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Abstract—Hyper-parameter tuning is a critical step in machine
learning training pipelines to ensure high quality models. This
stage of the pipeline entails continuous deployments of training
runs with different sets of parameters in search for the best
performing ones. For this reason, this becomes a burdensome
and expensive task.

To address this issue, recent solutions exploit cheap, partially
trained models, to extract information regarding complete mod-
els. These works can be divided on whether they exploit low
fidelity or high-fidelity evaluations. Besides, the existing solutions
in this area can also be classified depending on whether they are
model-free or model-based approaches.

Several recent solutions rely on Bayesian Optimization (BO)
techniques to select the hyper-parameters that maximize the
quality to train a Machine Learning model. Moreover, several
works propose the joint use of BO and low-fidelity observations
(e.g., training with sub-sampled datasets or for short periods of
time) to extrapolate good configurations to use when performing
full training.

This work presents a collection of different systems found
in the literature for hyper-parameter tuning. Furthermore, it
gives more focus to works that leverage Bayesian Optimization
methods to solve this non-trivial task. At last, it compares the
different pros and cons of using BO in these systems for selecting
the hyper-parameter, and it concludes with a critical analysis
of the current literature, and the future work in this area, for
example, how to extend these systems to solve other types of
problems.

I. INTRODUCTION

Current Machine Learning (ML) models are getting larger
and more complex. There are models with billions of hyper-
parameters to optimize and, when using neural networks, an
immensely vast space of alternative [1] viable architectures
that exhibit complex trade-offs, e.g., for what concerns com-
plexity and accuracy. Furthermore, the current trend is towards
using increasingly large training datasets in order to improve
the quality of the models As a result, even the testing of
a single configuration (composed, e.g., of hyper-parameters)
using these complex models and huge amounts of data can be
extremely time consuming and expensive. Overall, the training
process of modern ML models can require large amount of
resources, take several hours, days, or even weeks, and lead
to spending huge amounts of energy and emitting enormous
quantities of CO2 [1].

When using ML models, users face a very complex task:
how to efficiently optimize the choice of the ML model’s
hyper-parameters while ensuring adequate Quality of Service

(QoS) levels? Modern ML models have a large number of
internal hyper-parameters (e.g., batch size considered in each
training iteration or the frequency of synchronization among
workers in the distributed training) that need to be tuned
by the users during the training phase. This complex job is
not independent of the chosen ML modeling technique, and
the wrong selection of these hyper-parameters is likely to
negatively impact the quality of the model. Several works [2]–
[6] have addressed the problem of hyper-parameter tuning
in order to increase the quality of the models or reduce the
optimization time. Moreover, as shown in [3], it is important
to jointly optimize the hyper-parameters and the resources to
deploy the training in order to produce models with better
quality. Other works [2], [4]–[6] investigated the use of low-
fidelity evaluations (e.g., sub-sampling techniques, i.e., reduce
the amount of data used to train the models), in order to
decrease the training time.

This survey presents a set of works for hyper-parameter
tuning. In particular, it is focused on systems that leverage
Bayesian Optimization to solve the optimization problem and
select the optimal hyper-parameters that, e.g., maximize the
accuracy of the model. Moreover, this paper is structure as
follows: § II introduces Bayesian optimization techniques;
§ II-A presents different modeling techniques used in the
literature of BO; § III describes several state of the art systems
for hyper-parameter optimization; and at last § IV concludes
this paper, and presents some suggestions for future work in
this area.

II. BAYESIAN OPTIMIZATION

Bayesian Optimization (BO) is a model-based techniques
that aims to identify the optimum x∗ of an unknown black-
box function f : X → R and operates as follows [7]:
(i) f is evaluated (i.e., tested or sampled) over N initial
configurations, xi, selected at random so as to build an initial
training set S composed of pairs 〈xi, f(xi)〉; (ii) S is used to
train a black-box model (typically a Gaussian Process [8])
that serves as a predictor/estimator of the unknown func-
tion f ; (iii) an acquisition function α is used to exploit
the model’s knowledge and uncertainty to determine which
configuration to evaluate next by balancing exploitation of
model’s knowledge — recommending configurations that the
model deems to be optimal — and exploratory behaviours —
recommending configurations whose knowledge can reduce



the model’s uncertainty and enhance its accuracy; (iv) the
process is iteratively repeated until a stopping condition is
met, e.g., after a fixed budget is consumed or if the gains
from further sampling are predicted to be marginal by the
model (e.g., below a fixed threshold).

