employed for the shape 
histograms to take into account the distances between histogram bins, which also take small 
shifts and rotations into account. On the other hand, 3D objects represented by polygonal meshes 
need to be voxelized prior to descriptor extraction. This approach needs pose normalization 
before feature representation, because, for instance, the sector model is only scaling invariant, 
while the shell model is only rotation invariant. Moreover, further reduction of dimensionality of 
feature vectors are generally needed here. 

3.2.4 Radial-cosine transform 
The radial cosine transform(RCT)[34] of the 3D function )(xv [23]: 
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The RCT coefficients constitute a set of rotation invariant shape descriptors. It represents models 
with a small number of features, accordingly is easy and fast to be calculated. However, the 
retrieval results of RCT are generally worse than DFT, Zernike and spherical harmonic 
descriptors (Evaluation: precision-recall curves, first tier, second tier, E-measure, discounted 
cumulative gain, average precision). It is always considered to be suitable for pre-classification. 

3.2.5 3D shape contexts 
3D shape contexts are a natural extension of 2D shape contexts introduced by Belongie et al. for 
2D image recognition[24]. Kortgen et al.[25] try to apply 3D shape contexts for 3D shape 
retrieval and matching. 
3D shape contexts are semi-local descriptions of object shape centered at points on the surface of 
the object. The shape context of a point is defined as a coarse histogram of the relative 
coordinates of the remaining surface points. The bins of the histogram are constructed by the 
overlay of concentric shells around the centroid of the model and sectors emerging from the 
centroid. In the matching process, it consists of local matching and global matching stages, in the 
former stage, for a point p the best matching point q is found on the other shape, while in the 
latter stage, correspondences between similar sample points on the two shapes are found. The 
descriptor of 3D shape contexts is less efficient than the other currently used methods, the 
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indexing is not straightforward, and the obtained dissimilarity measure does not obey the triangle 
inequality. 

3.2.6 Extended Gaussian images 
As described in section 2.3.4, EGI is designed mainly for pose determination and the application 
of object recognition in an industrial environment. As a pose determination method, EGI 
representation uses surface information. Extended Gaussian images(EGI)[29] is defined as a 
histogram that records the variation of surface area with surface orientation[26]. The weights in 
EGI represent the associated visible face area of the object, which are scalars and do not contain 
any direct distance information. Thus, it is translation invariant, and it can be seen that the EGI 
representation rotates in the exact manner as the object in space. 
EGI has been proposed to avoid the more difficult problem of local feature matching by directly 
extracting the object surface area distribution with the surface normal. Additionally, it is 
translation invariant, for the weights in the EGI representation do not contain any direct distance 
information. Translation invariance is a primary advantage of the EGI, and also the primary 
drawback of it, so that the translation of a recognized 3D object cannot be recovered[27]. As for 
the convex polyhedra recognition, EGI can uniquely determine them and it appears to be ideal 
for convex object recognition without occlusions. Non-convex objects are handled in general by 
creating a separate orientation histogram for every view in a discrete set of views and matching 
against this enlarged data structure. Although occlusion is not a common problem in 
CAD/engineering applications, many engineering parts are non-convex. 

3.3 Descriptors for locally dissimilar shapes 
The so-called complex objects are those 3D shapes that belong to different but close categories, 
or those belong to the same category but with locally dissimilar features in shapes or with 
different poses. Therefore, information of local features inherent in the 3D shapes plays an 
important role in discrimination of complex objects. Local feature based descriptors, including 
probability density-based shape descriptors[20], 3D Hough transform descriptor(C3DHTD) 
[34][32], voxel-based 3D Fourier transform[36], 3D ray-based spherical harmonics[38], 3D 
voxel-based spherical harmonic[14][15], PCA-spherical harmonics transform(SHT) [12][13][33], 
and so on, are distinctly the most appropriate methods in order to discriminate and recognize 
these locally dissimilar 3D shapes. However, graph-based descriptors are also a fairly good 
choice to represent the structural information of the shapes. Besides, 3D Zernike moment[42], as 
a kind of moment with the advantages of capturing global information about the 3D shape and 
not requiring closed boundaries as boundary-based methods, is a wonderful descriptor for 3D 
shapes dissimilar in local parts. 

