
Leveraging Subsampling Techniques to Optimize
Machine Learning Jobs in the Cloud

Pedro Gonçalo Bravo Mendes

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Prof. João Nuno de Oliveira e Silva
Prof. Paolo Romano

Examination Committee

Chairperson:
Supervisor:

Member of the Committee:

November 2019

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the
requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

Acknowledgements

Firstly, I would like to thank my advisors, Professor Paolo Romano, and Professor João Nuno Silva,
for their help and support during this thesis. Specially, I am very grateful to Professor Paolo Romano for
the continue and constant guidance in the weekly meetings.

Secondly, I thank Maria Casimiro that has a fundamental role in this work, offer me endless support
during the thesis, and was always available to clarify my doubts and help me in the most challenging
moments. I also thank Professor Luı́s Rodrigues, who was one of those responsible for choosing this
thesis.

I thank my family and in particular, my parents that always support me and gave me the best
opportunities throughout my studies and my life. I also thank my sister that, despite all the fights, has an
important role in my decisions.

A special thanks to my friends, specially to the group SIM, who was the best support during the last
years. In particular, I thank Miguel Pinho, Miguel Malaca, and Rui Cardoso, who were always available
to help and to clarify my enormous doubts and were the best partners to work with. Lastly, I thank my
colleagues from GSD, who made the many hours of work in room 501 much better.

Lisbon, November 2019
Pedro Gonçalo Mendes

For my Parents,

Resumo

Esta dissertação aborda o problema da otimização do treino de modelos de aprendizagem au-
tomática na nuvem. A eficiência destes treinos é afetada pela correta seleção de um grande número
de parâmetros de configuração, pertencentes a duas classes principais: os hiperparâmetros, ou seja,
os parâmetros do modelo e/ou do algoritmo utilizado no treino; e a escolha correta do tipo e número de
recursos na nuvem utilizados para executar o trabalho. Em geral, trata-se de uma otimização com um
vasto espaço de configurações, onde soluções sub-ótimas podem levar a uma degradação substancial
da precisão do modelo e/ou do aumento dos custos económicos incorridos na aquisição dos recursos
na nuvem.

Técnicas do estado de arte abordam este problema empregando abordagens baseadas na
Otimização Bayesiana (OB). OB constrói um modelo de caixa negra do desempenho do sistema de
forma iterativa. Em cada iteração, o modelo é usado para guiar a seleção da configuração a testar em
seguida, usando uma função de aquisição que normalmente equilibra comportamentos exploradores
versus exploratórios; a configuração selecionada é então testada e a informação sobre a sua precisão
é retroalimentada ao modelo, para melhorar o seu conhecimento e a qualidade das etapas futuras de
exploração.

Neste contexto, a presente dissertação investiga o uso de técnicas de subamostragem (ou seja, a
redução da quantidade de dados sobre os quais os modelos são treinados) para aumentar a eficiência
de duas formas alternativas:

• reduzir o custo do treino ajustando a taxa de subamostragem do conjunto de dados de entrada
para compensar, de forma controlada, a precisão dos modelos resultantes e a exigência com-
putacional do processo de treino. Mais detalhadamente, é considerado o problema de minimizar
o custo de treino de um modelo de aprendizagem automática, sujeito a restrições de precisão e
tempo de execução, enquanto se considera a taxa de subamostragem como uma dimensão adi-
cional do espaço de configuração original. Esse problema de otimização é resolvido através de um
otimizador baseado em OB, chamado Nephele. Usando um extenso conjunto de medições obtido
pelo treino de três modelos de redes neurais no serviço de computação na nuvem da Amazon EC2
usando um grande número de configurações alternativas, demonstrámos experimentalmente que
o sistema Nephele pode alcançar reduções substanciais de custo através de subamostragem (por
exemplo, é possivel reduzir 4 vezes o custo, usando uma precisão de 85% e o conjunto de dados
do MNIST). Também mostramos que, apesar da inclusão da taxa de subamostragem no espaço
de configuração levar a um aumento da dimensionalidade do problema, o custo do processo de
otimização do sistema Nephele é comparável, e muitas vezes até inferior, ao custo de métodos
equivalentes baseados em OB que não incluem subamostragem no seu espaço de configuração;

• reduzir o custo das técnicas de otimização baseadas em OB através da diminuição do custo nas
configurações testadas, devido ao uso de subamostragem. Especificamente, é considerado um
problema da otimização na precisão de modelos treinados com o conjunto de dados completo
e sujeitos a restrições no custo máximo de treino, e usando apenas conjuntos de dados sub-

amostragem para a avaliação. Este problema é resolvido pelo sistema Fabulinus, um sistema que
usa uma nova função de aquisição que seleciona a configuração e o tamanho do conjunto de da-
dos para testar, baseado em dois fatores: i) maximizar a informação sobre a configuração optima
no conjunto de dados completo normalizada pelo custo de teste da configuração, ii) maximizar
a probabilidade de que a configuração recomendada respeite a restrição de custo. Mostramos
que o sitema Fabulinus pode reduzir 6.6 vezes custo de otimização quando comparado com as
técnicas clássicas de OB que não usam subamostragem, enquanto aplicam as restrições de custo
especificadas, ao contrário das recentes técnicas do estado de arte que usam subamostragem.

Abstract

This dissertation addresses the problem of optimizing the training of machine learning models in the
cloud. The efficiency of these jobs be affected by the correct tuning of a large number of configuration
parameters, belonging to two main classes: on the one hand, the, so called, hyperparameters, i.e., the
parameters of the model and/or of the algorithm used to train the model; on the other hand, the choice of
the right type and number of cloud resources used to execute the job. Overall, this is an optimization with
a vast configuration space and where suboptimal solutions can lead to substantial degradation of the
model’s accuracy and/or amplification of the economical costs incurred for acquiring cloud resources.

State-of-the-art techniques address this problem by employing approaches based on Bayesian Op-
timization (BO). In a nutshell, BO builds a black-box model of the system’s performance in an iterative
fashion. At each iteration, the model is used to guide the selection of which configuration to test next,
via a so called acquisition function that typically balances exploitative vs. explorative behaviors; the se-
lected configuration is then tested and information on its quality is fed back to the model, so to improve
its knowledge and the quality of future exploration steps.

In this context, this dissertation investigates the use of subsampling techniques (i.e., reducing the
amount of data over which models are trained) to enhance efficiency in two alternative ways:

• reducing the training cost by adjusting the subsampling rate of the input dataset to trade off, in a
controlled way, the accuracy of the resulting models and the computational demand (and, hence,
the cost) of the training process. More in detail, we consider the problem of minimizing the cost
of training a machine learning model, subject to constraints on accuracy and execution time, while
treating the subsampling rate as an additional dimension of the original configuration space. We
solve this optimization problem by means of BO-based optimizer, which we called Nephele. By
means of an extensive sets of measurements gathered by training 3 neural network models on the
Amazon EC2 cloud in a large number of alternative configurations, we experimentally show that
Nephele can achieve substantial cost reductions by trading off accuracy via subsampling (e.g., up
to 4 times lower costs, if one accepts accuracy level of 85% using the MNIST dataset). We also
show that, despite the inclusion of the subsampling rate in the configuration space leads to an
increase of the problem’s dimensionality, the cost of Nephele’ optimization process is comparable
to, and often even lower than, that of equivalent BO-based methods that do not include sub-
sampling in their configuration space.

• reducing the cost of BO-based optimization techniques by decreasing, thanks to subsampling, the
cost of testing configurations. Specifically, we consider the problem of optimizing the accuracy
of models trained with the full dataset and subject to constraints on the maximum training cost,
while relying only on the evaluation of subsampled datasets. We tackle this problem by intro-
ducing Fabulinus, a system that uses a novel acquisition function that selects the configuration
and dataset size to test by keeping into account two factors: i) maximizing information on the
loss-minimizing configuration on the full dataset per unit cost spent testing configurations, and ii)
maximizing the likelihood that the recommended configuration will meet the cost constraint. We

show that Fabulinus can reduce the optimization cost by a factor up to 6.6 times when compared to
classic BO-techniques that do not use sub-sampling, while effectively enforcing the specified cost
constraints, unlike recent state-of-the-art techniques that use sub-sampling.