BO builds a model of the objective function using the tested
points/configurations and exploits its knowledge and uncer-
tainty to guide the exploration of the search space towards the
optimum, i.e., it determines the points to evaluate based on
the prior knowledge of f . After each evaluation, the model is
updated with the new data using the Bayes’ Theorem [9].

One of the most fundamental components of BO techniques
is the acquisition function α that selects the next configurations
to evaluate by balancing exploration and exploitation. The
main goal of the acquisition function is to select the next
configuration to test in order to accelerate the convergence
towards the optimum. One of the first acquisition functions
found in the literature is the Probability of Improvement
(PI) [10] that aims at maximizing the probability of improve-
ment of a configuration x over the current best optimum or
incumbent x∗. If we consider that the predictions follow a
Normal distribution with mean µ(x) and standard deviation
σ(x) (which is normally the case when using BO and GPs),
the PI is given by

αPI(x) = P (f(x) ≥ f(x∗)) = Φ

(
µ(x)− f(x∗)

σ(x)

)
, (1)

where Φ(·) is a normal CDF. PI has a pure exploitative
behaviour and it fails to evaluate configurations in regions with
high uncertainty.

A very common acquisition function is the Expected Im-
provement (EI) [11], which exploits information of the model’s
uncertainty on an untested configuration x to estimate by how
much x is expected to improve over the current incumbent.

αEI(x) =

∫
max(0, f(x)− f(x∗))p(f(x)|S)df(x) (2)

In the case of Normal distribution, the EI is simply

αEI(x) =

{
(µ(x)− f(x∗)) Φ(Z) + σ(x)φ(x), if σ(x) > 0

0, if σ(x) = 0
(3)

where Z = µ(x)−f(x∗)
σ(x) , φ(·) and Φ(·) are the PDF and

CDF of the standard normal distribution, respectively. The
constrained expected improvement (EIc) extends the EI in
order to incorporate constraints in the optimization problem.
For that, it multiplies the EI by the probability that x meets
the constraints.

Lower confidence bound (LCB) [12] (or upper confidence
bound (UCB)) selects a configuration to sample based on the
mean and variance of the prediction of x

αLCB(x) = µ(x)− κσ(x), (4)

where κ is a tunable parameter to balance exploitation vs
exploration.

Entropy Search (ES) [13] is an alternative acquisition func-
tion that selects which configurations to evaluate by predicting

the corresponding information gain (i.e., the entropy) on the
optimum, rather than aiming to evaluate near the optimum
(as in EI). It chooses the point that is predicted to yield the
largest reduction of the entropy (i.e., decrease the uncertainty
over the location of the optimum). ES (Eq. (5)) is based on
the probability distribution popt(x|S), namely the likelihood
that a configuration x belongs to the set of optimal con-
figurations for f , given the current observations in S. The
information gain deriving from testing x is computed using
the expected Kullback-Leibler divergence (relative entropy)
between popt(·|S ∪ {x, y}) and the uniform distribution u(x),
with expectations taken over the model-predicted probability
of obtaining measurement y at x

αES(x) = Ep(y|x,S)
[∫

popt(x’|S ∪ {x, y})

· log
popt(x’|S ∪ {x, y})

u(x’)
dx’
]
.

(5)

It should be noticed that normally the configuration tested x
may differ from the predicted incumbent x∗. Moreover, ES
does not have a closed-form expression and requires several
non-trivial approximations. Its computation is extremely time
consuming and demands large amount of resources. This
problem is even exacerbated in larger search spaces, which
require the use of some heuristic or optimizer [5], [14]–[16]
to reduce the number of configurations to test in the acquisition
function.

There are several works in the literature [17], [18] that
extend the ES in order to incorporate constraints in the op-
timization problem. However, this constrained versions of ES-
based acquisition functions, such as Predictive Entropy Search
with Constraints (PESC) [17] and constrained Max-value
Entropy Search (cMES) [18] use several other approximations
(in particular, they make use of Bochner’s theorem for a
spectral approximation), which does not allow to use GPs with
non-stationary kernels or any other modelling techniques (like
decision trees). A simpler approach developed in TrimTuner
[5] is to extend ES by factoring in the expected value of the
distribution of the probability that the new predicted incumbent
x∗ comply with the constraints after testing x. This way, the
selection of the modeling technique is independent of the
computation of the acquisition function. It should be noticed
that this approach requires simulating the model (i.e., re-train
the model with its predictions) in order to simulate the impact
of testing x in the incumbent.

