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Abstract

Automated Program Repair (APR) for introductory program-
ming assignments (IPAS) is motivated by the large number
of student enrollments in programming courses each year.
Since providing feedback on programming assignments re-
quires substantial time and effort from faculty, personal-
ized automated feedback often involves suggesting repairs
to students’ programs. Symbolic semantic repair approaches,
which rely on Formal Methods (FM), check a program’s ex-
ecution against a test suite or reference solution, are effec-
tive but limited. These tools excel at identifying buggy parts
but can only fix programs if the correct implementation and
the faulty one share the same control flow graph. Conversely,
Large Language Models (LLMS) are used for program repair
but often make extensive rewrites instead of minimal adjust-
ments. This tends to lead to more invasive fixes, making it
harder for students to learn from their mistakes. In summary,
LLMS excel at completing strings, while FM-based fault lo-
calization excel at identifying buggy parts of a program.
In this paper, we propose a novel approach that combines the
strengths of both FM-based fault localization and LLMS, via
zero-shot learning, to enhance APR for IPAS. Our method
uses MaxSAT-based fault localization to identify buggy parts
of a program, then presents the LLM with a program sketch
devoid of these buggy statements. This hybrid approach fol-
lows a Counterexample Guided Inductive Synthesis (CEGIS)
loop to iteratively refine the program. We ask the LLM to
synthesize the missing parts, which are then checked against
a test suite. If the suggested program is incorrect, a counterex-
ample from the test suite is fed back to the LLM for revised
synthesis. Our experiments on 1,431 incorrect student pro-
grams show that our counterexample guided approach, using
MaxSAT-based bug-free program sketches, significantly im-
proves the repair capabilities of all six evaluated LLMS. This
method allows LLMS to repair more programs and produce
smaller fixes, outperforming other configurations and state-
of-the-art symbolic program repair tools.

Introduction
Every year, thousands of students enroll in programming-
oriented courses. With the rapid growth of Computer Sci-
ence courses, providing personalized and timely feedback
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on introductory programming assignments (IPAS) and soft-
ware projects has become a significant challenge, requiring
substantial time and effort from faculty (Orvalho, Janota,
and Manquinho 2024c, 2022b).

Automated Program Repair (APR) has emerged as a
promising solution to this challenge, aiming to deliver au-
tomated, comprehensive, and personalized feedback to stu-
dents about their programming errors (Gulwani, Radicek,
and Zuleger 2018; Ahmed et al. 2022; Wang, Singh, and
Su 2018; Hu et al. 2019). Traditional semantic APR tech-
niques based on Formal Methods (FM), while providing
high-quality fixes, are often slow and may struggle when
the correct implementation diverges significantly from the
erroneous one (Contractor and Rivero 2022). These APR ap-
proaches do not guarantee minimal repairs, as they align an
incorrect submission with a correct implementation for the
same IPA. If the alignment is not possible, these tools return
a structural mismatch error, leaving the program unrepaired.
In the past decade, there has been a surge in Machine Learn-
ing (ML) techniques for APR (Gupta et al. 2017; Mesbah
et al. 2019; Gupta, Kanade, and Shevade 2019; Yasunaga
and Liang 2020; Rolim et al. 2017; Pu et al. 2016; Bhatia,
Kohli, and Singh 2018; Orvalho et al. 2023). ML-based ap-
proaches require multiple correct implementations to gener-
ate high-quality repairs, and need considerable time and re-
sources to train on correct programs. While these approaches
generate repairs more quickly, they often produce imprecise
and non-minimal fixes (Wang, Singh, and Su 2018).

More recently, Large Language Models (LLMS) trained
on code (LLMCS) have shown great potential in generating
program fixes (Joshi et al. 2023; Xia, Ding, and Zhang 2023;
Jin et al. 2023; Wei, Xia, and Zhang 2023; Fan et al. 2023;
Xia, Wei, and Zhang 2023; Zhang et al. 2024; Phung et al.
2023). LLM-based APR can be performed using zero-shot
learning (Xia and Zhang 2022), few-shot learning (Zhang
et al. 2024) or fine-tuned models (Jin et al. 2023). Fine-
tuned models are the most commonly used, where the model
is trained for a specific task. Conversely, zero-shot learn-
ing refers to the ability of a model to correctly perform a
task without having seen any examples of that task during
training. Few-shot learning refers to the LLMS’s ability to
perform tasks correctly with only a small number of exam-
ples provided. Furthermore, the ability to generalize using
zero or few-shot learning enables LLMS to handle a wide



range of tasks without the need for costly retraining or fine-
tuning. Nonetheless, few-shot learning can lead to larger
fixes than necessary, as it is based on a limited number of
examples. LLMS do not guarantee minimal repairs and typ-
ically rewrite most of the student’s implementation to fix it,
rather than making minimal adjustments, making their fixes
less efficient and harder for students to learn from.