Palavras Chave

Keywords

Palavras Chave

Computação na Nuvem; Optimização de Aplicações; Aprendizagem Automática;
Subamostragem; Custo de Exploração; Custo de Produção.

Keywords

Cloud Computing; Optimization of Applications; Machine Learning; Subsampling;
Exploration Cost; Cost in Production.

Contents

1 Introduction 1

1.1 Objectives . 2

1.2 Contributions . 2

1.3 Structure of the Document . 4

2 Related Work 5

2.1 Cloud . 5

2.2 Modeling Techniques . 7

2.2.1 Gaussian Processes . 7

2.2.1.1 Covariance Functions . 7

2.2.1.2 Tuning of Hyperparameter of the Gaussian Processes 8

2.2.2 Decision Trees . 9

2.2.3 Transfer Learning . 11

2.3 Optimization Techniques . 11

2.3.1 Bayesian Optimization . 11

2.3.1.1 Acquisition functions . 12

2.3.1.2 Baysian Optimization with Lookahead . 15

2.4 Optimizing Parameters of Complex Systems . 16

2.4.1 Optimizing Machine Learning Hyperparameters . 16

2.4.2 Optimizing Cloud Resources . 19

2.5 Discussion . 23

3 Nephele 25

3.1 System Overview . 25

3.2 Algorithm Description . 26

3.2.1 Selecting the Next Configuration . 27

i

4 Fabulinus 31

4.1 System Overview . 31

4.2 Algorithm Description . 32

4.2.1 Selecting the Next Configuration . 33

4.2.2 Implementation Details . 34

5 Datasets 35

5.1 Convolutional Neural Network (Convolutional Neural Network (CNN)) 35

5.2 Multilayer Neural Network . 35

5.3 Recurrent Neural Network (Recurrent Neural Network (RNN)) 36

5.4 Training the Neural Networks . 37

6 Nephele Evaluation 39

6.1 Evaluation Setup . 39

6.2 System Implementation and Experimental Setup . 40

6.3 Impact of Subsampling on Cost in Production . 45

6.3.1 CNN Dataset . 48

6.3.2 RNN Dataset . 50

6.3.3 Multilayer Neural Network (NN) Dataset . 50

6.4 Impact of Subsampling on Cost of Optimization Process 52

6.4.1 CNN Dataset . 52

6.4.2 RNN Dataset . 54

6.4.3 Multilayer NN Dataset . 55

6.5 Impact of Subsampling on Lookahead . 56

6.5.1 CNN Dataset . 57

6.5.2 RNN Dataset . 57

6.5.3 Multilayer NN Dataset . 58

7 Fabulinus Evaluation 60

7.1 Evaluation Setup . 60

7.2 System Implementation and Experimental Setup . 60

7.3 Impact of Subsampling on Cost of Optimization Process 61

7.3.1 CNN Dataset . 62

7.3.2 RNN Dataset . 62

7.3.3 Multilayer NN Dataset . 66

ii

8 Conclusions and Future Work 67

Bibliography 74

Appendix A 76

iii

List of Figures

3.1 Nephele architecture . 27

5.1 CNN architecture . 36

5.2 Multilayer NN architecture . 36

5.3 RNN architecture implemented by a LSTM network . 37

6.1 Comparison between different number of classifiers in the ensemble to train a CNN . . . 40

6.2 Comparison between different number of classifiers in the ensemble to train a RNN . . . 41

6.3 Comparison between different number of classifiers in the ensemble to train a Multilayer
NN . 41

6.4 Comparison between different initial budgets to find the optimum to train a CNN 43

6.5 Comparison between different initial budgets to find the optimum to train a RNN 43

6.6 Comparison between different initial budgets to find the optimum to train a Multilayer NN . 44

6.7 Configuration meeting the accuracy constraint sorted by execution time. 45

6.8 Cost reduction achieved using subsampling normalized w.r.t. the optimal cost on the full
dataset . 47

6.9 Number of feasible configurations for different dataset sizes 48

6.10 Optimization Process to train a CNN . 54

6.11 Optimization Process to train a RNN . 55

6.12 Optimization Process to train a Multilayer NN . 56

6.13 Optimization process using Nephele and different depth horizons to train NN 57

7.1 Optimization Process to train a CNN . 63

7.2 Optimization Process to train a RNN . 64

7.3 Optimization Process to train a Multilayer NN . 65

iv

List of Tables

2.1 Amount of virtual machines of each cloud provider . 6

2.2 Comparison between optimization goals and concerns of state-of-the-art and proposed
systems (Nephele and Fabulinus) . 24

5.1 Possible values for each parameter of a configuration . 38

6.1 Percentage of search space sampled with the initial budgets for each network 45

6.2 Feasible Configurations . 46

6.3 Comparison between different subsampled dataset and the full dataset using CNN. Each
cell has the number of configurations and the respective percentage of configurations of
the search space that respect a given combination of the time and accuracy constraints
in the subsampled and the full dataset. 49

6.4 Comparison between different subsampled dataset and the full dataset using RNN 51

6.5 Comparison between different subsampled dataset and the full dataset using Multilayer NN 53

7.1 Feasible configurations given a cost constraint . 61

v

Acronyms

AWS Amazon Web Services

BO Bayesian Optimization

CEA Constrained Expected Accuracy

CNO Cost Normalized with respect to the Optimum

CDF Cumulative Distribution Function

CF Collaborative Filtering

CNN Convolutional Neural Network

DP Dynamic Programming

EC2 Elastic Compute Cloud

EI Expected Improvement

ES Entropy Search

EIC constrained Expected Improvement

ESC constrained Entropy Search

GCE Google Compute Engine

GPU Graphics Processing Unit

HB Hyperband

HPO Hyperparameter Optimization

LCB Lower Confidence Bound

LHS Latin Hyper-Cube Sampling

LSTM Long Short-Term Memory

ML Machine Learning

MTBO Multi-Task Bayesian Optimization

MCMC Markov Chain Monte Carlo

NN Neural Network

PES Predictive Entropy Search

PDF Probability Distribution Function

PI Probability of Improvement

QoS Quality of Service

RNN Recurrent Neural Network

vi

SMBO Sequential Model-Based Optimization

UCB Upper Confidence Bound

vCPU virtual CPU

VM Virtual Machine

GP Gaussian Process

vii

viii

1Introduction
Machine Learning (ML) is an area of study that focuses on the development of algorithms, statistical

models, and different techniques in order to create self-learning systems. Machine learning systems
have the ability to learn without being explicitly programmed for it. These systems try to use the available
data in order to make predictions and decisions based on pattern recognition and inferences from the
data. Machine learning predictions rely on the available data used to train. Therefore, the quantity and
the quality of this data is very important and has a direct impact on the performance of machine learning
algorithms. Also, the computation of such algorithms demands a huge number of intensive calculations
and, thus, it is required specific hardware like Graphics Processing Unit (GPU) and/or clusters of multi-
core machines.

Machine learning has become increasingly popular due to two main reasons: on the one hand,
advances in sensing devices and cyber-physical systems have led to generating a sheer volume of data
in a broad number of domains, such as computer vision, bio-informatics, and earth observation; on
the other hand, the possibility to process these large volumes of data provided by the cloud computing
paradigm, which allows for acquiring an apparently unbounded amount of computational and storage
resources, in a convenient, pay-only-for-what-you-only-use fashion.

In recent years, several research works have addressed the problem of selecting the hyperparam-
eters of machine learning jobs [26, 48, 54, 49, 87] (e.g., the batch size or the synchronization method
used in the training process), while others have tried to solve the problem of allocating the right type and
amount of resources in the cloud for a given application [2, 86, 38, 23, 22, 35]. However, recent works
have shown that these two sets of parameters are not independent [19, 18]. They need to be jointly
optimized in order to select the best configuration for deploying a job in the cloud.

The resulting configuration space, given by the Cartesian product of the cloud-related and model-
related parameters, can easily span hundreds or thousands of different configurations. Also, suboptimal
configurations can lead both to poor accuracy and to wasting substantial economic resources in the
cloud provisioning process.