Swerzky et al. [19] were probably the first to propose an
adaptation of the BO framework to take advantage of low-
fidelity evaluations obtained using a training set of smaller
dimensions. This idea was extended in Fabolas [2], which
learns the lowest-fidelities that provide more knowledge about
the optimum. These model-based solutions, such as MTBO
or Fabolas, use transfer-learning techniques to extrapolate the
quality of high-fidelity configurations based on low-fidelity
observations. However, their practical effectiveness hinges on
the actual ability of the model to capture the, often complex,



relations between high and low quality configurations. Further,
these methods typically rely on complex mathematical tools,
which makes them computationally very expensive.

A related body of work [20]–[23] uses models (typically
GPs) to predict the loss of a neural network as a function of
both the hyper-parameters and the training iterations. Models
are then used to extrapolate the full-training loss and cancel
under-performing training runs.

Lastly, originally all these acquisition functions are
greedy/myopic, i.e., they consider only one step ahead in
the optimization process, which, as for all greedy heuristics,
can lead to exploring the search space in sub-optimal ways.
However, there are several state of the art systems [3], [24]
that extend these myopic approaches with a look-ahead policy
in order to simulate n steps ahead.

A. Modeling techniques

BO resorts to black-box techniques to build a model of the
objective function or any additional constraints. The standard
modeling technique used in the literature of BO is Gaussian
Processes (GPs). However, any model that can offer additional
information about its uncertainty can be used. Moreover, it is
possible to use an ensemble of learners to have some measure
about the uncertainty of the model.

GPs [8] represent the de facto standard modeling approach
in BO, due to their analytical tractability and flexibility [2], [7].
Key to the tractability of GPs is that the outputted predictions
follow, by construction, a Gaussian Distribution with known
parameters. Moreover, it is the possibility to define specialized
kernels that provides flexibility to GPs, by allowing them to
imbue the model with domain-specific knowledge.

However, training GPs is notoriously an expensive pro-
cess [7]. GPs have appealing features with small data sets
(e.g., in the early stage of the optimization process, when
only a handful of configurations have been tested), where
their ability to incorporate prior knowledge via smooth kernel
leads to good extrapolation. However, the training time of
GPs grows cubically with the number of observations [25],
which makes them inherently non-scalable. This efficiency
issue can be avoided by using ensembles of scalable learners
like decision trees (DTs), whose individual predictions can be
used to fit a Gaussian distribution. DTs are known for their
high efficiency, but they can not be directly used to replace GPs
since, unlike GPs, DTs do not provide a measure of uncertainty
of their prediction. It is possible to circumvent this problem
by using an ensemble of DTs and injecting diversity among
the various learners by generating their datasets drawing with
replacement from the same dataset. Then, we can estimate the
probability distribution for a prediction as a Gaussian with
mean and standard deviation derived from the predictions of
the ensemble. On the down side, ensemble methods typically
generate diverse training sets for the individual learners by
“hiding” different subsets of the original data set — which
makes these methods inherently more data hungry than GPs.

A hybrid approach is proposed in HyperJump [26], where
GPs are used during the initial stage of the exploration, where

these can still be trained efficiently, and switch to an ensemble
of decision trees when there have been gathered sufficient data
to use the latter method effectively.

III. HYPER-PARAMETER TUNING USING BAYESIAN
OPTIMIZATION

Existing hyper-parameter techniques can be coarsely classi-
fied along two dimensions: i) whether they use model-free or
model-based approaches, and ii) whether they exploit solely
high-fidelity (i.e., full-training) evaluations or also multi-
fidelity ones.

HyperBand (HB) [4] is arguably the most prominent model-
free approach at the moment. HB is based upon a randomized
search procedure, called Successive Halving (SH) [27], which
operates in stages of fixed “budget” (e.g., training time or
training set size): at the end of stage i, the best performing
1/η% configurations are selected to be evaluated in stage
i + 1, where they will be allocated η× larger budget. By
restarting the SH procedure over multiple, so called, brackets
using different initial training budgets, HB provides theoretical
guarantees of convergence to the optimum, incurring negligi-
ble computational overheads and outperforming state of the
art optimizers (e.g., based on BO) that do not exploit low-
fidelity observations. However, the random nature of HB also
inherently limits its efficiency, as shown by recent model-
based multi-fidelity approaches [2], [6]. Its random nature,
combined with its SH-based search algorithm, makes it not
only provably robust but also very competitive and lightweight
when compared to several model-based approaches.