In this paper, we propose a novel approach that com-
bines the strengths of both FM and LLMS to enhance APR
of IPAS via zero-shot learning. Our method involves using
MaxSAT-based fault localization to identify the set of min-
imal buggy parts of a program and then presenting an off-
the-self LLM with a program sketch devoid of these buggy
statements. This hybrid approach follows a Counterexample
Guided Inductive Synthesis (CEGIS) loop (Solar-Lezama
et al. 2005) to iteratively refine the program. We provide the
LLM with a bug-free program sketch and ask it to synthe-
size the missing parts. After each iteration, the synthesized
program is checked against a test suite. If the program is in-
correct, a counterexample from the test suite is fed back to
the LLM, prompting a revised synthesis.

Our experiments with 1431 incorrect student programs
reveal that our counterexample guided approach, utiliz-
ing MaxSAT-based bug-free program sketches, significantly
boosts the repair capabilities of all six evaluated LLMS.
This method enables LLMS to repair more programs and
produce superior fixes with smaller patches, outperform-
ing both other configurations and state-of-the-art symbolic
program repair tools (Gulwani, Radicek, and Zuleger 2018;
Ahmed et al. 2022).

In summary, this paper makes the following contributions:

• We tackle the Automated Program Repair (APR) prob-
lem using an LLM-Driven Counterexample Guided In-
ductive Synthesis (CEGIS) approach;

• We employ MaxSAT-based Fault Localization to guide
and minimize LLMS’ patches to incorrect programs by
feeding them bug-free program sketches;

• Experiments show that our approach enables all six eval-
uated LLMS to fix more programs and produce smaller
patches than other configurations and symbolic tools;

• Our code is available on GitHub 1 and on Zenodo 2.

Motivation
Consider the program presented in Listing 1, which aims to
determine the maximum among three given numbers. How-
ever, based on the test suite shown in Table 1, the program is
buggy as its output differs from the expected results. The set
of minimal faulty lines in this program includes lines 4 and
8, as these two if conditions are incorrect according to the
test suite. A good way to provide personalized feedback to
students on their IPAS is to highlight these two buggy lines.
However, it is essential to check these faults by fixing the
program and evaluating it against the test suite.

Using traditional Automated Program Repair (APR) tools
for IPAS based on Formal Methods, such as CLARA (Gul-

1https://github.com/pmorvalho/LLM-CEGIS-Repair
2https://doi.org/10.5281/zenodo.14517771

wani, Radicek, and Zuleger 2018) or VERIFIX (Ahmed et al.
2022), the program in Listing 1 cannot be fixed within
90 seconds. CLARA takes too long to compute a ‘minimal’
repair by considering several correct implementations for
the same IPA, while VERIFIX returns a compilation error.
Conversely, using state-of-the-art LLMS trained for coding
tasks (LLMCS), GRANITE (Mishra et al. 2024) or CODE-
GEMMA (Zhao et al. 2024), would involve providing the de-
scription of the programming assignment and some exam-
ples of input-output tests. Even with these features, neither
LLM could fix the buggy program in Listing 1 within 90
seconds when repeatedly testing and refining their fixes. If
the lecturer’s reference implementation shown in Listing 2 is
suggested as a reference in the prompt, both LLMS simply
copy the correct program, ignoring instructions not to do so.

Hence, symbolic approaches demand an excessive
amount of time to produce an answer, and LLMS, while
fast, often produce incorrect fixes. A promising strategy to
provide feedback to students on IPAS is to combine the
strengths of both approaches. MaxSAT-based Fault local-
ization (Jose and Majumdar 2011a; Ignatiev et al. 2019)
can rigorously identify buggy statements, which can then be
highlighted in the LLM prompt to focus on the specific parts
of the program that need fixing. Listing 3 shows an example
of a program sketch, which is a partially incomplete program
where each buggy statement from the original incorrect pro-
gram in Listing 1 is replaced with a @ HOLE @. Instructing
the LLMS to complete this incomplete program allows both
GRANITE and CODEGEMMA to fix the buggy program in a
single interaction, returning the program in Listing 4.

Preliminaries
This section provides definitions used throughout the paper.

Synthesis Problem. For a given program’s specification
S (e.g., input-output examples), G a context-free grammar
(CFG), and O be the semantics for a particular Domain-
specific language (DSL), the goal of program synthesis is
to infer a program P such that (1) the program is produced
by G, (2) the program is consistent with O and (3) P is con-
sistent with S (Orvalho et al. 2019; Ramos et al. 2020).

Semantic Program Repair. Given (T,G,O, P ), let T be
a set of input-output examples (test suite), G be a grammar,
O be the semantics for a particular Domain-specific lan-
guage, and P be a syntactically well-formed program (i.e.
sets of statements, instructions, expressions) consistent with
G and O but semantically erroneous for at least one of the
input-output tests i.e., ∃{tiin, tiout} ∈ T : P (tiin) ̸= tiout.
The goal of Semantic Program Repair is to find a pro-
gram Pf by semantically change a subset S1 of P ’s state-
ments (S1 ⊆ P ) for another set of statements S2 consis-
tent with G and O, such that, Pf = ((P \ S1) ∪ S2) and
∀{tiin, tiout} ∈ T : Pf (t

i
in) = tiout.

