
Dr
af
t

LATEX TikZposter

COUNTEREXAMPLE GUIDED PROGRAM REPAIR USING ZERO-SHOT
LEARNING AND MAXSAT-BASED FAULT LOCALIZATION

Pedro Orvalho, Mikoláš Janota, Vasco M. Manquinho
pedro.orvalho@cs.ox.ac.uk

Department of Computer Science, University of Oxford, Oxford, UK

COUNTEREXAMPLE GUIDED PROGRAM REPAIR USING ZERO-SHOT
LEARNING AND MAXSAT-BASED FAULT LOCALIZATION

Pedro Orvalho, Mikoláš Janota, Vasco M. Manquinho
pedro.orvalho@cs.ox.ac.uk

Department of Computer Science, University of Oxford, Oxford, UK

Listing 1 Semantically incorrect program. Faulty lines:
{4,8}.

1 int main(){ // finds maximum of 3 numbers
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f<s && f>=t) //fix: f>=s
5 printf("%d",f);
6 else if (s>f && s>=t)
7 printf("%d",s);
8 else if (t<f && t<s) //fix: t>f and t>s
9 printf("%d",t);

10 return 0;
11 }

Listing 2 Reference implementation.

1 int main() {
2 int m1,m2,m3,m;
3 scanf("%d%d%d",&m1,&m2,&m3);
4 m = m1 > m2 ? m1 : m2;
5 m = m3 > m ? m3 : m;
6 printf("%d\n", m);
7 return 0;
8 }

Listing 3 Program sketch with holes.

1 int main(){
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 @ HOLE 1 @
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 @ HOLE 2 @
9 printf("%d",t);

10 return 0;
11 }

Listing 4 GRANITE’s fix using the program sketch.

1 int main(){
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f >= s && f >= t)
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else
9 printf("%d",t);

10 return 0;
11 }

the inductive synthesis procedure generates a candidate pro-
gram. Next, the candidate program P is passed to the ver-
ification step, which checks whether P satisfies all possi-
ble inputs’ specifications. Otherwise, the Decider produces
a counterexample c from the satisfying assignment, which is
then added to the set of inputs passed to the synthesizer, and
the loop repeats. The synthesis engine refines its hypothesis
using this counterexample to avoid similar mistakes in sub-
sequent iterations. This iterative loop (comprising candidate
generation, verification, counterexample generation, and re-
finement) continues until a correct candidate is found that
satisfies all given specifications and constraints.

Maximum Satisfiability (MaxSAT). The Boolean Satisfi-
ability (SAT) problem is the decision problem for proposi-
tional logic (Biere et al. 2009). A propositional formula in
Conjunctive Normal Form (CNF) is a conjunction of clauses
where each clause is a disjunction of literals. The Maximum
Satisfiability (MaxSAT) problem is an optimization version
of SAT, i.e., the goal is to find an assignment that maximizes
the number of satisfied clauses in a CNF formula (Orvalho,
Manquinho, and Martins 2023).

Formula-based Fault Localization (FBFL). Given a
faulty program and a test suite with failing test cases,
formula-based fault localization (FBFL) methods encode
the localization problem into an optimization problem to
identify a minimal set of faulty statements (diagnoses)
within a program. FBFL tools leverage MaxSAT and the
theory of Model-Based Diagnosis (MBD) (Reiter 1987;
Jose and Majumdar 2011b; Marques-Silva et al. 2015; Ig-
natiev et al. 2019; Orvalho, Janota, and Manquinho 2024b).
Moreover, these FBFL tools enumerate all diagnoses of a
MaxSAT formula corresponding to bug locations.

Program Sketch. A program sketch is a partially incom-
plete program where all buggy statements are replaced by
placeholders, identified as “@ HOLES @”. These place-
holders indicate parts of the program that need to be syn-
thesized to ensure the program complies with a given speci-
fication (e.g., a test suite). Listing 3 shows a program sketch.

Abstract Syntax Tree (AST). An AST is a syntax tree
in which each node represents an operation, and the node’s
children represent the arguments of the operation for a
given programming language described by a Context-Free
Grammar. An AST depicts a program’s grammatical struc-
ture (Aho, Sethi, and Ullman 1986).

Counterexample Guided Automated Repair
Our approach combines the strengths of both Formal Meth-
ods (FM) and LLMS to enhance Automated Program Repair
(APR). Firstly, we employ MaxSAT-based fault localization
techniques to rigorously identify the minimal set of buggy
parts of a program (Ignatiev et al. 2019; Orvalho, Janota,
and Manquinho 2024b). Afterwards, we leverage LLMS to
quickly synthesize the missing parts in the program sketch.
Finally, we use a counterexample from the test suite to guide
LLMS in generating patches that make the synthesized pro-
gram compliant with the entire test suite, thus completing
the repair. The rationale of our approach follows a Coun-
terexample Guided Inductive Synthesis (CEGIS) (Solar-
Lezama et al. 2006) loop to iteratively refine the program.
Figure 1 provides an overview of our APR approach. The
input is a buggy program and the specifications for an intro-
ductory programming assignment (IPA), including its de-
scription, a test suite, and the lecturer’s reference solution.
We start by using MaxSAT-based fault localization tech-

Motivation

• Listing 1 aims to determine the maximum among three given numbers;
• Traditional Automated Program Repair (APR) tools for introductory programming
assignments (IPAS) based on Formal Methods, such as CLARA or VERIfiX, cannot
fix this program within 90s.

•CLARA takes too long to compute a ‘minimal’ repair by considering several correct
implementations for the same IPA, while VERIfiX returns a compilation error.

• Using LLMS trained for coding tasks (LLMCS), GRANITE or CODEGEMMA, would in-
volve providing the description of the IPA and some IO tests.