Given the complexity of building white-box models capable of predicting the impact of so many
variables on the accuracy and execution time of the model’s training phase, state-of-the-art systems
tend to rely on black-box modeling techniques and Bayesian Optimization (BO). With these approaches,
a job is deployed in different configurations and the information on the observed configuration’s quality
(e.g., execution time and/or accuracy) is fed to a black-box learner (e.g., a Gaussian Process or another
regressor) to build a model capable of predicting the quality of untested configurations. The extrapolation
power of the black-box model is then used to guide the search process, via a so-called acquisition
function that normally strives to strike a balance in the exploration vs. exploitation dilemma [16].

1.1 Objectives

In this context, this dissertation investigates the use of subsampling, i.e., reducing the amount of
data over which models are trained, as a means to enhance the efficiency of model training in a twofold
way:

1. Reducing the training cost by adjusting the subsampling rate of the input dataset to trade-off, in a
controlled way, the accuracy of the resulting models and the computational demand (and, hence,
the cost) of the training process. More in detail, we consider the problem of minimizing the cost
of training a machine learning model, subject to constraints on accuracy and execution time, while
treating the subsampling rate as an additional dimension of the original configuration space.

2. Reducing the cost of BO-based optimization techniques by decreasing the cost of testing config-
urations thanks to the use of subsampling. Specifically, we consider the problem of optimizing
the accuracy of models trained using the full dataset and subject to constraints on the maximum
training cost, while testing the model using only subsampled datasets.

1.2 Contributions

This dissertation makes two main contributions, Nephele and Fabulinus, two systems that leverage
subsampling techniques to optimize the training of machine learning models in the cloud in different
ways:

1. Nephele is a BO-based optimizer that pursues the first objective defined in Section 1.1, i.e., it
aims to minimize the training cost subject to accuracy and time constraints by leveraging the possibility of
using subsampling to trade-off training cost for accuracy. Nephele is a self-tuning system to optimize the
cloud resources and specific parameters of ML applications in order to solve this optimization problem. It
leverages the use of subsampled datasets to train a given ML job in order to reduce the training cost while
ensuring the Quality of Service (QoS). Nephele treats the subsampling rate as an additional dimension
of the original configuration space. It leverages BO to model the accuarcy and the cost functions and
exploits those to select the next configuration to evaluate, via an acquisition function.

The starting point to address this optimization problem is Lynceus [19]. To the best of our knowl-
edge, Lynceus is the first system to propose the joint optimization of cloud resources and hyperpa-
rameters of ML jobs by leveraging advanced optimization techniques (designated lookahead [53]) and
incorporating a budget for the exploration phase. The optimization problem defined in Lynceus matches
very closely with the first objective define in Section 1.1. It aims to find the optimal configuration that
minimizes the training cost subject to user-defined QoS constraints. Lynceus considers the same set of
cloud and model parameters, but it does not exploit subsampling.

By means of an extensive sets of measurements gathered by training 3 neural network (NNs) mod-
els (Convolutional Neural Network (CNN), Multilayer Neural Network and Recurrent Neural Network
(RNN)) on the Amazon EC2 cloud in a large number of alternative configurations, we experimentally
show that Nephele can achieve substantial cost reductions by trading off accuracy via subsampling.
Nephele can achieve cost reductions of 75% for training a CNN and 52% for training a RNN comparing
with Lynceus if one accepts an accuracy level of 85% using the MNIST dataset. However, training the
Multilayer NN was not possible to use subsampled datasets to train in order to reduce the training cost

2

and ensure the QoS constraints, and, thus, the price of the final selected configuration is the same com-
paring with Lynceus. We also show that despite the inclusion of the subsampling rate in the configuration
space leads to an increase of the problem’s dimensionality, the cost of Nephele’ optimization process
is comparable to, and often even lower than, that of equivalent BO-based methods that do not include
subsampling in their configuration space.

2. Fabulinus is an optimizer that pursues the second objective defined in Section 1.1, i.e., optimizing
the accuracy of models trained using the full dataset and subject to constraints on the maximum training
cost, while reducing the optimization cost by testing the model using only subsampled datasets. Fabuli-
nus optimize the selection of cloud resources and specific parameters of a ML job in order to maximize
the performance to train the full dataset. However, it only evaluates subsampled datasets in order to
reduce the optimization cost and time. Through the use of transfer learning techniques, Fabulinus uses
the knowledge gained from evaluating small datasets, to reduce the uncertainty about the location and
magnitude of the optimum on the full dataset. It leverages BO to evaluate the search space and build
accuracy and cost models.

More precisely, Fabulinus extends a recent system, called Fabolas [48], that proposed the use of
subsampling to identify the hyperparameters configuration that maximizes accuracy on the full dataset
using evaluations based only on subsampled datasets. However, Fabolas considered a simpler variant
of the optimization problem targeted by Fabulinus, i.e., unlike Fabulinus, Fabolas does not support the
definition of additional constraints on the recommended configuration. Fabolas targets only hyperpa-
rameters, while Fabulinus optimizes in a joint way both hyperparameters and cloud parameters. Fabolas
extends an acquisition function, called entropy search, that focus on evaluating configurations and small
datasets that can offer more information about the location of the optimum on the full dataset per unit
cost. The acquisition function proposed in Fabulinus extends the one proposed in Fabolas in order to
allow the definition of constraints. It selects the configuration and dataset size to test by keeping into
account two factors: i) maximizing information on the loss-minimizing configuration on the full dataset
per unit cost spent testing configurations, and ii) maximizing the likelihood that the recommended con-
figuration will meet the cost constraint.

We show that Fabulinus can reduce the optimization cost in 58.34%, 80%, and 83.93% when com-
pared to classic BO-techniques that do not use subsampling to train a CNN, a RNN and a Multilayer
NN, respectively, while effectively enforcing the specified cost constraints, unlike recent state-of-the-art
techniques that use subsampling.

An additional contribution of this dissertation is represented by the datasets that we gathered and
used to evaluate Nephele and Fabulinus. These datasets were obtained by training different neural net-
works (Convolutional Neural Network (CNN), Multilayer Neural Network, and Recurrent Neural Network
(RNN)) in the cloud. The datasets contain all the information, e.g., the accuracy, training time, and cost,
among other metrics, about the deployed jobs. The NNs were implemented using the Tensorflow frame-
work [1] developed by Google and deployed in the Amazon Elastic Compute Cloud (EC2). The dataset
used to train the NNs was the MNIST database. Each configuration was composed of cloud resources
(number and flavor of Virtual Machines (VMs)), specific application parameters (hyperparameters (batch
size and learning rate) and synchronism of training), and the dataset size. Thus, each dataset contains
1440 configurations. In order to decrease uncertainty arising from random processes during training
(e.g., the selection of images to train in each iteration), each configuration was trained three times, and it
was computed the average and standard deviation of all the measurements. The datasets can represent
a valuable asset for the community working on the problem of optimizing ML platforms in the cloud.

Nephele and Fabulinus are evaluated using these datasets. Nephele was compered with two state-

3

of-the-art systems, Lynceus and CherryPick [2], because both systems target the problem of optimizing
cloud applications in order to minimize the deployment cost. Fabulinus was compared with Fabolas [48]
that uses transfer learning techniques to infer the optimal configuration on the full dataset while using
subsampling in the optimization process. The results of the proposed systems show that it is possible
to use subsampling in order to decrease the cost of the optimization process and the cost in production,
ensuring the QoS.

1.3 Structure of the Document

This thesis is structured in seven Chapters. Chapter 2 describes the cloud, modeling and optimiza-
tion techniques and analyses related work on systems for optimizing ML hyperparameters and/or cloud
resources. Chapters 3 and 4 describe Nephele and Fabulinus, respectively. Each chapter details the
objectives, architecture, and algorithm implemented. The datasets gathered for this work are described
in Chapter 5 and the evaluation of Nephele and Fabulinus is presented in Chapters 6 and 7. Lastly, in
Chapter 8, the conclusions of this work are presented as well as possible future work in order to improve
the proposed systems.