Counterexample Guided Inductive Synthesis (CEGIS).
CEGIS is an iterative algorithm commonly used in Pro-
gram Synthesis and Formal Methods to construct programs
or solutions that satisfy a given specification (Abate et al.
2018; Jha et al. 2010; Solar-Lezama et al. 2005). CEGIS



Listing 1: Semantically incorrect program. Faulty lines: {4,8}.
1 int main(){ // finds maximum of 3 numbers
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f < s && f >= t) //fix: f >= s
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else if (t < f && t < s) //fix: t > f and t > s
9 printf("%d",t);

10
11 return 0;
12 }

Listing 2: Reference implementation.
1 int main() {
2 int m1,m2,m3,m;
3 scanf("%d%d%d",&m1,&m2,&m3);
4 m = m1 > m2 ? m1 : m2;
5 m = m3 > m ? m3 : m;
6 printf("%d\n", m);
7
8 return 0;
9 }

Listing 3: Program sketch with holes.
1 int main(){
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 @ HOLE 1 @
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 @ HOLE 2 @
9 printf("%d",t);

10
11 return 0;
12 }

Tests
t0 t1 t2

Input
1 6 -1
2 2 3
3 1 1

Output 3 6 3

Table 1: Test suite.

Listing 4: GRANITE’s fix using the program sketch.
1 int main(){
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f >= s && f >= t)
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else
9 printf("%d",t);

10
11 return 0;
12 }

consists of two steps: the synthesis step and the verifica-
tion step. Given the specification of the desired program,
the inductive synthesis procedure generates a candidate pro-
gram. Next, the candidate program P is passed to the ver-
ification step, which checks whether P satisfies all possi-
ble inputs’ specifications. Otherwise, the Decider produces
a counterexample c from the satisfying assignment, which is
then added to the set of inputs passed to the synthesizer, and
the loop repeats. The synthesis engine refines its hypothesis
using this counterexample to avoid similar mistakes in sub-
sequent iterations. This iterative loop (comprising candidate
generation, verification, counterexample generation, and re-
finement) continues until a correct candidate is found that
satisfies all given specifications and constraints.

Maximum Satisfiability (MaxSAT). The Boolean Satisfi-
ability (SAT) problem is the decision problem for proposi-
tional logic (Biere et al. 2009). A propositional formula in
Conjunctive Normal Form (CNF) is a conjunction of clauses
where each clause is a disjunction of literals. The Maximum
Satisfiability (MaxSAT) problem is an optimization version
of SAT, i.e., the goal is to find an assignment that maximizes
the number of satisfied clauses in a CNF formula (Orvalho,
Manquinho, and Martins 2023).

Formula-based Fault Localization (FBFL). Given a
faulty program and a test suite with failing test cases,
formula-based fault localization (FBFL) methods encode
the localization problem into an optimization problem to
identify a minimal set of faulty statements (diagnoses)
within a program. FBFL tools leverage MaxSAT and the
theory of Model-Based Diagnosis (MBD) (Reiter 1987;
Jose and Majumdar 2011b; Marques-Silva et al. 2015; Ig-
natiev et al. 2019; Orvalho, Janota, and Manquinho 2024b).
Moreover, these FBFL tools enumerate all diagnoses of a
MaxSAT formula corresponding to bug locations.

Fault Localizer

Prompt
Generator

Specs + FL

Code Generator
(LLMS)

Prompt

Decider

Feedback + Counterexample

Candidate Program

IPA Spec.
+

Buggy Program

Fixed
Program

Figure 1: Counterexample Guided Automated Repair.

Program Sketch. A program sketch is a partially incom-
plete program where all buggy statements are replaced by
placeholders, identified as “@ HOLES @”. These place-
holders indicate parts of the program that need to be syn-
thesized to ensure the program complies with a given speci-
fication (e.g., a test suite). Listing 3 shows a program sketch.

Abstract Syntax Tree (AST). An AST is a syntax tree
in which each node represents an operation, and the node’s
children represent the arguments of the operation for a
given programming language described by a Context-Free
Grammar. An AST depicts a program’s grammatical struc-
ture (Aho, Sethi, and Ullman 1986; da Silva 2019).

Counterexample Guided Automated Repair
Our approach combines the strengths of both Formal Meth-
ods (FM) and LLMS to enhance Automated Program Repair
(APR). Firstly, we employ MaxSAT-based fault localization
techniques to rigorously identify the minimal set of buggy
parts of a program (Ignatiev et al. 2019; Orvalho, Janota,
and Manquinho 2024b). Afterwards, we leverage LLMS to
quickly synthesize the missing parts in the program sketch.
Finally, we use a counterexample from the test suite to guide
LLMS in generating patches that make the synthesized pro-
gram compliant with the entire test suite, thus completing



the repair. The rationale of our approach follows a Coun-
terexample Guided Inductive Synthesis (CEGIS) (Solar-
Lezama et al. 2006) loop to iteratively refine the program.
Figure 1 provides an overview of our APR approach. The
input is a buggy program and the specifications for an in-
troductory programming assignment (IPA), including a test
suite, a description of the IPA, and the lecturer’s reference
implementation. We start by using MaxSAT-based fault lo-
calization techniques to identify the program’s minimal set
of faulty statements. Next, the prompt generator builds a
prompt based on the specifications of the IPA and a bug-
free program sketch reflecting the localized faults, then feeds
this information to the LLM. The LLM generates a program
based on the provided prompt. After each iteration, the De-
cider module evaluates the synthesised program against a
test suite. If the program is incorrect, a counterexample cho-
sen from the test suite is sent back to the prompt genera-
tor, which then provides this counterexample to the LLM to
prompt a revised synthesis.