Moreover, the random nature of this solution provides
theoretical guarantees of eventual convergence to the optimum
and allows for efficient implementations; however, it also
limits the convergence speed.

As for the model-based approaches, recent literature on
hyper-parameter optimization has been dominated by BO
methods, which relies on modeling techniques (e.g., GPs,
Random Forests [28] or TPE [29]) to build a surrogate model
of the function f : X → R to be optimized. The surrogate
model is then used to guide the selection of the configurations
to test via an acquisition function that tackles the exploration-
exploitation dilemma.

BOHB [6] combines HB and BO to enhance its efficiency
by combining the best of both techniques. It extends HB
with BO to warm start it, i.e., to select (a fraction of) the
configurations to include in a new HB bracket (based on EI).
This way it speeds ups the convergence of HB by selecting
configurations that are more promising to improve the current
incumbent.

HyperJump [26] is a novel hyper-parameter optimization
method that builds upon HB’s robust search strategy and
accelerates it via an innovative, model-based technique that
aims at modeling the risk of shortcutting an HB bracket. The
basic idea is to ”jump” (i.e., skip either partially or entirely)
some of HB’s stages and, this way, reduce the number of
configurations to be tested and accelerate the optimization
process. The authors propose a novel risk modeling approach



(called Expected Accuracy Reduction) to predict the risk of
jumping that exploits the model’s knowledge and uncertainty
to quantify/estimate the expected reduction in the accuracy
between the best configuration included in the stage after a
jump and the best configuration discarded due to a jump.

There are also a vast set of works that rely only on BO to se-
lect the best hyper-parameters that solve different optimization
problems (e.g., maximize the model’s accuracy). Lynceus [3]
is a cost-aware system that aims at jointly optimize the
selection of the hyper-parameters to train an ML model and
the (cloud) resources to rent to deploy the training phase.
It minimizes the training cost/time while complying with
several Quality of Service (QoS) constraints (e.g., a minimum
accuracy of the trained model). To solve the optimization
problem, it leverages BO with EIc/USD (i.e., the constraint
Expected improvement normalized by the cost of testing a
configuration). Lynceus also present a look-ahead [24] ap-
proach to foresee the impact of testing a configuration in future
explorations (it presents a non-myopic method).

Although Lynceus aims at reducing the cost of training
a model, it fails at exploiting low-fidelity evaluations. Fabo-
las [2] is one of the first systems for hyper-parameter tuning
that resorts to these low-fidelity evaluations in order to reduce
the time of testing a configuration. It aims at selecting the
hyper-parameters of an ML model to maximize its accuracy
but only tests configurations using sub-sampled datasets to
reduce the amount of data used to train the model, and
thus the training time. Fabolas presents a new acquisition
function called information gain per unit cost that trades off the
information that can be gain about the optimal configuration
(on the full dataset) and the cost (i.e., execution time) of
training the model in a given configuration and a sub-sampled
dataset.

αF (x, s) = Ep(y|x,s,S)
[∫

ps=1
opt (x’|S ∪ {x, s, y})

· log
ps=1
opt (x’|S ∪ {x, s, y})

u(x’)
dx’

]
1

C(x, s)
,

(6)

where x is a configuration, s ∈ [0, 1] is the sub-sampling rate
applied to the full dataset (s = 1 corresponds to the entire
dataset), ps=1

opt is the distribution of the predicted optimum,
C is the predicted cost/time of a configuration x using a
sub-sampling rate s, and S is a set that contains the tested
configurations.

Moreover, Fabolas builds two predictive models, one for
accuracy and the other for cost, and it uses GPs with special
kernels that capture how shifts of the dataset size affect both
the quality (i.e., accuracy) and training efficiency (i.e., cost or
execution time) of the target model. In other words, the kernels
are designed to capture the expected impact on cost and
accuracy deriving from the use of sub-sampling. Specifically,
they use a kernel obtained by the inner product of a ”general
purpose” Matérn 5/2 kernel [30] and two custom kernels that
encode, respectively, the expectation that accuracy and cost of
an ML model grow normally with larger data-set sizes.