3.3.1 Shape spectrum 
3D Shape Spectrum Descriptor (3D SSD)[34] is defined as the distribution of the shape index 
over the entire mesh. The shape index [28] is a local geometric attribute of a 3D surface, 
expressed as the angular coordinate of a polar representation of the principal curvature vector. 
The principal curvatures is, then, defined as the eigenvalues of the Weingarten map(W ) given by 
the following expression: ‡U‡TW 1−= , where ‡Tand ‡U denote respectively the first and the second 
fundamental differential forms. 
Concerning the original feature itself, the shape index represents salient elementary 
shapes(convex, concave, rut, ridge, saddle, and so on) and is invariant with respect to scale and 
Euclidean transforms. As for the 3D SSD, the descriptor locally characterizes free-form surfaces 
represented as discrete polygonal 3D meshes. 3D SSD possesses the characteristics of: (1) 
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generality, since 3D meshes may include open surfaces that have not an associated volume; (2) 
invariance to scale and Euclidean transforms; (3) robustness that different triangulations of the 
same object are permitted and it successfully retrieves articulated objects with different postures. 
Koendering[28] experiments a compact descriptor of minimum size of 100 bits/3D mesh model 
which allows fast browsing and search of 3D model databases. 
On the other hand, the 3D SSD requires a non-trivial preprocessing phase for meshes that are not 
topologically correct or not orientable. For example, a transformation between data formats 
before extraction of 3D SSD is possibly needed: VRML data are initially intended for graphics 
purposes, hence, transformation of such rough 3D data into some useful geometrical surfaces is 
demanded before applying differential geometry-based analysis. Moreover, this descriptor, as a 
simple local feature representation, is better to be combined with some global representation 
schemes. 

3.3.2 Probability density-based shape descriptors 
Akgul[20] defines a geometric feature over the surface of the 3D object, which is calculated on 
each triangle of the mesh and a set of observations are obtained, each providing a local 
characterization. Employing the set of observations and kernel density estimation (KDE) 
[29][30][31], Akgul estimates the probability density of the local geometric feature at target 
points chosen on the domain of the feature. Consequently, the vector of estimated density values 
is used as 3D shape descriptor.  
The probability density-based shape descriptor considers three different sorts of 
multidimensional local geometric features of a point p : 

(1) Radial feature rS : It consists of a magnitude component measuring the distance of the 
point p  to the origin and a direction component pointing to the location of the point p . 

(2) Tangent plane-based feature tS : It consists of a magnitude component which stands for 
the distance of the tangent plane at p  to the origin and a direction component of the unit 
surface normal vector of the tangent plane. 

(3) Cross-product feature cS : It encodes the interaction between the first two features above. 
It is decoupled into a magnitude component which is the same as that of rS , and a 
direction component of the cross product between the vector representation of point p  
and the unit surface normal vector at p . 

Akgul uses the most general form of the kernel approach to estimate the probability density 
function (pdf) of the local geometric feature sampled as a set of given observations, and takes 
into account the multitude of points uniformly distributed over the triangle geometry, for only 
the barycentric sampling of per triangle is not the best option because of possible shape and size 
non-uniformities of triangles. He also applies Simpson’s 1/3 numerical integration formula to 
approximate the expected local feature value over the mesh triangle, computing the integral with 
respect to each vertices of triangle and averaging the three integration results in order to remove 
the arbitrariness of the vertices. Finally, the performance of descriptors using precision-recall 
curves and discounted cumulative gain(DCG) values is presented. 
As Akgul mentioned in his paper, when performing on the Princeton Shape Benchmark (PSB) 
Test Set, the KDE-based descriptor has the highest DCG score among all other well-known 3D 
shape descriptors, including Cord and Angle Histogram(CAH)[17][18], D2 Distribution[21], 3D 
Hough Transform Descriptor[32], EGI[26], CEGI[27], Radicalized EXtent 
Descriptor(REXT)[33], and so on. However, this descriptor still suffers a problem that the three 
features are neither scale- nor rotation-invariant. Since the method depends on them, we must 
perform prior pose normalization of the mesh. 
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3.3.3 3D Hough transform 
3D Hough transform descriptor(C3DHTD)[34][32] is based upon the principle of accumulating 
points within a set of planes in 3D space. A plane in 3ℜ  is uniquely defined by a triplet ),,( ϕθs , 
where 0≥s  denotes the distance from the origin of the coordinate system to plan, and )2,0[ πθ ∈  
and )2/,2/[ ππϕ −∈  respectively denote the two angles, i.e. azimuth and elevation, associated with 
the spherical representation of the plane’s unit length normal vector n . Each axis of the 
parameter space ),,( ϕθs  is uniformly sampled and every center ip of the mesh triangle gives an 
additive contribution to the bin corresponding to ),( '