Prompts. The prompts fed to LLMS can contain various
types of information related to the IPA. The typical infor-
mation available in every programming course includes the
description of the IPA, the test suite to check the students’
submissions corresponding to the IPA’s specifications, and
the lecturer’s reference implementation. The syntax used in
our prompts is similar to that in other works on LLM-driven
program repair (Joshi et al. 2023). We have evaluated several
types of prompts. Basic prompts are the simplest prompts
that can be fed to an LLM without additional computation,
including all the programming assignment’s basic informa-
tion. An example of such a prompt is shown below:
Fix all semantic bugs in the buggy program
below. Modify the code as little as possible.
Do not provide any explanation.

### Problem Description ###
Write a program that determines and
prints the largest of three integers
given by the user.

### Test Suite
#input:
6 2 1
#output:
6
// The other input-output tests

# Reference Implementation (Do not copy
this program) <c> #
```c
int main(){
// Reference Implementation

}```

### Buggy Program <c> ###
```c
int main(){
// Buggy program from Listing 1

}```

### Fixed Program <c> ###

```c

In order to incorporate information about the faults local-
ized in the program using MaxSAT-based fault localization,
we utilized two different types of prompts: (1) FIXME anno-
tations and (2) program sketches. FIXME annotated prompts
are prompts where each buggy line identified by the fault lo-
calization tool is marked with a /* FIXME */ comment.
These prompts are quite similar to the basic prompt de-
scribed previously, with the primary differences being the
annotations in the buggy program and the first command
given to the LLMS, which is modified as follows:
Fix all buggy lines with '/* FIXME */'
comments in the buggy program below.

In the second type of prompt, to address program repair
as a string completion problem, we evaluated the use of
prompts where the buggy program is replaced by an incom-
plete program (program sketch), with each line identified as
buggy by our fault localization module replaced by a hole.
The command given to the LLMS is now to complete the in-
complete program. Consequently, the sections ‘Buggy Pro-
gram’ and ‘Fixed Program’ are replaced by ‘Incomplete Pro-
gram’ and ‘Complete Program’, respectively, as follows:
Complete all the '@ HOLES N @' in the
incomplete program below.
// ...
### Incomplete Program <c> ###
// ...
### Complete Program <c> ###

Feedback. If the candidate program generated by the
LLM is not compliant with the test suite, this feedback is
provided to the LLM in a new message through iterative
querying. This new prompt indicates that the LLM’s previ-
ous suggestion to fix the buggy program was incorrect and
provides a counterexample (i.e., an IO test) where the sug-
gested fixed program produces an incorrect output. Hence,
we provide the LLM with a feedback prompt similar to:
### Feedback ###
Your previous suggestion was incorrect!
Try again. Code only. Provide no explanation.
### Counterexample ###
#input:
6 2 1
#output:
6

### Fixed Program <c> ###
```c

Experimental Results
The goal of our evaluation is to answer the following re-
search questions: RQ1. How effective are state-of-the-art
(SOTA) LLMS in repairing introductory programming as-
signments (IPAS) compared to different SOTA semantic
repair approaches? RQ2. How do different prompt con-
figurations impact the performance of LLMS? RQ3. How
does FM-based fault localization impact LLM-driven APR?
RQ4. How helpful is it to provide a reference implemen-
tation for the same IPA to the LLMS? RQ5. What is the
performance impact of using a Counterexample Guided ap-
proach in LLM-driven APR?



Experimental Setup. All LLMS were run using NVIDIA
RTX A4000 graphics cards with 16GB of memory on an In-
tel(R) Xeon(R) Silver 4130 CPU @ 2.10GHz with 48 CPUs
and 128GB RAM. All the experiments related to the pro-
gram repair tasks were conducted on an Intel(R) Xeon(R)
Silver computer with 4210R CPUs @ 2.40GHz, using a
memory limit of 10GB and a timeout of 90 seconds.

Evaluation Benchmark. To evaluate our work, we used
C-PACK-IPAS (Orvalho, Janota, and Manquinho 2024a),
which is a set of student programs developed during an in-
troductory programming course in the C programming lan-
guage. Since this work focuses only on semantic program
repair, only programs that compile without any errors were
selected. C-PACK-IPAS contains 1431 semantically incor-
rect programs, i.e., fail at least one input-output test.