4

2Related Work

This chapter starts by describing, in Section 2.1, the cloud and the different services and resources
offered by modern cloud providers, providing a detailed description about the costs and the pricing
schemes charged for these services by the three main cloud providers: Amazon, Google and Microsoft.
Based on this analysis, it is possible to understand the importance of state-of-the-art systems that aim to
tune cloud resources and application parameters in order to reduce the execution cost and/or maximize
the performance. Sections 2.2 and 2.3 provide background on modeling and optimization techniques,
respectively. These techniques are commonly used by state-of-the-art optimizers for complex software
platforms (such as ML platforms and graph processing systems), which are reviewed in Section 2.4.

2.1 Cloud

Cloud computing [59] provides a ubiquitous, convenient and easy-to-use, on-demand network ac-
cess to a service that contains a shared pool of configurable computing resources, e.g., networks,
servers, data storage, applications and services that can be quickly instantiated with a small direct man-
agement effort by the user or without service provider interaction.

Cloud providers offer a variety of machines which can be divided into six categories: general pur-
pose, compute optimized, memory optimized, storage optimized, high performance/accelerated com-
puting and GPU optimized machines. For each category, each provider has a different collection of
families of machines that are designed and optimized for specific requirements. For example, each
machine’s family in the same category can have different processors. Each family also offers different
specifications such as the size (number of virtual CPUs (vCPUs)), the available memory and storage
and network bandwidth, among others. The number of virtual cores available in a VM varies between
1 to 128 vCPUs in Amazon Web Services (AWS), 208 vCPUs in Microsoft and 416 vCPUs in Google
Compute Engine (GCE) and normally increasing the size translates into an increase in the available
memory.

Google also offers a service [33] that allows users to customize their machines, choosing the pro-
cessor, number of vCPUs, amount of memory and disk space, depending on certain rules that have to
be followed.

Hence, there is a large range of available possibilities offered by each provider, as shown in Ta-
ble 2.1, which increases the difficulty of choosing the correct machine to get a good performance at
reasonable price. Also, taking into account the Google service that allows users to customize machines,
there are millions of different possible configurations. Although Amazon and Microsoft do not offer this
service, they have a larger collection of machines.

Cloud providers differentiate the acquired resources in two different types, designated on-demand
and reserved resources, according to the period those are reserved. On-demand resources do not have
any fidelization period and users pay for all the resources used during the period those are allocated.

Amazon Google Microsoft

Categories 5 5 6

Instance Family 3-7 1-2 1-9

Size (vCPUs) 1-128 1-416 1-208

Total of VMs 184 59 160

Table 2.1: Amount of virtual machines of each cloud provider

Reserved resources are rent for a fixed and mandatory period at lower price rate. The main difference is
found in the prices applicable to each service. Reserved resources may have big discounts comparing
to on-demand prices, however, these imply a fidelization period of one or three years. Normally, billing
can use a price rate of per-hour or per-second. When using an on-demand resource there is always a
one-minute minimum charge per-instance, even when a resource is used less than a minute.

Cloud providers also offer a service called Spot-Instances in AWS, Low-Priority VMs in Microsoft
Azure and Preemptible VMs in Google Cloud that permits the usage of unused resources that are spare
compute capacity in the cloud. This service permits the user to save up to 80-90% [3, 32, 60] on cloud
compute costs because it is the user that specifies how much he is willing to pay for the requested
instance. However, an instance is acquired only when the bid is higher than the current instance’s
market price specified by the provider for that instance. This means that there are not fixed prices for
an instance and these vary depending on the available offer. When the market price becomes higher
than the user’s bid the instance stop. These instances can be automatically revoked when there are not
enough available Spot-Instances to meet the request or when the providers need those resources. Also,
an instance can be stopped, if the request includes a constraint (e.g. time, launch group or an availability
zone (place where the machines are) group constraint) that is not met.

The operating system and the availability zone also influence the price. The price list, which may
depend on all the previous conditions, can have a huge variety of different prices. For example, using
AWS, the cheapest instance has a price of 0.0047$ per-hour, the most expensive instance costs 92,576$
per-hour.

To sum up, there is a myriad of instances a user can choose from. When running an application in
cloud and in order to decrease the cost of using such services, it is extremely important to choose the
correct amount and type of resources to acquire from the cloud provider. Each provider offers a huge
amount of different services at different prices and an incorrect choice of these parameters can lead to
unsatisfactory performance (in case of under-provisioning) or to incur unnecessary economical costs (in
the case of over-provisioning) So, it is very important to correctly select these resources to get a good
enough performance at the lowest possible price. Furthermore, the problem is exacerbated due to the
fact that a job’s performance for each configuration is unknown a priori. This knowledge can only be gain
after actually running the job in a configuration, which entails a cost (monetary and temporal) that cannot
be ignored. If a bad configuration is chosen, this will be only known after allocating the resources and
running the workload. Therefore, it is very important to correctly choose the resources to allocate to run
a job in order to get good enough performance at lower prices. The problem of determining an optimum
configuration can be very challenging, which motivates the need for systems that can automatically
select the previous parameters to minimize the final cost the user pays, while ensuring that the specified
constraints are complied with.

6

2.2 Modeling Techniques

State-of-the-art optimizers for machine learning platforms tend to rely on black-box methods to
build models that can be used to predict metrics such as model’s accuracy, execution time and cost.
This section describes two of the most commonly employed black-box modelling techniques, namely
Gaussian Processes (Section 2.2.1) and Decision Trees (Section 2.2.2).

2.2.1 Gaussian Processes

Gaussian Processes (GPs) are stochastic processes [73, 85, 72] defined over a collection of random
variables that follow a multivariate Gaussian distribution. GPs are completely specified by the mean
function m(x) and the covariance or kernel function K. In optimization problems, GPs are typically used
to model an unknown objective function f(x), which has to be either maximized or minimized.

f(x) ∼ GP(m(x),K). (2.1)

GP is used to fit the information gathered through the evaluation of points of the search space. Each
sampled point is modeled with a Gaussian distribution. GP fits the set of these sampled points that
follow a normal distribution, which creates a prior belief (model) of the objective function f .

The predictions produced by a GP for any point of the search space follow a Gaussian distribution.
The fitted model has an uncertainty, which is reduced as the points are evaluated. The uncertainty about
the search space given by the model can be exploited to balance explorative vs exploitative behaviors
during the optimization process, as it will be discussed in Section 2.3.

GPs are often used to represent the prior distribution due to flexibility, analytic tractability and
marginalization properties of Normal distributions. However, GPs can be challenging and tricky to imple-
ment. When implementing a GP model, firstly, a covariance function needs to be chosen and secondly,
the hyperparameters of GP need to be tuned, which can be hard to select but has extreme importance
in the model’s performance.

2.2.1.1 Covariance Functions

The covariance function or kernel has high importance for the GPs because it determines the
smoothness properties of points predicted by the model. There are a variety of different kernel func-
tions in the literature that encode the assumptions about the modeled function in different ways.

The squared exponential covariance function is given by

k(xi, xj) = exp

(
−||xi − xj ||

2

2l2

)
, (2.2)

where the hyperparameter l is the characteristic length-scale, which controls the width of the kernel.
This kernel is infinitely differentiable and is very smooth, which can cause unrealistic model’s predictions
[79].

7

Another very common class of covariance functions used is the Matérn Class [58]. The kernel
functions of this class are given by

k(xi, xj) =
21−ν

Γ(ν)

(√
2ν

l
||xi − xj ||

)ν
Kν

(√
2ν

l
||xi − xj ||

)
, (2.3)

where Kν is a modified Bessel function and ν and l are positive parameters. ν is a tunable smoothness
parameter to control the flexibility of the model and for the most common Matérn functions the parameter
ν has a value of 3/2 and 5/2. For example, using ν = 5/2, the Matérn kernel function is simplified and is
given by

kν=5/2(r) =

(
1 +

√
5r

l
+

5r2

3l2

)
exp

(
−
√

5r

l

)
, (2.4)

where r is the squared euclidean distance between xi and xj , i.e., r = ||xi − xj ||2.