kjis ϕθ , where '
is  is the closest value to is , 

which is the distance to the coordinate system’ origin of the plane passing through ip  and with 
orientation ),( kj ϕθ . In order to avoid the drawbacks of PCA in pose normalization, Zaharia and 
Preteux[32] propose the octahedron-based partitions of the 3D spherical object and construct the 
canonical 3DHTD completely specified by an unique 3D HT by deriving one PCA coordinate 
system(PCA CS) from each other with appropriate permutations of the HT coefficients. 
3DHT can be considered as a generalized version of EGI. They are similar except for the way the 
contributions of the triangles are assessed. Akgul et al.[35] have experimentally proven the 
conjecture that 3DHT descriptor captures the shape information better than the EGI descriptor. 
Firstly, 3DHT uses PCA before shape feature extraction. Secondly, it defines the 3D Hough 
Transform: Rsh →),,(: ϕθ  mapping parameter space ),,( ϕθs  to R , where, each axis of the 
parameter space is uniformly sampled, and each centric point p of the mesh faces gives an 
additive contribution to each element ),,(),,(

~

ϕθϕθ ssh kj
p
jk ∈  according to a pre-defined distance-

orientation rule. Finally, it constructs the canonical 3D HTD completely specified by a unique 
3D HT, associating with an arbitrary PCA CS from the 48 CSs, and defines the similarity 
measure between two C3DHT. 
During the construction process of 3DHT descriptor, a critical point is the resolution to the 
drawbacks of PCA[32]. If consider all the 48 possible PCA-based coordinate systems(PCA CS) 
and generate all the corresponding 3DHTs, it is time consuming. Although 3 generating 
configurations(GCs) are sufficient to ensure a complete Hough representation, a specific domain 
on the uniformly sampled unit sphere does not fit anymore the resulting partition after changing 
the PCA CS. Moreover, it requires a high complexity in terms of descriptor size and matching 
computation time. A practical resolution is to define partitions on unit sphere to ensure there 
exists a 1-1 mapping between the 3 GCs(3 GCs are equivalent). For instance, one can abandon 
the principle of uniform sampling of the unit sphere, construct the partitions by projecting the 
vertices of any regular polyhedron(here octahedron) onto the unit sphere, which is invariant to 
changes between the 48 PCA CSs, and accordingly called canonical 3D HTD(C3DHTD). 
The C3DHTD deserves a lot of advantages. It associates with a spatial alignment procedure to be 
geometric invariant and is completely independent of the mesh topology without considering 
whether the size of the mesh polygons is well-adapted to the HT specific granularity. Moreover, 
it satisfies the storage and computational complexity requirements to similarity-based retrieval 
applications. Zaharia and Preteus[32] carry out the experimental proves that C3DHTD 
outperforms the MPEG-7 3DSSD and the EGI, using a subset of 362 models of the MPEG-7 3D 
test set[34] and under some pre-set parameters(thresholds) and the evaluation of Bull-Eye 
Percentage(BEP). Additionally, it is also mentioned that the approving retrieval performances do 
not dramatically degrade when dealing with large amount of data because of the scalability of the 
C3DHTD. Nevertheless, this descriptor is, intrinsically, not geometrical transformations 
invariant and the PCA before feature representation is still needed. In [32], only classic EGI, but 
not the CEGI is involved in the experimental comparison. 
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3.3.4 Voxel-based 3D Fourier transform 
Vranic et al.[36] introduce voxel-based 3D Fourier transform descriptor after they proposed a 
ray-based spherical harmonics method[38]. The voxel-based 3DFT defines a binary voxel-based 
feature after voxelization using the so-called bounding cube(BC), which is the tightest cube in 
the canonical coordinate frame that encloses the model, with the center in the origin and the 
edges parallel to the coordinate axes. 
In order to extract the features of a 3D model, a pose normalization is needed before the 
voxelization using the BC in the spatial domain. After that, the descriptor represents the feature 
in the frequency domain by 3D Discrete Fourier Transform(3DFT). 
Comparing to previous voxel-based methods, 3DFT significantly reduces the size of feature 
vector when choosing a greater value of N(number of subdivision of BC). It makes calculation of 
feature distances with L1 of L2 norms much efficiently and leads to good experimental results. 
In another perspective, when comparing with other methods such as cords-based descriptor, 
rotation invariance(90 degrees) descriptor, ray-based descriptor with spherical harmonics, 3DFT 
presents best overall performance on categories of “cars” and “airplanes”. On the other hand, 
since the 3DFT coefficients are not rotation invariant, DFT is applied after alignment to principal 
axes. Moreover, 3DFT leads to problems with outliers because of the use of BC. Theoretically, 
using bctree to represent features in spatial domain can solve it, but the problem of large size of 
feature vector still exists. 
Later, Dutagaci et al.[37] propose a 3D discrete Fourier transform descriptor to the two different 
voxel representations of 3D objects, namely, binary denoting object and background space, and 
continuous after distance transformation, and finally compare the experiments on them and 
showed the latter is better. The voxel-based feature is defined as a representation of inverse 
distance function(IDF), as already described in section 2.2.2. 
The 3D DFT employs a measure of the spectral energy(SE) in a sphere of radius r, because the 
spectral energy in a sphere centered at the origin of the frequency domain remains constant under 
rotation. Afterwards, it defines the incremental spectral energy(ISE) as the difference of the 
spectral energies contained within concentric spheres and normalize the ISE by 2r  and take its 
square root to balance out large values accumulated in the low-pass shells. The normalized 
spectral energy(NSE), which has the property of rotation invariance, is used as the 3DFT-based 
descriptors of the object. 
This descriptor of 3D DFT achieves a multi-resolution representation that NSE descriptors 
values at small radii (low-pass region) carry information about the gross shape of the object, 
while shape details are encoded in the spectral shells at high-frequency radii. Therefore, 3DFT-
based scheme, gives good results in both binary and IDF case when comparing with RCT-based 
descriptors, and gives better results in E-measure, discounted cumulative gain and average 
precision when comparing with 3D SH-based descriptors. Additionally, the size of the DFT-
based descriptor is far smaller than that of SH. On the other hand, slight deviation from rotation 
invariance can occur due to voxelization distortion. Unfortunately, IDF representation is not 
totally rotation invariant due to the distance transform values at the corners of the bounding box. 