Large Language Models (LLMS). In our experiments,
we used only open-access LLMS available on Hugging
Face (HuggingFace 2024) with approximately 7 billion pa-
rameters for three primary reasons. Firstly, closed-access
models like Chat-GPT are cost-prohibitive and raise con-
cerns over student data privacy. Secondly, models with a
very large number of parameters (e.g., 70B) need signif-
icant computational resources, such as GPUs with higher
RAM capacities, and take longer to generate responses,
which is unsuitable for a classroom setting. Thirdly, we
used these off-the-shelf LLMS to evaluate the publicly avail-
able versions without fine-tuning them. This approach en-
sures that the LLMS used in this paper are available to any-
one without investing time and resources into fine-tuning
these models. Thus, we evaluated six different LLMS for
this study through iterative querying. Three of these mod-
els are LLMCS, i.e., LLMS fine-tuned for coding tasks:
IBM’s GRANITE (Mishra et al. 2024), Google’s CODEGEM-
MA (Zhao et al. 2024) and Meta’s CODELLAMA (Rozière
et al. 2023). The other three models are general-purpose
LLMS not specifically tailored for coding tasks: Google’s
GEMMA (Mesnard et al. 2024), Meta’s LLAMA3 (latest ver-
sion of the LLAMA family (Touvron et al. 2023)) and Mi-
crosoft’s PHI3 (Abdin et al. 2024).

We selected specific variants of each model to optimize
their performance for our program repair tasks. For Meta’s
LLAMA3, we utilized the 8B-parameter instruction-tuned
variant. This model is designed to follow instructions more
accurately, making it suitable for a range of tasks, includ-
ing program repair. For CODELLAMA, we used the 7B-
parameter instruct-tuned version, which is specifically de-
signed for general code synthesis and understanding, mak-
ing it highly effective for coding tasks. We employed GRA-
NITE model with 8B-parameters, fine-tuned to respond to
coding-related instructions. For PHI3, we opted for the mini
version, which has 3.8B-parameters and a context length
of 128K. This smaller model is efficient yet capable of
handling extensive context, making it practical for educa-
tional settings. For GEMMA, we used the 7B-parameter
instruction-tuned version, optimized to follow detailed in-
structions. Lastly, for CODEGEMMA, we selected the 7B-
parameter instruction-tuned variant, designed specifically
for code chat and instruction, enhancing its capability to

handle programming-related queries and tasks. To fit all
LLMS into 16GB GPUs, we used model quantization of
4bit. Moreover, all LLMS were run using Hugging Face’s
Pipeline architecture. By using these different LLMS, we
aimed to balance computational efficiency with the ability
to effectively generate and refine code, facilitating a practi-
cal APR approach in an educational environment.

Fault Localization (FL). We used CFAULTS (Orvalho,
Janota, and Manquinho 2024b) which is a formula-based FL
tool, that pinpoints bug locations within the programs. It ag-
gregates all failing test cases into a unified MaxSAT formula.
This FL tool can be easily replaced by other FL tools.

Evaluation.
To assess the effectiveness of the program fixes generated by
the LLMS under different prompt configurations, we used
two key metrics: the number of programs successfully re-
paired and the quality of the repairs. For assessing the patch
quality, we use the Tree Edit Distance (TED) (Tai 1979;
Zhang and Shasha 1989) to compute the distance between
the student’s buggy program and the fixed program returned
by the LLMS. TED computes the structural differences be-
tween two Abstract Syntax Trees (ASTS) by calculating the
minimum number of edit operations (i.e., insertions, dele-
tions, and substitutions) needed to transform one AST into
another. Based on this metric for measuring program dis-
tances, we computed the distance score, defined by Equa-
tion 1. This score aims to identify and penalize LLMS that
replace the buggy program with the reference implementa-
tion rather than fixing it. The distance score is zero when
the TED of the original buggy program (To) to the program
suggested by the LLM (Tf ) is the same as the TED of the
reference implementation (Tr) to To. Otherwise, it penalizes
larger fixes than necessary to align the program with the cor-
rect implementation.

ds(Tf , To, Tr) = max
(
0, 1− TED(Tf , To)

TED(Tr, To)

)
(1)

Baseline. We used two state-of-the-art traditional seman-
tic program repair tools for IPAS as baselines: VERI-
FIX (Ahmed et al. 2022) and CLARA (Gulwani, Radicek,
and Zuleger 2018). VERIFIX employs MaxSMT to align a
buggy program with a reference implementation provided
by the lecturer, while CLARA clusters multiple correct im-
plementations and selects the one that produces the small-
est fix when aligned with the buggy program. Both tools re-
quire an exact match between the control flow graphs (e.g.,
branches, loops) and a bijective relationship between the
variables; otherwise, they return a structural mismatch error.
VERIFIX was provided with each buggy program, the refer-
ence implementation, and a test suite. CLARA was given all
correct programs from different academic years to generate
clusters for each IPA. Within a 90-second time limit, CLA-
RA repairs 495 programs (34.6%), times out without pro-
ducing a repair on 154 programs (10.8%), and fails to repair
738 programs (54.7%). In comparison, VERIFIX repairs 91
programs (6.3%), reaches the time limit on 0.6%, and fails



Configurations without access to Reference Implementations

LLMS De-TS De-TS-CE FIXME De-TS FIXME De-TS-CE Sk De-TS Sk De-TS-CE Portfolio
(All Configurations)

CodeGemma 597 (41.7%) 606 (42.3%) 592 (41.4%) 601 (42.0%) 682 (47.7%) 688 (48.1%) 823 (57.5%)
CodeLlama 492 (34.4%) 500 (34.9%) 481 (33.6%) 463 (32.4%) 573 (40.0%) 561 (39.2%) 712 (49.8%)