The aforementioned kernel functions are the most commonly used for GPs due to their properties
and simplicity, however, there are several more covariance functions in the literature, like the Polynomial,
γ-exponential and Rational Quadratic Covariance Functions [73].

Normally, covariance functions can be multiplied by the signal variance σ2
f , which is a scaling factor

that determines the variation of the values from the mean. Also, when considering noisy observations,
the kernel function has additive noise variance σ2

n.

ky(xi, xj) = σ2
fk(xi, xj) + σ2

nδij , (2.5)

where δij is a Kronecker delta given by

σij =

1 if i = j

0 otherwise
(2.6)

2.2.1.2 Tuning of Hyperparameter of the Gaussian Processes

The kernel hyperparameters (e.g. the length-characteristic scale l and signal variance σ2
f) are very

important for the model’s performance. The length-characteristic scale controls the smoothness of the
function and the signal variance determines the variation of points from their mean. However, tuning
these hyperparameters is not easy and normally the best hyperparameter settings change for different
datasets.

One approach to hyperparameter tuning is to maximize the logarithmic marginal likelihood p(y|X)

[73], which has a closed-form expression given by

log p(y|X) = −1

2
yT
(
K + σ2

nI
)−1

y − 1

2
log |K + σ2

nI| −
n

2
log 2π. (2.7)

A different variant tries to estimate the hyperparameters from a prior by calculating the maximum a
posteriori estimate [27], i.e., it selects the hyperparameters that maximize the posterior.

Another approach tries to construct the posterior distribution on f by marginalizing over all possible
hyperparameters’ values. Normally, to solve this problem, iterative methods for sampling must be used.

8

One common method is Markov Chain Monte Carlo (MCMC) [31], in particular, the Metropolis-Hastings
or Scile sampling algorithm [82, 57, 64], where the prior is used to sample. Another variant uses the
conditional likelihood instead of the prior [64]. After the iterative sampling to construct the posterior
distribution through MCMC, the hyperparameters are chosen by maximizing the reconstructed posterior.

2.2.2 Decision Trees

Decision Tree [12, 68] is a black-box modeling technique that uses a specific type of graphs, called
trees, as a model for predictions (regressions and classifications). Each node specifies a test of some
attribute, and each branch descending from that node corresponds to distinct possible values for the
attribute [62]. A decision tree is constructed using a direct graph and it is composed of 3 different types
of nodes, designated decision, chance and terminal nodes [45] that correspond to different stages of a
sequential decision problem. The decision node works as a flowchart-like structure where decisions are
made to select an action according to fixed characteristics that will determine the path. The chance node
is a node associated with an undefined event, which has some associated probability (e.g., probability
of success or failure). The terminal node represents the end of the decision process, where a state
prediction is done. A prediction using a decision tree creates a path that starts on the root node, which
represents the entire population or space. Using information from observations/evaluations, decisions
have to be done in the branches that lead to the final state prediction. This way, a model for classification
or regression problems is created.

Most algorithms for building decision trees rely on a recursive on a recursive divide-and-conquer
algorithm [14]. It starts with a set of features and the correspondent values and using some metrics
(e.g., the Gini Index or the cross entropy), it determines the most representative feature which will be the
root, through a measure of impurity. Then, the root is split into two sub-nodes (binary splitting). For each
level of the tree, it is calculated the first step again to determine the new most representative feature
and a new split is done, recursively. In the end, all the features must be used to create the decision tree.
The task of growing a tree can use a different criterion for making the binary splits. The most common
measures of impurity [61, 71] are the Misclassification error (Classification Error Rate), Gini Index and
Cross-Entropy (information gain).

Misclassification error calculates the prediction error (number of wrong predictions) and tries to
minimize the misclassifications. It is calculated by

i(m) = 1−max
k

P (k|m), (2.8)

where m corresponds to a leaf (node), i(m) is the impurity of node m and k is a class or value predicted.
P (k|m) is the probability of class k predicted in node m. It corresponds to the fraction of training obser-
vations in a region that do not belong to the most common class. This measure is sometimes used in
classification problems.

Gini Index [12] is an impurity-based criterion to measure the (im)purity of a leaf. It is given by

i(m) = −
K∑
k=1

P (k|m) (1− P (k|m)). (2.9)

When a node presents a high value for Gini Index, it means that it has high impurity. Instead, when a
node is pure, i.e., the node represents a majority of elements of the same type, the Gini Index has a
small value.

9

Information Gain [69, 62] is another popular measure to calculate the homogeneity of a sample. It
computes the quantity of information that can be gained from a feature regarding the class or the final
model prediction, i.e. the feature’s aid for the final prediction of the ensemble. In a particular work [69]
was purposed an algorithm called ID3 that uses cross entropy to calculate the information gain. Cross
entropy is given by

i(m) = −
K∑
k=1

P (k|m) log2 P (k|m) (2.10)

If the sample is completely homogeneous the entropy is zero and if the sample is equally divided it
has an entropy of one. During the splits in the construction of the tree, to achieve the best performance,
the algorithm aims at maximizing the entropy.

Also, there is a technique designated Prunning that aims at reducing the size of decision trees
without losing the model’s performance and at preventing overfitting by removing sub-sections of a tree
that do not provide a relevant contribution to the classification of an instance. Another technique to
avoid overfitting issues and therefore an inaccurate model is the implementation of ensemble methods
that use several decision trees for predictions. The principle behind the usage of this technique is that
a group of different learners working together can form a better and more accurate classifier. There
are different methods to construct an ensemble decision trees and the most common are bagging (or
bootstrap aggregation) and random forest techniques.

Bagging [11] is a method that uses a set of weak learners (i.e, a learner that has a poor perfor-
mance) using different subsets of data for training them. After training, the method has an ensemble
of different models. The output predictions from different trees need to be reconciled through the im-
plementation of an algorithm for voting or calculating the average predicted value and, in this way, the
final prediction of the ensemble is determined. However, as the features used to build each tree are the
same and, although the training sets are different, the trees can be overfitted, which may lead to similar
results as using one learner.

Random forest [13] is a technique that extends the Bagging algorithm. It is a classifier composed
by a collection of trees that selects a random subset of data for training, but it also chooses at random
a selection of features rather than using all features to grow trees. This technique aims at reducing the
correlation between learners. Each tree may observe different features and the splitting process will
lead to different learners, which will therefore output different values.

An ensemble can be used to derive estimators on the uncertainty for a given prediction. A common
technique is to assume that the predictions produced by the set of Decision Trees in the ensemble follow
a normal distribution, whose parameters can be estimated via the mean and variance of the predictions
output by the various learners in the ensemble.

To sum up, the two most common modeling techniques used in the state-of-the-art system to solve
BO problems are the Gaussian Process and Decision Trees. GPs are normally used because it outputs
a Gaussian distribution by nature. However, the selection of the covariance function and the tuning of the
hyperparameteres of the GPs is not a trivial task and has a crucial impact on the model’s performance.
Also, the training of GPs takes normally much longer [40] comparing with Decision Trees that are fast and
easy to train. However, there is no information about the uncertainty of the model. This disadvantages
of Decision Trees can be mitigate using bagging ensemble of decision trees or random forests.

10

2.2.3 Transfer Learning

Transfer learning is a technique that aims at improving the learning process in a target task by
leveraging (i.e., transferring) knowledge from previous learned related tasks. There are three common
measures that can be used to evaluate whether the use of transfer learning techniques might be ben-
eficial. Firstly, it should be compared the initial accuracy achievable in the target task using a classifier
trained only with the transferred knowledge and using an ignorant classifier, i.e., a classifier before train-
ing. Then, the training time and the final accuracy should be compared using the transferred knowledge
or not. The main goal of transfer learning techniques is to increase accuracy and, at the same time,
reduce the training time and cost. However, in order to achieve a positive transfer, i.e., to improve the
performance, the tasks must be correlated.

There are two types of transfer learning techniques [84, 6]. The direct transfer learning in which
the target task uses the knowledge gain in a previous source task and the multi-task learning in which
several tasks are learned simultaneously.