3.3.5 Spherical harmonics transform 
The Princeton group and the Konstanz group had considerable impact in 3D shape descriptors 
research to date, and spherical harmonics transform(SHT), which have become a very popular 
tool in the field of 3D shape descriptors, to a larger extent has been one of the main tools used in 
a great deal of descriptors developed by these two groups. However, there is an on-going debate 
between Princeton and Konstanz groups on the use of SHT for 3D shape description, 
emphasizing on whether PCA normalization should be applied prior to SHT and, whether the 
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magnitude of transform coefficients or the energies in different bands of the transform domain 
should be used as the descriptor. Both of them carry out retrieval experiments to support their 
opinions. 
As a transform function, SHT is suitable to reduce the descriptor size considerably without 
loosing too much shape information. At present, there are two types of typical methods involving 
spherical harmonics transform: rotation invariant spherical harmonics(RISH) and PCA-spherical 
harmonics transform(PCA-SHT). 

3.3.5.1 Rotation invariant spherical harmonics(RISH) 
Funkhouser and Kazhdan et al. present a general approach based on spherical harmonics to 
transform rotation dependent shape descriptors into rotation independent ones[14][15].  
The shape descriptor is defined as 3D voxel-based spherical harmonic(VH) feature vector. The 
basic idea in forming any considered descriptor of a model is to divide the model into R 
spheres(with radii 1 through R) and apply the Spherical Fourier Transform(SFT) to a function on 
each of a specific sphere(with radius ri). Firstly, one can define a function ( )ϕθ ,rr =  on a 
sphere(with radius ri), approximate the function using spherical harmonic basis function( mlY , ), 

figure out the complex Fourier coefficients ),(
^

mlr  and form  the corresponding feature vector 

with absolute values ),(
^

mlr  of dimension 2/)1(dim maxmax ll += , which represents the sphere. 

Secondly, use the L2-norm to represent the shape model, securing the rotation invariance(RI). 
There are ml  L2-norms corresponding to each sphere with radius ri, and totally Rlm ×  L2-norms to 
be the components of feature vector, which represents the model. The most prominent advantage 
of this SHT descriptor is the rotation invariance(RI). However, it should be noticed that voxel 
grid-based representation loses many fine details and rotation invariance properties of SHT 
descriptors should be understood with caution as it comes with a certain loss of shape 
information. 
Overall, Kazhdan et al. provide mathematical support for rotation invariance of the 
descriptor[15]. Basically, this mathematical justification relies on the fact that the energy in a 
certain frequency band of the ST does not change when the object is rotated around its center of 
mass. However, the rotation invariance SHT descriptors are considered as losing a certain 
amount of shape information, which partly leads to the controversy between the Princeton and 
Konstanz group. 

