COUNTEREXAMPLE GUIDED PROGRAM REPAIR USING ZERO-SHOT
. EARNING AND MAXSAT-BASED FAULT LOCALIZATION

Pedro Orvalho, Mikolas Janota, Vasco M. Manquinho
pedro.orvalho@cs.ox.ac.uk

Department of Computer Science, University of Oxford, Oxford, UK

Listing 2 Reference implementation.

Counterexample Guided Automated Repair

Listing 1 Semantically incorrect program. Faulty lines:
4.8}

int main() {
int ml,m2, m3, m; .
%C?Eé gdigjgméii'g??'&m&' Our approach follows a Counterexample Guided Inductive Synthesis (CEGIS) [1]
printf("td\n", m; loop to iteratively refine the program.

} The input is a buggy program and the specifications for an IPA, including its de-

scription, a test suite, and a correct solution. Then, we:

int main(){ // finds maximum of 3 numbers
int f,s,t;
scanf ("$d%dsd", &f, &s, &t) ;
if (f<s && f>=t) //fix: f>=s
printf ("sd", f);
else if (s>f && s>=t)
printf ("sd", s);
else if (t<f && t<s)
printf ("sd",t);

0O N Lt AW

//fix: t>f and t>s

return 0O;

} 1. Employ MaxSAT-based fault localization to rigorously identify the minimal set of
buggy parts of a program;

2. Generate a prompt based on the specifications of the IPA and a bug-free program
sketch, then feed this information to the LLM;

3. The LLM generates a program based on the provided prompt;
4. The Decider evaluates the synthesized program against a test suite;

—_— O O 00 9 N Lt AW

e

Listing 3 Program sketch with holes. Listing 4 GRANITE’s fix using the program sketch.

int main () {

int f,s,t;

scanf ("$dsdsd", &£, &s, &t) ;

if (£ >= s && £ >= t)
printf ("%sd", £);

else if (s > £ && s >= t)
printf ("%d", s);

else
printf ("sd",t);

return O;

int main () {

int f,s,t;

scanf ("$dsdsd", &£, &s, &t) ;

@ HOLE 1 [g
printf ("%sd", £);

else if (s > £ && s >= t)
printf ("%d", s);

@ HOLE 2 [g
printf ("%sd",t);

return O;

5.If the program is incorrect, a counterexample is sent to the prompt generator,
which then feeds this counterexample to the LLM to prompt a revised synthesis.

_ O 0 0 NN WD
— O O 00 NN Nt AW

o
—

. . IPA S :
Motivation M

Buggy Program

Code Generator

Fault Localizer (LLMS)

- Listing 1T aims to determine the maximum among three given numbers; Specs + FL Candidate Program

- Traditional Automated Program Repair (APR) tools for introductory programming Prompy-
assignments (IPAs) based on Formal Methods, such as CLARA or VERIfiX, cannot Prompt Decider . Fixed
fix this program within 90s. Generator Program

\/

Feedback + Counterexample

- CLARA takes too long to compute a ‘minimal’ repair by considering several correct
implementations for the same IPA, while VERIfix returns a compilation error.

* Using LLMs trained for coding tasks (LLMCs), GRANITE or CODEGEMMA, would in-
volve providing the description of the IPA and some 10 tests.

- Nonetheless, neither LLM could fix the buggy program in Listing 1 within 90s. Experlmental Evaluation

- Evaluation Benchmark: We used C-PAck-IPAs [2], which consists of 1431 seman-
tically incorrect student C programs.

* Large Language Models (LLMs): We evaluated six different LLMs through itera-
tive querying. Three of these models are LLMCs, i.e., LLMs fine-tuned for coding
tasks: IBM’s GRANITE, Google’'s CODEGEMMA and Meta's CODELLAMA. The other
three models are general-purpose LLMs: Google's GEMMA, Meta's LLAMA3 and
Microsoft's PHI3.

- Fault Localization (FL): We used CFAuLTS [3], a MaxSAT-based FL tool that pin-
points bug locations within the programs.

- Suggesting the program in Listing 2 as a correct implementation, both LLMs simply
copy the correct program, ignoring instructions not to do so.