Some works [81, 48] implement transfer learning techniques to leverage small datasets to explore
hyperparameter settings for a large dataset. In order to decrease the number of explorations, the knowl-
edge gain by evaluating small subsets of data is transferred to find the best settings on the full dataset.

However, a poor correlation between the two tasks, i.e., if the two tasks are not sufficiently related
or if the relationship is not well leveraged by the transfer method, can lead to negative transfer and the
performance may fail to improve and decrease its value.

2.3 Optimization Techniques

One of the most common techniques used on state-of-the-art systems and also used in this work is
Bayesian Optimization (BO), which is analyzed in detail in this section. Section 2.3.1 introdices the BO
technique. Next, the most common acquisition functions used in BO are studied (Section 2.3.1.1) and,
finally, rollout techniques for BO are presented.

2.3.1 Bayesian Optimization

Bayesian Optimization (BO) [16, 27, 17, 76, 66] is a model-based method for finding a optimum
value of an objective function f(x). Normally, BO is very efficient when f(x) is an unknown black-
box function, and when it is possible to gather observation through sampling points from f to build a
probabilistic model of the unknown objective function. BO is normally used when the objective function is
non-convex, non-linear and it is impossible to calculate the derivatives (BO is a derivative-free method).
Usually, the evaluation of f is very expensive, which does it preferable and cheaper to determine and
sample points where it will be closer to find the optimum. BO relies on the knowledge (and uncertainty)
of the model to guide the exploration of the search space towards the optimum.

BO constructs a model for f using the points observed and exploits this model to determine the
next point to evaluate. After each observation, the model is updated with the new data. This ability to
incorporate the prior knowledge of f to determine the points to sample yields a very efficient method
that requires a relatively small number of explorations to converge to the optimum.

11

Algorithm 1 SMBO
1: function SMBO(n) . n: number of initial points to sample and construct the model
2: Evaluate f on n initial points;
3: S ← {xi, f(xi)};
4: while Stopping Criteria is false do
5: M← FitModel(S); . Fit a model to the available dara
6: xm ← AcquisitionFunction(M); . Chose the next point to sample
7: Evaluate f(xm);
8: S ← S ∪ {xm, f(xm)}; . Add new data to the training set
9: return (Incumbent xinc)

BO uses Bayes’ Theorem [80] to update the model. This theorem defines the probability of an event
given evidence. The posterior probability of a model given evidence (observation) is proportional to the
likelihood of the evidence given the model times the prior belief of the model. The prior represents the
belief about the potential space of objective function. Bayes’ theorem is used to update the probability
for a model as more samples are acquired and information becomes available, thus determining the
posterior and updating the beliefs about the objective function.

The prior belief has to be chosen over a set of functions that can describe assumptions about the
objective function. Also, in order to efficiently select the point to sample and decrease the number of
explorations required to converge to the optimum, an acquisition function is used to guide the search.

Sequential Model-Based Optimization (SMBO) [39] is an algorithm that uses BO methods to fit the
models of a black-box function and then leverages these models to choose which configurations should
be explored. SMBO is a sequential process that iterates between fitting a model using the existing data,
selecting a list of promising points based on this model’s prediction, evaluate the target function f on
selected points to gather new data and updating the models with the observed experimental values. It
extrapolates information about unseen points using the observed ones. SMBO algorithm behaves as
described in Algorithm 1. It starts with an initial set of points xn and evaluates these obtaining f(xn). A
training set S is created. During each iteration, the prior is updated through Bayes’ Theorem to obtain
the posterior distribution conditioned on the current training set that contains all the evaluated points
until the current iteration. Using an acquisition function, the next point to evaluate xm is selected. Then,
f(xm) is obtained by evaluating f on xm. The pair (xm, f(xm)) is added to the training set S and thus
the new training set for the next iteration is defined.

Gaussian Processes (cf. Section 2.2.1) are often used to build the model exploited in BO [16, 7] due
to their flexibility and tractability providing a way to compute the solution in closed-form [76]. This means
that each prediction is described as a Normal Distribution with mean value µ and standard deviation σ,
i.e., f(x) ∼ N (µ, σ).

The algorithm is running until some stopping criteria is fulfilled, for example, when an available
budget or time is exceeded or until the improvement over the current best point attained by further
explorations is predicted to be below a given threshold.

However, this algorithm is highly dependent on the constructed probabilistic model and therefore
fitting an inaccurate model using the gathered data (including the initial samples) can lead to bad perfor-
mance and consequently to the algorithm’s divergence.

2.3.1.1 Acquisition functions

In order to decrease the number of iterations required to converge, samples should be gathered
efficiently. BO uses an acquisition function to select the next point to be evaluated. However, it should

12

be considered if it is preferable to explore unknown regions with high uncertainty, i.e., regions that have
a high standard deviation, or if it is preferable to exploit regions that are predicted to have values closer
to the optimum. Normally, the most common acquisition functions (Probability of Improvement [51],
Expected Improvement [63], Confidence Bound Criteria [21, 4], Entropy Search [36]) provide a trade-off
between exploration and exploitation.

Probability of Improvement (PI) aims to maximize the probability of improvement over the incumbent
x∗. The incumbent is the predicted optimal configuration and it is updated in each iteration. The goal is
to select a point that has the highest probability of having a value closer to the optimum. Considering
that the predictions can be described as a Gaussian distribution with mean µ(x) and standard deviation
σ(x), PI is given by

PI(x) = P (f(x) ≥ f(x∗)) = Φ

(
µ(x)− f(x∗)

σ(x)

)
, (2.11)

where Φ(·) is a normal Cumulative Distribution Function (CDF). PI has the advantage of trying to improve
more over the current incumbent. However, PI only cares about exploiting and trying to find better
values than the current one. So, PI will select points that are predicted with high probability to offer an
improvement even if this improvement is very small, instead of selecting points that can offer a better
knowledge about the objective function and the location of the global optimum but have high uncertainty.
Since a prediction follows a normal distribution, points with higher uncertainty have a lower probability
of improvement.

In order to attenuate this drawback, there is a variation of PI [83, 43, 56] where it is added a trade-off
parameter ξ to balance the fairness between exploitation and exploration. So, this acquisition function
will select points that have a probability of improvement of at least ξ.

Alternatively, Expected Improvement (EI) [63, 44] balances the local and global search, i.e, the
trade-off between exploration and exploitation. EI takes into account not only the probability of improve-
ment of a point over the incumbent but also the absolute value of this improvement. The improvement
of a point x over the best current x∗ is defined as

I(x) = max {0, ft+1(x)− f(x∗)} . (2.12)

The value of ft+1(x) can be predicted using the probabilistic model conditioned to all the available
information from previous observations.

EI computes the expected value E of the improvement I and it is given by

EI(x) = E[I(x)] =

∫ f(x∗)

−∞
(f(x∗)− c)PM (c|x)dc, (2.13)

where the variable c is defined over the same domain as f(x) (namely, the objective function that we in-
tend to minimize) and PM (c|x) is the probability for configuration x to have ”performance” c, as predicted
by the model. If the prediction for f(x) is described by a normal distribution with predicted mean value
µ(x) and the associated uncertainty, the EI has a closed-form expression given by

EI(x) =

(µ(x)− f(x∗)) Φ(Z) + σ(x)φ(x) , if σ(x) > 0

0 , if σ(x) = 0
(2.14)

where

13

Z =
µ(x)− f(x∗)

σ(x)
, (2.15)

φ(·) and Φ(·) are the Probability Distribution Function (PDF) and CDF of the standard normal distribution,
respectively.

In order to extend EI to incorporate constraints on the optimization problem, a variation of this
acquisition function, called constrained Expected Improvement (EIC) [28], was purposed. EIC considers
that the incumbent is the point with the optimum value but which respects all constraints. Also, the
predicted infeasible points, i.e., points that do not respect the constraints, have an improvement of 0.
The constrained improvement is given by

IC(x) = δ(x) max {0, ft−1(x)− f(x∗)} = δ(x)I(x), (2.16)

where δ(x) is a binary factor (δ ∈ {0, 1}) to indicate the feasibility of a point. δ(x) can be described as
a Bernoulli random variable. So, the expected value of δ(x) is E[δ(x)] = P (δ(x) = 1) · 1 + P (δ(x) =

0) · 0 = P (δ(x) = 1), i.e., the probability of a point X meeting the constraints. Also, δ(x) and I(x) are
conditional independent events, given x. The constrained expected improvement is then given by the
following expression.