3.3.5.2 PCA-spherical harmonics transform(PCA-SHT) 
The Konstanz group uses SHT to transform spherical functions densely sampled over the surface 
to obtain spherical harmonic(RH) feature vector of a PCA-normalized object[12][13][33]. These 
SHT descriptors need PCA or continuous PCA(CPCA) to achieve pose normalization before 
feature extraction.  
In [12], the so called ray-based or extent descriptor gives the SHT-transformed version of the 
maximal distance from the center of mass as a function of the spherical angle. In [13], Vranic et 
al. obtain the feature vector by forming a complex function on the sphere, apply the Fast Fourier 
Transform(FFT) on the sphere and generate Fourier coefficients for spherical harmonics. The 
feature vector is then composed of the absolute values of the coefficients. In [33], Vranic 
improves the previous descriptor and proposes two 3D shape descriptors based on functions on 
concentric spheres. It combines ray-based notion into voxel-based sphere partition methods, 
finds all points of intersection with the polygonal mesh, and then defines several functions on the 
concentric spheres with different radii, and afterwards again with SFT. This improved 
descriptors consider the internal structure of a model by using functions on concentric sphere and 
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increase retrieval effectiveness, for instance, outperform the previous ray-based ones[12][13] and 
the voxel-based SHT descriptors[14]. 
The descriptor of PCA-SHT leads good experimental results outperforming the RI-SHT by 
Funkhouser[14]. Furthermore, the pose determination method used here, i.e. continuous 
PCA(CPCA), although it shows certain weaknesses, is still very efficient and not time-
consuming in many cases, which can be applied even if the mesh model is not orientable or a 
closed polygonal surface. 

3.3.6 Multi-resolution Reeb graphs 
Reeb graphs at multiple levels of resolution of a function µ  is defined over the object’s 
surface[39][40]. The function µ  can be the height of a point on the surface, the curvature value 
of the point, or the integrated geodesic distance at that point. According to the definition of Reeb 
graph, each node in each Reeb graph corresponds to a connected component of the object in the 
sense that µ -values in that component fall within the same interval determined by the resolution 
at which the graph is constructed. The parent-child relationships between nodes represent 
adjacent intervals of these µ -values for the contained object parts. 
According to the function chosen, the resulting descriptor provides certain invariance properties. 
A graph at a coarser level is encoded as the ancestor of a graph at a finer level which contains 
more detailed information than its ancestor. The singular points that correspond to the finest 
resolution locations are valuable in studying the topology of the underlying object. In spite of all 
the good properties mentioned above, Reeb graphs are not applicable to all classes of shapes, and 
the choice of Reeb function affects results significantly[6]. 

3.3.7 Skeletal graphs 
The skeletal graph is obtained from object voxel data as a directed acyclic graph(DAG). 
According to the definition of the skeletal graph, each node of the DAG is associated with a set 
of geometric features and a signature vector that encodes topological information. The 
topological signature vector(TSV) is derived from the eigen-decomposition of the graph’s 
adjacency matrix. 
Sundar et al.[41] describe a method for searching and comparing 3D objects via skeletal graph 
matching in order to build an interactive system that allows part-matching. The visualization of 
the results helps the user to define and interactively change his/her query. There are two stages of 
matching procedure, where the second one can be used to refine the possible set of retrieved 
database objects. 

3.3.8 Complex extended Gaussian images 
Although complex EGI(CEGI)[27] representation is a global feature based method, it is 
considered suitable for objects that belong to close categories and are locally dissimilar in 
shapes. The complex weight of a CEGI is comprised of a magnitude of the corresponding visible 
face area and a phase of the normal distance of the face from the designated origin in the 
direction of the normal. 
The difference of CEGI from conventional EGI is that it has the distances encoded in its weights 
in a different manner and it is not translation invariant. CEGI essentially allows both the 
orientation and translation of a given 3D object to be determined separately, in which 
determining the translation parameters is also simple based on the least squares formulation.. It 
can differentiate larger classes of objects than the conventional EGI, for CEGI disambiguates 
objects having similar EGIs. Furthermore, CEGI is identical for both polyhedral and smooth 
objects. 
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On the hand, CEGI shows some disadvantages either. It derives better results for a smooth object 
with a more even Gaussian distribution and a lower degree of concavity. Moreover, the accuracy 
of the derived translation parameters is sensitive to the angular error of the surface normals, the 
magnitude of the actual translation parameters, and the distribution of the surface normals. 