TrimTuner [5] extends both Lynceus and Fabolas to de-
velop a cost and time aware system that optimizes both the
cloud resources and the hyper-parameters of an ML model to
maximize its quality/accuracy while ensuring QoS constraints
(e.g., maximum training time). It proposes a new acquisition
function that extends the one of Fabolas to exploit the use of
low-fidelity evaluations while having into account additional
user-defined QoS constraints.

αTT (x, s) = Ep(a|x,s,S)
[∫

ps=1
opt (x’|SA ∪ {x, s, a})

· log
ps=1
opt (x’|SA ∪ {x, s, a})

u(x’)
dx’

]
· 1

C(x, s)
·

Ep(q,a|x,s,S)

[
qi∈Q∏

p(qi(x∗, s=1)≥0|S ∪ {x, s,q, a}

]
,

(7)
where q and a are the predicted values of the constraints and
accuracy, Q are the defined constraints, x∗ is the predicted
current incumbent, and SA is the set that contains the accuracy
of tested configurations.

The computation of this acquisition function (and the ones
based on ES) can be very expensive. Thus, TrimTuner presents
two variants where it uses GPs (similar to Fabolas) or an
ensemble of DTs. Moreover, the later can reduce the training
time by 13× without reducing the quality of the recommended
incumbents, achieving performance similar to EIc.

IV. DISCUSSION, CONCLUSION, AND FUTURE WORK

This work presented a survey on the automatic selection
of hyper-parameters of ML models to maximize their accu-
racy and/or minimize their training time. These systems are
normally divided into model-free or model-based approaches,
and low-fidelities or high-fidelities evaluations. Moreover, to
solve the optimization problem, the majority of systems in
the literature resort to Bayesian Optimization that builds a
model of the objective and constraints functions, and guides
the optimization/exploration process by determining the con-
figurations to test via an acquisition function that balances
exploration vs. exploitation in order to converge as fast as
possible to the optimum.

It was shown that although model-based approaches are
computational and mathematically more challenging than
model-free methods, the former can speed up and decrease
the time spent evaluating configurations (i.e., training the
model in a given set of parameters). Thanks to low-fidelity
observations (e.g., sub-sampling techniques), it is possible to
achieve even higher reductions of the training time without
impact the quality of the final model. However, these systems
(that exploit low-fidelity evaluations) normally resort to ac-
quisition functions based on the Entropy Search and present
large overheads to compute the acquisition function, which
increases the optimization time. Nonetheless, several works
tried to tackle this drawback and reduce the overhead by using
cheaper modeling techniques, as an ensemble of decision trees.



As future work, it would be interesting to extend these BO
methods for hyper-parameter tuning to solve other complex
problems that users and data scientists face when using and
deploying their models.

For example, before training the model, users also need
to decide which ML approach to use (e.g., decision trees
vs neural networks) and, if neural models are chosen (as it
is increasingly the case), which neural architecture to adopt.
This is an extremely complex task, given the large amount
of different ML approaches existing in the literature and that
the number of possible neural architectures is, arguably, even
larger.

The optimization techniques present in this paper can rep-
resent a valuable starting point also to address the Neural
Architectural Search (NAS) problem: in fact, the choice of the
neural architecture can be seen as an instance of the problem
of hyper-parameter optimization, provided that one can easily
map the space of possible neural architecture to a generic
hyper-parameter space. While conceptually straightforward,
this mapping process is a practice far from being trivial given
the high dimensionality of the neural architectural space that
makes simplistic solutions (e.g., that simply consider any
possible architecture) overly onerous to be used in practice.

Thus, it would be important to investigate how to extend
the optimization techniques developed so far to incorporate
recent NAS techniques that consider a continuous relaxation of
the architecture representation, allowing an efficient search of
the architecture using gradient descent [31]. These approaches
are conceptually very elegant, as they allow for solving the
NAS problem using the same optimization methods used to
solve the problem of training a neural network (e.g., using
back-propagation methods). On the other hand, several recent
works [32], [33] have also highlighted that these differential
approaches are likely to incur instability issues that can
severely hinder the quality of the optimization’s result. Thus,
a promising future work is combining differential search
methods, such as DARTS [31], with model-based optimization
methods (e.g., BO) that exploit low-fidelity observations in
order to obtain the best of the two approaches, namely quick
convergence to optimal solutions as well as robustness and
cost-efficiency.
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