Gemma 496 (34.7%) 492 (34.4%) 446 (31.2%) 444 (31.0%) 532 (37.2%) 534 (37.3%) 670 (46.8%)
Granite 626 (43.7%) 624 (43.6%) 566 (39.6%) 583 (40.7%) 691 (48.3%) 681 (47.6%) 846 (59.1%)
Llama3 564 (39.4%) 590 (41.2%) 535 (37.4%) 557 (38.9%) 578 (40.4%) 591 (41.3%) 851 (59.5%)

Phi3 494 (34.5%) 489 (34.2%) 460 (32.1%) 474 (33.1%) 547 (38.2%) 535 (37.4%) 621 (43.4%)

Portfolio
(All LLMS) 842 (58.8%) 846 (59.1%) 796 (55.6%) 820 (57.3%) 900 (62.9%) 907 (63.4%) 1013 (70.8%)

Configurations with access to Reference Implementations

LLMS De-TS-CE-CPA De-TS-CE-RI FIXME De-TS-CE-CPA FIXME De-TS-CE-RI Sk De-TS-CE-CPA Sk De-TS-CE-RI Portfolio
(All Configurations)

CodeGemma 578 (40.4%) 576 (40.3%) 637 (44.5%) 638 (44.6%) 725 (50.7%) 739 (51.6%) 916 (64.0%)
CodeLlama 528 (36.9%) 525 (36.7%) 565 (39.5%) 609 (42.6%) 633 (44.2%) 675 (47.2%) 893 (62.4%)

Gemma 595 (41.6%) 607 (42.4%) 563 (39.3%) 616 (43.0%) 664 (46.4%) 732 (51.2%) 951 (66.5%)
Granite 773 (54.0%) 828 (57.9%) 794 (55.5%) 857 (59.9%) 838 (58.6%) 876 (61.2%) 1132 (79.1%)
Llama3 685 (47.9%) 691 (48.3%) 657 (45.9%) 681 (47.6%) 725 (50.7%) 730 (51.0%) 1016 (71.0%)

Phi3 552 (38.6%) 444 (31.0%) 545 (38.1%) 492 (34.4%) 639 (44.7%) 647 (45.2%) 899 (62.8%)

Portfolio
(All LLMS) 1033 (72.2%) 1046 (73.1%) 1011 (70.6%) 1056 (73.8%) 1050 (73.4%) 1077 (75.3%) 1190 (83.2%)

Table 2: The number of programs fixed by each LLM under various configurations. Row Portfolio (All LLMS), shows the best
results across all LLMS for each configuration. Column Portfolio (All Configurations) shows the best results for each LLM
across all configurations. Mapping abbreviations to configuration names: De - IPA Description, TS - Test Suite, CE - Counter-
example, RI - Reference Implementation, CPA - Closest Program using ASTS, FIXME - FIXME Annotations, SK - Sketches.

Metric: sum(Distance Score)
Configurations

LLMS De-TS De-TS-CE De-TS-CE-CPA De-TS-CE-RI Sk De-TS Sk De-TS-CE Sk De-TS-CE-CPA Sk De-TS-CE-RI
CodeGemma 471.0 486.4 429.7 440.4 524.4 529.5 249.8 497.3
CodeLlama 437.5 438.8 409.5 404.8 477.9 464.5 251.3 459.0

Gemma 306.5 296.9 370.8 231.0 338.8 340.3 156.4 316.2
Granite 512.8 506.3 453.4 292.1 539.8 533.6 172.3 334.5
Llama3 367.9 368.0 414.8 381.9 379.8 384.5 172.7 423.0

Phi3 291.9 292.6 287.6 148.1 326.5 321.4 98.2 253.4

Table 3: The cumulative distance scores for each program successfully repaired by each LLM across various configurations.

LLMS CodeGemma+Sk De-TS-CE CodeLlama+Sk De-TS Gemma+Sk De-TS-CE Granite+Sk De-TS Llama3+Sk De-TS-CE Phi3+Sk De-TS
#Programs Fixed 270 (34.5%) 210 (26.8%) 210 (26.8%) 290 (37.0%) 199 (25.4%) 199 (25.4%)

Table 4: The number of programs repaired by each LLM using their best-performing prompt configuration, specifically on the
subset of programs where CLARA fails to repair due to control-flow issues (54.7% of C-PACK-IPAS).

Quartiles for Average
Cyclomatic Complexity CodeGemma+Sk De-TS-CE CodeLlama+Sk De-TS Gemma+Sk De-TS-CE Granite+Sk De-TS Llama3+Sk De-TS-CE Phi3+Sk De-TS CLARA

Q1: 1.0-2.5 231 (76.5%) 178 (58.9%) 183 (60.6%) 201 (66.6%) 217 (71.9%) 198 (65.6%) 164 (54.3%)
Q2: 2.5-3.5 231 (65.3%) 212 (59.9%) 169 (47.7%) 231 (65.3%) 192 (54.2%) 180 (50.9%) 163 (46.1%)
Q3: 3.5-7.0 168 (45.3%) 140 (37.7%) 129 (34.8%) 190 (51.2%) 139 (37.5%) 125 (33.7%) 124 (33.4%)
Q4: 7.0-26 58 (14.4%) 43 (10.6%) 53 (13.1%) 69 (17.1%) 43 (10.6%) 44 (10.9%) 44 (10.9%)

Table 5: The number of programs repaired by each LLM using their best-performing prompt configuration, considering the
average cyclomatic complexity of programs (Lizard 2024).

to repair 1338 programs (93.5%). The main reason for these
failures is that both tools rely on structure mismatch errors.