3.3.9 3D Zernike moments 
3D Zernike moment is a kind of moment with the advantages of capturing global information 
about the 3D shape and not requiring closed boundaries as boundary-based methods[42]. Zernike 
moments are a projection of the function defining the object onto a set of orthonormal functions 
within the unit ball. They can be considered as the magnitudes of a set of orthogonal complex 
moments of the 3D shape and the  natural extensions of spherical harmonics based descriptors. 
Comparing to the regular(un-orthogonal) moments, it is easier to recover 3D shape from Zernike 
moments and there will be less computationally expensive. Additionally, the information content 
of the recovered 3D shape has no redundancy because of the orthonormality. Comparing to other 
orthogonal moments, 3D Zernike moments possess a useful rotation invariance property. It is 
also easy and instructive for 3D shape reconstruction from Zernike moments. Firstly, it is 
intuitively that 3D Zernike moments are able to separate out the individual contribution of each 
order moment to the reconstruction process. Secondly, the maximum order(required number of 
features) of the moments can be determined by the close degree of reconstructed 3D shape to the 
original one. Moreover, the contribution of moments to the reconstruction process can instruct 
the weights of the corresponding features. Thereby, the reconstruct approximations of the 
original object from 3D Zernike moments possess completeness. However, 3D Zernike moments 
suffer by the severe instability of geometrical moments and hence always in case of high orders. 
Anyway, the descriptor of 3D Zernike moments are superior over others in terms of noise 
sensitivity, information redundancy and discrimination power and still reported to be among the 
most successful representations at present. 

3.4 Discussion on shape descriptors 
The common objective in 3D descriptor research is to design mappings from the space of 3D 
objects to some high-dimensional, yet finite, vector space, in a way to preserve as much 
information as possible and to keep the resulting vector as low-dimensional as possible. With 
regard to the 3D shape descriptors mentioned above, some of them are theoretically similar to 
each other, while some are quite different in essence. We compare all these categories of shape 
descriptors in some most important and typical aspects, such as original shape features, spatial 
partition methods, pose normalization, transformation invariance, advantages and disadvantages, 
and so on, as shown in table 1. 
No matter in what ways a descriptor is obtained, there always remains the ambiguity about the 
similarity notion to associate with it. As we know, the approach to describe a 3D shape results in 
descriptors embedded in high-dimensional vector spaces which are generally obscure from a 
mathematical perspective. To clarify, it is usually not known theoretically which distance or 
norm would be the most suitable for retrieval and classification. For the time being, since there is 
no universal mathematical theory for 3D shapes and for designing such mappings in particular, 
the usual practice is to experimentally try a set of distance functions, and consequently evaluate 
the effectiveness and efficiency - two criteria of shape descriptors - of a descriptor largely on 
experimental terms, and eventually report their classification and retrieval performances. 
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Table 1 Comparison on 3D shape descriptors 
Category of methods Descriptors Shape feature Spatial partition Transformatio

n invariance Computation cost Advantages Limitations Refs. 

Global feature-based Cord and angle 
histograms 

Histograms of the length and 
the angles of the cord rays Ray-based R  a. Consider the angles between surface normal directions 

and the reference axes 
a. Simplify triangles to their centers;  
b. intolerant to impact of shape distribution 

[17][1
8][19] 

Distribution-based Shape distributions A collection of shape 
functions 

Randomly selected 
points of surfaces T, R 

O(S log N) where S is 
number of samples and 
N is number of triangles 

a. Fast, simple, useful to discriminate 3D shapes;  
b. Randomization of the surface sampling process 
improves the estimation; 
c. Histogram accuracy can be controlled with sampling 
density. 

a. Shape functions are not adequate to describe the 3D 
shape; 
b. Better to be pre-classification. 

[21] 

Shape histograms 
Accumulation of the surface 
points in the bins based on a 
nearest-neighbor rule 

Shell model, sector 
model,  and 
spiderweb 

R(shell model) 
S(sector model) 

O(N3B) where N is the 
number of voxels along 
each axis and B is the 
number of histogram 
bins 

a. Intuitive;  
b. make use of Quadratic form distance functions to take 
into account the distances between histogram bins. 
 

a. Voxelization is needed prior to descriptor extraction; 
b. Need further reduction of dimensionality of feature 
vectors. 
 