EIC(x) = E[IC(x)] = E[δ(x)I(x)] = E[δ(x)] E[I(x)] = P (δ(x) = 1) · EI(x). (2.17)

Two other acquisition functions, designated Lower Confidence Bound (LCB), which is used to mini-
mize the objective function, and Upper Confidence Bound (UCB), which is used to maximize the objec-
tive function [21, 4], select points to sample through a confidence bound criteria.

LCB(x) = µ(x)− κσ(x)

UCB(x) = µ(x) + κσ(x)
(2.18)

where κ ≥ 0 is a tunable parameter to control the balance between exploration and exploitation. These
acquisition functions aim to minimize the regret during the optimization process. There is a variant of the
UCB called GP-UCB [77] that presents an approach to select the parameter κ. An instantaneous regret
function r(x) = f(x∗)− f(x) is defined and the goal is to minimize the cumulative regret. Using the UCB
criterion, GP-UCB is defined as

GP -UCB(x) = µ(x) +
√
νβtσ(x), (2.19)

where ν > 0 is a hyperparameter and βt are appropriate constants. The next point to sample is selected
maximizing the GP-UCB.

Entropy Search (ES) [36] adopts a strategy of evaluating points that are expected to offer more
information about the optimum, i.e., based on the predicted information gain about the optimum, instead
of selecting points predicted to be near to the optimum. The sampled points are estimated to most
decrease the entropy of the distribution, i.e., decrease the uncertainty over the location of the optimum.
The belief about the optimum given the prior on f and the training set S is given by the probability
distribution pmin(x|S) = p(x ∈ arg min

x′
f(x′) | S)). The information gain at x is calculated using the

relative entropy (Kullback-Leibler divergence) [50]. The relative entropy is a measure of the difference
between two probability distributions P and U and is given by

14

DKL(P ;U) =

∫
p(x) log

p(x)

u(x)
dx, (2.20)

where p and u denote the PDF of P and U , respectively. For the base distribution U is chosen a uniform
distribution [36] and it is compared to the probability distribution pmin. ES is given by

ES(x) = Ep(y|x,S)

[∫
pmin(x′) · log

pmin(x′)

u(x′)
dx′
]
. (2.21)

Due to the complexity of computing pmin and the integral of Equation 2.21, it is constructed a first-order
approximation to calculate the expected information gain from an evaluation x′ [36].

ES has the objective of finding a point x from a set of possible candidates that maximizes the
information gain over the distribution of the location of the optimum. There is a variant of this acquisition
function designated Predictive Entropy Search (PES) [37], where other optimization and approximation
techniques are used to compute Equation 2.21.

The acquisition functions previous mentioned are the most common in the literature, in particular, in
the state-of-the-art systems that will be reviewed in Section 2.4. Overall, every acquisition functions has
both advantages and drawbacks. The PI presents a pure exploitative behavior, thus, it discards points
with high uncertainty. To balance the exploration and exploitation trade-off, the EI can be computed to
determine the expected value of the improvement. Also, the computation of these acquisition functions
is facilitated if one assumes an underlying Gaussian model, as in the case of GP, as this allows com-
puting in closed form several of the above discussed acquisition functions. EI is easy to be extended to
incorporate constraints (EIC). The LCB adopts a more optimistic behavior and gives a confidence bound
to the predicted values. This confidence bound is controlled by a tunable parameter to balance explo-
ration and exploitation, however, this parameter is tuned by the user, which may be difficult to select.
The ES is another common acquisition function that aims at evaluating configurations that are expected
to offer more information about the optimum. Nevertheless, the computation of this acquisition function
can be time-consuming and requires high computational power.

Lastly, all these acquisition functions are greedy/myopic, i.e., they consider only one step ahead in
the optimization process, which, as for all greedy heuristics, can lead to explore the search space in
suboptimal ways.

2.3.1.2 Baysian Optimization with Lookahead

Several works present in the literature [29, 30, 52, 65] use BO to minimize the overall cost given
a fixed budget for the exploration phase. These works extend BO combining the greedy acquisition
functions with lookahead techniques to move towards a long-term reward and, thus, to mitigate the
shortcomings of those greedy acquisition functions. In order to implement a lookahead heuristic, a
policy, that contains the rules to specify the way of updating the model when there is new information
available, and a reward function, which quantifies the benefits of evaluating a new set of points, have to
be defined. Normally, the reward function is defined as the maximization of the acquisition function.

The work by Lam and Willcox [53] proposed a BO-based approach that supports lookahaed and
can account for additional constraints on the recommended configuration. This algorithm formulates
constrained BO as a Dynamic Programming (DP) problem [5]. DP is a backward recursive algorithm. To
compute the reward, it is required the resolution of several nested maximizations and expectation with
unknown closed-form, from the end to the initial state. Therefore, DP is computationally intractable. To

15

mitigate the cost of solving the DP problem, a rollout technique [67, 9, 53, 52] is implemented, which
maximizes the long-term reward to select the next point to evaluate. The reward is calculated by sim-
ulating optimization scenarios over future steps. Rollout uses a heuristic policy to select designs to be
sampled that approximate the optimal reward by selectively eliminating costly designs. Unlike DP, using
rollout the information only propagates to the future steps and each step depends only on the previous
ones, regardless of the future steps. This means that rollout is a closed-loop approach that uses the in-
formation gained in each step of the simulation to simulate the next stages. Two numerical simplifications
are introduced to deal with the nested expectations problem. Firstly, to decrease the number of future
steps simulated, a rolling horizon, i.e, a limited finite number of future steps, is implemented. Secondly,
the expectations are approximated using Gauss-Hermite (G-H) quadrature [55]. G-H quadrature is used
to approximate integrals of the shape

∫∞
−∞ e−x

2
f(x) dx, obtaining

∫∞
−∞ e−x

2
f(x) dx ≈

∑N
i=1 wi f(xi),

where N is number of points to sample and wi is a weight associated with each sampled point.

Not that, increasing the rolling horizon does not necessarily mean the improvement of the algo-
rithm’s performance [53]. The horizon’s increase might augment the model’s uncertainty because the
values added to the model are predicted and these predictions can be incorrect. Hence, new predictions
may be less and less accurate. The calculated reward for the different values will be more uncertain and
less accurate with the increasing of the horizon.

2.4 Optimizing Parameters of Complex Systems

There are several different types of tuning systems, with different objectives, for different applica-
tions. In this section, two different categories of state-of-the-art systems are introduced, explained and
discussed. Firstly, systems for optimizing hyperparamters of machine learning models are presented
(Section 2.4.1). Next, we review systems for optimizing the allocation of cloud resources for different
type of applications, whose purpose is to maximize the quality of the final output solution and ensure
that the Quality of Service (QoS) constraints are met with the minimum possible cost are reviewed (Sec-
tion 2.4.2). The analysis presented in this work focuses on the following main differentiating factors:
i. optimization technique, ii. optimization problem, iii. exploit subsampling, and iv. consider additional
constraints.

2.4.1 Optimizing Machine Learning Hyperparameters

There are different systems for tuning hyperparameters of machine learning training processes in
order to obtain better accuracy. These systems allow to optimally tune the application-specific parame-
ters of interest and thus obtain better final performances at lower costs.

Bayesian Optimization (cf. Section 2.3.1) is a common technique used in the reviewed state-of-the-
art systems [48, 26] to find the best hyperparameters of ML job. These systems are based on SMBO
algorithm [39] where a model is built through the evaluation of different configurations in the search
space. Next, this model is exploited to select the next configuration to evaluate and to recommend
the best configurations. BO is a model-based technique. Therefore, the quality of the predictions are
dependent of the previous knowledge. To tackle the limitations of BO, Hyperband was proposed.