Table 2 presents the number of programs successfully
repaired by each LLM under various configurations. The
row labeled Portfolio represents the best possible out-
comes by selecting the optimal configuration for each pro-
gram across all LLMS. Meanwhile, Portfolio column
highlights the best results achieved by a particular LLM
across all tested configurations. The configurations yield-
ing the highest success rates for the six evaluated LLMS in-
volve incorporating a reference implementation of the IPA
into the prompt. However, rather than genuinely fixing the

buggy program, the LLMS often replace it with the refer-
ence implementation. For instance, GRANITE repairs 876
programs using a configuration that includes bug-free pro-
gram sketches (Sk), an IPA description, counterexamples, a
test suite, and the reference implementation (Sk De-TS-CE-
RI). Notably, 442 of these repaired programs exhibit a TED
value of zero between the reference implementation and the
fixed program, indicating that GRANITE is replicating the
reference implementation. To address this, we separately an-
alyzed configurations that include and exclude access to a
reference implementation. When no reference implementa-
tion is provided (top of Table 2), GRANITE still leads among
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Figure 2: Comparison of tree edit distances (TED) for GRA-
NITE’s repairs when using (x-axis) versus not using (y-axis)
correct implementations with configuration Sk De-TS-CE.

the LLMS, fixing up to 59.1% of the programs across all
configurations and 48.3% when using sketches (SK), the
IPA description, and a test suite (SK De-TS). CODEGEM-
MA also performs well, achieving up to 57.5% success in a
portfolio approach and showing particular strength in con-
figurations involving sketches (SK). For instance, CODE-
GEMMA can repair 48.1% of the evaluation benchmark us-
ing bug-free sketches, IPA description, test suite, and coun-
terexample (SK De-TS-CE). Configurations incorporating
sketches (SK) and FIXME annotations generally yield bet-
ter results. Including counterexamples (CE), IPA descrip-
tions, and test suites (De-TS) further boosts the success rate
across different LLMS. The portfolio approach, which com-
bines the strengths of all LLMS and configurations without
using reference implementation, achieves the highest over-
all success rate, fixing 70.8% of the programs. This demon-
strates that leveraging multiple LLMS together can signifi-
cantly enhance repair success.

Moreover, considering only CEGIS loops where LLMS
were able to repair the program within the time limit, the
minimum number of iterations is one, the maximum num-
ber of iterations to fix a program is seven, and the average
number of iterations is 1.14. In 89% of the cases, the pro-
gram is repaired on the first attempt.

Furthermore, we provide the results of LLMS with a ref-
erence implementation (bottom of Table 2). The reference
implementation can be either the lecturer’s implementation
for the same IPA or the closest correct program based on
the programs’ Abstract Syntax Trees (ASTs) from a previ-
ously submitted student program, determined by Tree Edit
Distance (TED) values (Orvalho, Janota, and Manquinho
2022a). The intent was to allow the model to reuse correct
code snippets to generate repairs. Results show that includ-
ing a reference implementation allows for better repair re-
sults. However, as mentioned earlier, the LLMS often sim-
ply copy the provided reference implementation.

Table 3 presents the sum of the distance scores (see Eq. 1)
for the top-performing LLMS from Table 2 across different
configurations. This summation aims to penalize LLMS that
either copy the provided reference implementation or gener-

ate unnecessarily large repairs. For example, GRANITE us-
ing configuration Sk De-TS-CE-RI can repair 876 programs
but yields a total distance score of 334.5, whereas using the
same configuration without a correct implementation repairs
681 programs resulting in a higher distance score of 533.6.

Figure 2 shows a scatter plot that compares the tree edit
distance (TED) of the buggy program to the program fixed
by GRANITE with and without a reference implementation,
using configuration Sk De-TS-CE. Each point represents a
faulty program, where the x-value (resp. y-value) represents
the TED cost of GRANITE’ with access to a reference im-
plementation (resp. without it). Points below the diagonal
indicate that fixing a program with access to a correct im-
plementation incurs a higher TED cost than fixing it without
access. This suggests that while access to a reference imple-
mentation enables GRANITE and other LLMS to repair more
programs, it often results in larger changes to the student’s
program than when no correct implementation is given.