 

[22] 

Radial cosine 
transform 

Coefficients of radial cosine 
transform of a 3D function Shell-like model R  

a. Easy to calculate, fast; 
b. Represent models with small number of features 
 

a. Retrieval results are generally worse than commonly 
used methods; 
b. Suitable to be pre-classification. 

[23] 

3D Hough 
transform 

3D Hough Transform: 

Rsh →),,(: ϕθ  

a. Uniformly 
sampled each axis of 
parameter space; 
b. Octahedron-based 
partition of the unit 
sphere. 

R(canonical 3D 
HTD)  

a. Associate with a spatial alignment procedure to be 
geometric invariant; 
b. Satisfy the storage and computational complexity 
requirements; 
c. Completely independent of the mesh topology; 
c. Stable retrieval performances 

a. Only the canonical 3DHTD of octahedron-based 
partition is rotation invariant. 

[34][3
2] 

Voxel-3D Fourier 
transform(3DFT) Binary Voxel-based feature Voxelization using 

the bounding cube -  
a. Significantly reduce the size of feature vector; 
b. Efficient calculation of feature distances; 
c. Good experimental results 

a. Alignment to principal axes is needed; 
b. 3DFT leads to problems with outliers because of the use 
of BC. 

[36] 
[37] 

Rotation invariant 
spherical harmonics 

Spherical functions of each 
specific sphere; 
Voxel-based spherical 
harmonic feature vector 

Voxel-based 
division in terms of 
radii 

R 

O(N3K) where N is the 
number of voxels along 
each axis and K is the 
number of spherical 
functions 

a. Satisfy rotation Invariance(RI). a. Voxel grid-based representation loses many fine details. [14][1
5] 

A complex function on the 
sphere. 

Ray-based division 
in terms of given 
directions within a 
unit sphere. 

-  
a. SHT reduces the descriptor size considerably without 
loosing too much shape information; 
b. outperform the RI-SHT in[38 in thesis] 

[12][1
3]  

Spatial map-based 

PCA-Spherical 
harmonics 
Transform(SHT): 
 

Spherical functions on 
concentric spheres; 
Ray-based spherical 
harmonic feature vector 

Combined ray- and 
voxel-based 
partitions: RH1 and 
RH2 

R 

O(N3K) where N is the 
number of voxels along 
each axis and K is the 
number of spherical 
functions 

a. Consider the internal structure of a model by using 
functions on concentric spheres; 
b. Rotation invariant by using CPCA. 

a. CPCA shows certain weaknesses. 

[33] 

3D shape contexts 
A coarse histogram of the 
relative coordinates of the 
remaining surface points 

Concentric shell and 
sector models -   

a. Less efficient; 
b. Indexing is not straightforward; 
c. The obtained dissimilarity measure does not obey the 
triangle inequality. 

[25] Local feature-based 

Shape spectrum The distribution of the shape 
index over the entire mesh  T, S  

a. General to 3D meshes including open surfaces; 
b. Robust to different triangulations of the same object 
and retrieving articulated objects with different 
postures; 
c. Allow fast browsing and search of 3D model 
databases. 

a. Transformation of rough 3D data into useful geometrical 
surfaces is demanded; 
b. Better to combine with some global representation 
schemes. 

[28] 
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Probability density-
based shape 
descriptors 

The probability density of 
the three local geometric 
features over the surface. 

Multi-points of 
every triangle on the 
mesh 

-  a. Outperforms all other well-known 3D shape 
descriptors with highest DCG score. a. Not invariant with any geometric transformation. [20] 

Multi-resolution 
Reeb Graphs 

Reeb graphs at multiple 
levels of resolution of a 
function over the surface 

Topology of the 
object R 

O(V log V) where V is 
number of mesh 
vertices 

a. Have the potential of encoding geometrical and 
topological shape properties; 
b. The singular point locations are valuable in studying 
the topology of the object. 

a. Not applicable to all classes of shapes; 
b. Choice of Reeb function affects results significantly.[6] 

[39][4
0] 

Graph based 

Skeletal graphs 

A directed acyclic 
graph(DAG) associated with 
a set of geometric features 
and a signature vector  

Voxel data R 
O(N3) where N is the 
number of voxels along 
each axis 

a. Allows part-matching. a. Mre elaborate and complex in calculation; 
b. Not efficient for general-purpose retrieval applications. [41] 