 Thus, symbolic approaches demand an excessive amount of time to produce an
answer, and LLMs, while fast, often produce incorrect fixes.

Our work

» Combines the strengths of Formal Methods (FM) and LLM-based approaches;

- Uses MaxSAT-based fault localization to rigorously identify buggy lines, which
can then be highlighted in the LLM prompt to focus only on these lines;

Portfolio
. . o LLM De-TS De-TS-CE FIXME_De-TS FIXME_De-TS-CE Sk_De-TS Sk_De-TS-CE .
- Listing 3 shows an example of a program sketch, which is a partially incomplete ° © © —° —° k-De k-De (All Configurations)
5 b . aced with , CodeGemma 597 (41.7%) 606 (42.3%) 592 (41.4%) 601(42.0%) 682 (47.7%) 688 (48.1%) 823 (57.5%)
program whnere each buggy statement is replaced with a @ HOLE ¢ CodeLlama 492 (34.4%) 500 (34.9%) 481(33.6%) 463 (32.4%) 573 (40.0%) 561(39.2%) 712 (49.8%)
. : : Gemma 496 (34.7%) 492 (34.4%) 446 (312%) 444 (31.0%) 532(37.2%) 534 (37.3%) 670 (46.8%)
Instructhg th? LLM? to complete th'? sketch allows POth L.LMS to fix the buggy Granite 626 (43.7%) 624 (43.6%) 566(39.6%) 583 (407%) 691(48.3%) 681(47.6%) 846 (59.1%)
program in a single interaction, returning the program in Listing 4. Llama3 564 (39.4%) 590 (41.2%) 535 (37.4%) 557 (38.9%) 578 (40.4%) 591 (41.3%) 851 (59.5%)
Phi3 494 (34.5%) 489 (34.2%) 460 (32.1%) 474(331%) 547 (38.2%) 535(37.4%) 621(43.4%)
(Z:’Irlt_ﬁ'/:g) 842 (58.8%) 846 (59.1%) 796 (55.6%) 820(57.3%) 900 (62.9%) 907 (63.4%) 1013 (70.8%)
Contributions
||| Discussion:

 We tackle the Automated Program Repair (APR) problem using an LLM-Driven
Counterexample Guided Inductive Synthesis (CEGIS) approach;

*We employ MaxSAT-based Fault Localization to guide and minimize LLMS’
patches to incorrect programs by feeding them bug-free program sketches;

- Experiments show that with our approach all six evaluated LLMs fix more pro-
grams and produce smaller patches than other configurations and symbolic tools;

* Qur code is available on GitHub and on Zenodo.

* CLARA repairs 495 programs (34.6%), times out on 154 (10.8%), and fails to repair
738 programs (54.7%);

* VERIfiX repairs 91 programs (6.3%), reaches the time limit on 0.6%, and fails to
repair 1338 programs (93.5%);

- All six LLMs using different prompt configurations repair more programs than
traditional APR tools;

- Prompt configurations with FL-based Sketches, IPA description and test suite fix
more programs.

* Incorporating FL-based Sketches (or FIXME annotations) allows the LLMs to re-
pair more programs than only providing the buggy program.

* Including a reference implementation allows for more repaired programs but with
less efficient fixes (see our paper).

* Our CEGIS approach significantly improves the accuracy of LLM-driven APR
across various configurations.

References

[1] Armando Solar-Lezama et al. “Combinatorial sketching for finite programs”. In: ASPLOS 2006.
[2] Pedro Orvalho, Mikolas Janota, and Vasco Manquinho. “C-Pack of IPAs: A C90 Program Bench-

CZECH INSTITUTE -
%@é O EOTCe AND TECNICO mark of Introductory Programming Assignments”. In: Automated Program Repair (APR) 2024.
/\J‘ o CUE LISBOA [3] Pedro Orvalho, Mikolas Janota, and Vasco Manquinho. “CFaults: Model-Based Diagnosis for Fault

Localization in C Programs with Multiple Test Cases”. In: Formal Methods (FM) 2024.

BTEX TikZposter