Discussion.
To answer our research questions: For RQ1, all six LLMS
using different prompt configurations repair more programs
than traditional repair tools. For RQ2, prompt configurations
with FL-based Sketches, IPA description and test suite yield
the most successful repair outcomes. Moreover, for RQ3,
it is clear that incorporating FL-based Sketches (or even
FIXME annotations) allows the LLMS to repair more pro-
grams than only providing the buggy program. For RQ4, in-
cluding a reference implementation allows for more repaired
programs but with potentially less efficient fixes. Finally, for
RQ5, employing a Counterexample guided approach signif-
icantly improves the accuracy of LLM-driven APR across
various configurations. Counterexamples help in the repair
process of certain LLMS, such as CODEGEMMA and LLA-
MA3, across all prompt configurations. For other LLMS,
counterexamples are beneficial but only in specific configu-
rations. This difference may be due to variations in the train-
ing data used for each LLM. However, a more detailed anal-
ysis is necessary.

Furthermore, we analyzed the effectiveness of LLMS
in repairing programs that CLARA fails to address due
to control-flow issues, representing 54.7% of C-PACK-
IPAS (738 programs). Table 4 presents these results. Among
the best-performing configurations, GRANITE with Sk De-
TS achieved the highest repair rate, successfully fixing 290
programs (37.0%) in this subset. This highlights GRANI-
TE’s strong capability to handle complex program structures
where traditional constraint-based tools fail. CODEGEMMA
with Sk De-TS-CE also performed well, repairing 270 pro-
grams (34.5%), demonstrating the advantage of incorporat-
ing counterexamples (CE) alongside the Sketches (Sk) con-
figuration. In contrast, models such as LLAMA3 and PHI3
achieved lower success rates, each repairing only 199 pro-
grams (25.4%), suggesting limitations in their ability to gen-
eralize and address intricate control-flow issues.

To gain deeper insights into LLMS’ performance across
varying levels of program complexity, we evaluated the av-
erage cyclomatic complexity of each program in C-PACK-
IPAS using lizard (Lizard 2024). Table 5 summarizes



these findings, divided into quartiles based on cyclomatic
complexity. For simpler programs (Q1: 1.0–2.5), CODE-
GEMMA +Sk De-TS-CE excelled, achieving a 76.5% re-
pair rate. However, as program complexity increased (Q3:
3.5–7.0), GRANITE +Sk De-TS outperformed the other
models with a 51.2% repair rate, underscoring its robustness
in tackling moderately complex programs. In the most chal-
lenging cases (Q4: 7.0–26), GRANITE retained its lead, re-
pairing 17.1% of programs. These results suggest that while
CODEGEMMA is highly effective for simpler errors, GRA-
NITE exhibits superior adaptability and resilience when ad-
dressing programs of greater complexity. Table 5 also shows
that all evaluated models, including CLARA, face significant
challenges in repairing programs with an average cyclomatic
complexity higher than seven.

Related Work
Several constraint-based program repair techniques have
been proposed to check if a student’s program is seman-
tically correct: clustering-based (Gulwani, Radicek, and
Zuleger 2018), implementation-driven (Wang, Singh, and Su
2018; Ahmed et al. 2022; Hu et al. 2019; Liu et al. 2019),
and semantic code search (Afzal et al. 2019). Clustering-
based repair tools (Gulwani, Radicek, and Zuleger 2018)
receive an incorrect program, a test suite, and a set of cor-
rect student submissions for the same IPA. Implementation-
driven repair tools use one reference implementation to re-
pair a given incorrect submission (Ahmed et al. 2022).

Large Language Models (LLMS) trained on code
(LLMCS) have demonstrated significant effectiveness in
generating program fixes (Joshi et al. 2023; Xia, Ding, and
Zhang 2023; Wei, Xia, and Zhang 2023; Fan et al. 2023;
Xia, Wei, and Zhang 2023; Brancas, Manquinho, and Mar-
tins 2024; Ramos et al. 2024). For instance, RING (Joshi
et al. 2023) is a multilingual repair engine powered by an
LLMC that uses fault localization (FL) information from
error messages and leverages the few-shot capabilities of
LLMCS for code transformation. In the context of Auto-
mated Program Repair (APR) for programming education,
several works have explored the use of LLMS for cod-
ing tasks (Zhang et al. 2024; Phung et al. 2023; Liffiton
et al. 2023). PyDex (Zhang et al. 2024), for example, em-
ploys iterative querying with CODEX, an LLMC version of
ChatGPT, using test-based few-shot selection and structure-
based program chunking to repair syntax and semantic er-
rors in Python assignments. Similarly, CODEHELP (Liffiton
et al. 2023) utilizes OpenAI’s LLMS to provide textual feed-
back to students on their assignments. However, to the best
of our knowledge, no existing work has explored the use of
LLMS guided by formula-based FL.

Conclusion
Large Language Models (LLMS) excel at completing
strings, while MaxSAT-based fault localization (FL) ex-
cels at identifying buggy parts of a program. We pro-
posed a novel approach combining MaxSAT-based FL and
LLMS via zero-shot learning to enhance Automated Pro-
gram Repair (APR) for introductory programming assign-

ments (IPAS). Experiments show that our bug-free program
sketches significantly improve the repair capabilities of all
six evaluated LLMS, enabling them to repair more programs
and produce smaller patches compared to other configu-
rations and state-of-the-art symbolic program repair tools.
Therefore, this interaction between Formal Methods and
LLMS yields more accurate and efficient program fixes, en-
hancing feedback mechanisms in programming education.
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