Extended Gaussian 
images 

A histogram recording the 
variation of surface area with 
surface orientation 

Surface-based T  

a. Avoids the more difficult problem of local feature 
matching; 
b. Translation invariant; 
c. Unique representation for convex objects without 
occlusions. 

a. Does not contain any direct distance information; 
b. Confusion in non-convex objects. [26] 

Complex Extended 
Gaussian images 

A histogram recording the 
variation of surface area and 
distance with surface 
orientation 

a. Two-frequency 
dodecahedron-based 
240 sampling view 
directions of the 
sphere; 
b. A simple ray-
tracing technique 

-  
a. Encodes distance in its weights; 
b. Identical for both polyhedral and smooth objects; 
c. Disambiguates objects having similar EGIs. 

a. Accuracy of the derived translation parameters is 
sensitive to some parameters. [27] Others 

3D Zernike 
moments 

Magnitudes of a set of 
orthogonal complex 
moments of the object 

Voxel-based 
partition R 

O(N3) where N is the 
number of voxels along 
each axis 

a. Information content has no redundancy; 
b. Easy for 3D shape reconstruction from Zernike 
moments. 
c. Superior over others in terms of noise sensitivity, 
information redundancy and discrimination power. 

a. Severe instability of geometrical moments; 
b. High orders. [42] 
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4. Conclusions 
A 3D shape descriptor can be designed in a variety of ways according to the shape characteristics 
of 3D objects and the requests of applications. In the scope of DecorAR project, we aim at 
recognizing a small set of shapes in a fast and accurate manner in order to be used in real time 
interaction. In this context, we are concerned with shapes possessing obvious visual distinction 
on the whole shapes from each other, which can always be detected by human eyes. The majority 
of these shapes can be discriminated with its outlines. Therefore, it is not necessary to distinguish 
these objects with detailed information implicated in every local part. As a result, we are 
supposed to focus mainly on the global features of shapes, which are easier to capture than local 
features, while integrate most of the general features of the shapes as a whole. In addition, some 
local features, although not dominating features for shape classification, can also be utilized to 
recognize simple shapes so as to better describe the 3D objects from a local and more detailed 
perspective and improve the 3D shape descriptors. 
Based on the analysis of descriptors introduced in section 3, we select respectively two 3D shape 
descriptors for broad categories classification and two for locally similar objects classification, 
which are cord and angle histograms, shape distributions descriptor, 3D complex function FFT 
descriptor, and complex EGI.  
Cord and angle histograms[22][25][26] and shape distributions[21] are both global feature based 
descriptors. The former uses the histograms of the length and the angles of cords as 3D shape 
descriptors, which are easy and efficient to be calculated and implemented. The latter uses a 
collection of shape functions measuring global geometric properties of an object, and represents 
the signature of an object as a shape distribution sampled from these shape functions. Shape 
distributions distinguish models in broad categories very well, such as aircraft, boats, people, 
animals, etc. However, both of these methods are not very discriminative about objects details, 
because only global features are used to characterize the overall shape of the objects. 
3D complex function FFT descriptor [13] engages spherical harmonics to merge two features 
represented by real functions (x(u) and y(u)) by embracing them into a single complex function, 
apply the Fast Fourier transform(FFT) on the sphere and generate Fourier coefficients for 
spherical harmonics. Some experiments show the complex feature vector FFT performs better 
than ray-based and shading-based feature vector. 
Complex EGI descriptor is a global feature based method which is considered suitable for 
objects locally dissimilar in shapes that belong to close categories. The CEGI encodes the normal 
distance and the visible area of each outward surface normal as a complex weight of the feature 
representation, which captures the rich information of shape surface, whereas, with appropriate 
computation complexity. It can also distinguish a convex object from a non-convex object or 
disambiguate non-convex objects having similar EGIs, and accordingly achieve satisfactory 
experimental results. Therefore, the shape descriptor of CEGI is relatively more suitable for our 
3D shape recognition design. 
As we know, the approach to describe a 3D shape results in descriptors embedded in high-
dimensional vector spaces which are generally obscure from a mathematical perspective. Few 
descriptors can be theoretically proved which distance or norm would be the best for recognition 
and classification. Researchers usually experimentally try a set of distance functions and 
compare their performances, and the function that produces the best scores is consequently 
considered as the most suitable for the particular descriptor and the object database. In the same 
way, we plan to design several experiments for these 3D shape descriptors on a set of 3D shapes 
and compare their effectiveness and efficiency for shape classification. 
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