• Nonetheless, neither LLM could fix the buggy program in Listing 1 within 90s.
• Suggesting the program in Listing 2 as a correct implementation, both LLMSsimply
copy the correct program, ignoring instructions not to do so.

• Thus, symbolic approaches demand an excessive amount of time to produce an
answer, and LLMS, while fast, often produce incorrect fixes.

Our work

• Combines the strengths of Formal Methods (FM) and LLM-based approaches;
• Uses MaxSAT-based fault localization to rigorously identify buggy lines, which
can then be highlighted in the LLM prompt to focus only on these lines;

• Listing 3 shows an example of a program sketch, which is a partially incomplete
program where each buggy statement is replaced with a @ HOLE @;

• Instructing the LLMS to complete this sketch allows both LLMS to fix the buggy
program in a single interaction, returning the program in Listing 4.

Contributions

•We tackle the Automated Program Repair (APR) problem using an LLM-Driven
Counterexample Guided Inductive Synthesis (CEGIS) approach;

•We employ MaxSAT-based Fault Localization to guide and minimize LLMS’
patches to incorrect programs by feeding them bug-free program sketches;

• Experiments show that with our approach all six evaluated LLMS fix more pro-
grams and produce smaller patches than other configurations and symbolic tools;

• Our code is available on GitHub and on Zenodo.

This work was supported by ERC AdG FUN2MODEL (Grant agreement No. 834115).

Counterexample Guided Automated Repair

Our approach follows a Counterexample Guided Inductive Synthesis (CEGIS) [1]
loop to iteratively refine the program.
The input is a buggy program and the specifications for an IPA, including its de-
scription, a test suite, and a correct solution. Then, we:
1. Employ MaxSAT-based fault localization to rigorously identify the minimal set of
buggy parts of a program;

2. Generate a prompt based on the specifications of the IPA and a bug-free program
sketch, then feed this information to the LLM;

3.The LLM generates a program based on the provided prompt;
4.The Decider evaluates the synthesized program against a test suite;
5. If the program is incorrect, a counterexample is sent to the prompt generator,

which then feeds this counterexample to the LLM to prompt a revised synthesis.

Fault Localizer

Prompt
Generator

Specs + FL

Code Generator
(LLMS)

Prompt

Decider

Feedback + Counterexample

Candidate Program

IPA Spec.
+

Buggy Program

Fixed
Program

Experimental Evaluation

•Evaluation Benchmark: We used C-PACK-IPAS [2], which consists of 1431 seman-
tically incorrect student C programs.

• Large Language Models (LLMS): We evaluated six different LLMS through itera-
tive querying. Three of these models are LLMCS, i.e., LLMS fine-tuned for coding
tasks: IBM’s GRANITE, Google’s CODEGEMMA and Meta’s CODELLAMA. The other
three models are general-purpose LLMS: Google’s GEMMA, Meta’s LLAMA3 and
Microsoft’s PHI3.

• Fault Localization (FL): We used CFAULTS [3], a MaxSAT-based FL tool that pin-
points bug locations within the programs.

LLMS De-TS De-TS-CE FIXME_De-TS FIXME_De-TS-CE Sk_De-TS Sk_De-TS-CE Portfolio
(All Configurations)

CodeGemma 597 (41.7%) 606 (42.3%) 592 (41.4%) 601 (42.0%) 682 (47.7%) 688 (48.1%) 823 (57.5%)
CodeLlama 492 (34.4%) 500 (34.9%) 481 (33.6%) 463 (32.4%) 573 (40.0%) 561 (39.2%) 712 (49.8%)
Gemma 496 (34.7%) 492 (34.4%) 446 (31.2%) 444 (31.0%) 532 (37.2%) 534 (37.3%) 670 (46.8%)
Granite 626 (43.7%) 624 (43.6%) 566 (39.6%) 583 (40.7%) 691 (48.3%) 681 (47.6%) 846 (59.1%)
Llama3 564 (39.4%) 590 (41.2%) 535 (37.4%) 557 (38.9%) 578 (40.4%) 591 (41.3%) 851 (59.5%)
Phi3 494 (34.5%) 489 (34.2%) 460 (32.1%) 474 (33.1%) 547 (38.2%) 535 (37.4%) 621 (43.4%)

Portfolio
(All LLMS) 842 (58.8%) 846 (59.1%) 796 (55.6%) 820 (57.3%) 900 (62.9%) 907 (63.4%) 1013 (70.8%)

Discussion:
•CLARA repairs 495 programs (34.6%), times out on 154 (10.8%), and fails to repair
738 programs (54.7%);

•VERIfiX repairs 91 programs (6.3%), reaches the time limit on 0.6%, and fails to
repair 1338 programs (93.5%);

•All six LLMS using different prompt configurations repair more programs than
traditional APR tools;

• Prompt configurations with FL-based Sketches, IPA description and test suite fix
more programs.

• Incorporating FL-based Sketches (or FIXME annotations) allows the LLMS to re-
pair more programs than only providing the buggy program.

• Including a reference implementation allows formore repaired programs but with
less efficient fixes (see our paper).

• Our CEGIS approach significantly improves the accuracy of LLM-driven APR
across various configurations.

References
[1] Armando Solar-Lezama et al. “Combinatorial sketching for finite programs”. In: ASPLOS 2006.
[2] Pedro Orvalho, Mikoláš Janota, and Vasco Manquinho. “C-Pack of IPAs: A C90 Program Bench-

mark of Introductory Programming Assignments”. In: Automated Program Repair (APR) 2024.
[3] Pedro Orvalho,Mikoláš Janota, and VascoManquinho. “CFaults: Model-Based Diagnosis for Fault

Localization in C Programs with Multiple Test Cases”. In: Formal Methods (FM) 2024.