Hyperband. Hyperband [54] is an algorithm for hyperparameter optimization that allocates re-
sources (e.g. the number of iterations, dataset sizes or the number of features) to evaluate a configu-
ration. It is based on the Successive Halving algorithm [42] where a budget B is allocated to a set of

16

different configurations. The resources allocated depend on the budget and B/n resources are allocated
on average for configurations, where n is the dataset size. Then, these configurations are evaluated and
the configurations’ set is reduced to half. The 50% of configurations removed from the set correspond
to the configurations with the worst performance. This cycle is repeated until one final configuration
remains.

Hyperband aims at maximizing the accuracy without considering any constraints using the user-
defined maximum amount of resources R that can be allocated for one configuration. The algorithm
receives an input value of R and η that defines the portion of configurations rejected in each iteration
s. Parameter η defines the aggressiveness with which the algorithm eliminates configurations: higher
values correspond to a more aggressive strategy. More aggressive strategies require fewer iterations for
the algorithm to reach its stopping condition. Hyperband determines the possible values of the dataset
size n , for a fixed budget B, through the computation of the Equation 2.22

n =
Bηs

R(s+ 1)
(2.22)

where the budget B is given by B = (smax + 1)R. smax is the maximum number of iterations computed
through smax = logη(R). For each n there is a minimum resource r to allocate for each configuration,
given by Equation 2.23. To larger values of n correspond lower resources r.

r = Rη−s, (2.23)

Then, n configurations are randomly chosen. This set is evaluated on the respective allocated resources.
Configurations with the best performance are selected for the next iteration. This procedure is repeated
until one configuration remains on the set. Hyperband does not rely on model predictions as the BO-
based systems. Also, it discards bad configurations early without spending a huge budget to evaluate
them.

Hyperband does not exploits subsampling. Also, the optimization problem solved does not incor-
porate constraints. However, Hyperband can converge slowly since it requires the random evaluation of
a large number of configurations. This problem is emphasized when using large budgets. In order to
tackle this drawbacks, a new system, called BOHB was developed that replaces the random selection
of configurations at the beginning of each iteration by a model-based search.

BOHB. BOHB [26] is a system to Hyperparameter Optimization (HPO) that combines Bayesian
Optimization (BO) and Hyperband (HB) methods. BOHB implements a hyperband method in order to
determine the number of configurations to evaluate given a budget. Hyperband [54] is used to allocate
the resources in each iteration and based on the Successice Halving algorithm [42] the best configu-
rations contained in a set of randomly sampled configurations are identified and the under-performed
configurations are dropped. However, BOHB implements a model-based selection of the configurations
to be evaluated, instead of a randomly selection.

BOHB aims is to maximize the accuracy using the largest budgets. It does not exploit subsampling
and does not considers constraints. The given budget for each exploration increases with the number of
explorations. BOHB always uses the model to predict the performance of configurations for the largest
budget. BOHB builds a model for the objective function and uses BO to choose the next configuration
to evaluate based on the previous experiments. Instead of GPs to model the objective function, BOHB
uses the Tree Parzen Estimator [8] that computes the defined acquisition function (EI) required by the
BO method in a more efficient way.

17

In order to reduce the cost of testing configurations, a state-of-the-art system, called Fabolas, pro-
posed the use of subsampling technique to evaluate cheaper configurations and transfer learning tech-
nique to apply the knowledge acquired on smaller datasets on the full dataset.

Fabolas. Fast Bayesian Optimization on Large data Sets (Fabolas) [48] is a system for tuning
machine learning hyperparameters. In order to decrease the time of hyperparameter optimization, it
uses subsampling to evaluate the performance of smaller datasets sizes, instead of using the full dataset,
which normally is expensive to evaluate. Testing different configurations on small datasets permits the
extrapolation to the full dataset.

Fabolas adds one additional dimension to the search space that corresponds to the dataset size
s to evaluate and is given by Nsub/N , where Nsub is the size of the subsampled dataset and N is the
full dataset size. s is a value between 0 and 1 (s ∈ [0, 1]) that corresponds to the fraction of the dataset
used. For example, if s = 0.5, half of the dataset is used, if s = 1, the entire dataset is used. This
parameter is also an input of the black-box functions to optimize and, in this way, the dataset size of the
configuration to evaluate is determined automatically by the optimizer.

The goal of Fabolas is to minimize a loss function f (equivalent to maximizing the accuracy) on
the full dataset, i.e., for s = 1, but evaluating only subsampled datasets. It enables the correlation of
performance across dataset size. It uses Gaussian Processes (GPs) to model loss and cost and the GP
kernel chosen is the Matérn 5/2 Kernel [58] multiplied by a finite-rank covariance function in s.

k ((x, s), (x′, s′)) = k5/2(x, x′) ·
(
φT (s) · Σφφ(s′)

)
, (2.24)

where φ is a basis function that incorporates the behavior of the function across s. For the loss model,
the basis functions is given by φf = (1, (1− s)2)T because normally loss increases when there are more
data available, i.e., for higher values of s. The complexity of the computational cost/time c usually grows
with relative dataset size, i.e., O(sα), for a arbitrary α and, to enforce positive predictions, the modeled
function is the logarithm of the training time. Therefore, for the training time model, the basis function is
instead given by φc = (1, s)T . The hyperparameters of the GPs are selected via Markov Chain Monte
Carlo (MCMC). To accelerate the process of searching for the optimum, it is used hyper-priors, i.e., prior
distributions of the hyperparameters, to highlight parameter values that are believed to be more relevant.

Fabolas uses Bayesian Optimization (BO) to determine the optimum of the optimization problem
given by minimize

x
f(x, s = 1), where f is the loss function. As an acquisition function, Fabolas uses

the Entropy Search (ES) [36] (cf. Section 2.3.1.1) normalized with respect to cost. It tries to maximize
the information gain per unit of cost about the distribution of the optimum for s = 1, ps=1

mim(x|D) =

p(x ∈ argmin
x′∈X

f(x′, s = 1)|D), where D represents the training set. The acquisition function selects

a configuration (x, s) that maximizes the information per unit cost that is possible to gain about the
optimum (on s=1). By evaluating and adding to the training set the configuration (x, s), it quantifies
the knowledge learned about the performance on the full dataset. The acquisition function, given by
Equation 2.25, computes the relative entropy between ps=1

min(x′|D ∪ {(x, s, y)}) and a uniform distribution
u(x′), with expectations taken over the evaluation y to be obtained at x. It is normalized with respect
to the optimal cost and the overhead cost Coverhead in order to select configurations with lower cost.
Fabolas considers the computational cost, i.e, the time needed to evaluate a configuration or to compute
the acquisition function.

aF (x, s) =
1

C(x, s) + Coverhead
ES(x) (2.25)

18

For the initial design, Latin Hyper-Cube Sampling (LHS) is used to select initial configurations and
each configuration is evaluated on different datasets sizes. This way, it is provided more information on
scaling behavior, i.e., information about the evolution of the function on the s dimension.

In each iteration, Fabolas predicts the loss for all configuration in the training set at s = 1 and the
incumbent configuration (i.e., the current predicted optimum) is the one that minimizes the loss. The
computational cost and resources needed to compute the acquisition function are very high and so the
system needs too much time and resources to solve the optimization problem. The use of GPs also
increases the execution time of Fabolas. A key limitation of Fabolas is that it does not support the
definition of additional constraints on the recommended configuration. In order to tackle this limitation,
we proposed Fabulinus that extends Fabolas’ acquisition function and the logic it uses for selecting the
incumbent configuration.

2.4.2 Optimizing Cloud Resources

Due to the concerns and restrictions discussed on Section 2.1, it is very important to correctly
allocate cloud resources for different applications in order to increase the performance and/or meet their
QoS constraints at the lowest possible cost. Several works were proposed in this area over the last few
years. The existing literature can be distinguished and classified based on a number of criteria. The
analysis of the systems considers the same differentiating aspects as in the previous section.

CherryPick. CherryPick [2] is a system that aims to select the optimal cloud configuration that
minimizes the execution cost and ensures that the time performance is below a specified constraint. It
solves the following optimization problem.

minimize
x

C(x) = P (x) · T (x)

subject to T (x) ≤ Tmax;

(2.26)

where C(x) is the cost of running a configuration x in the cloud, T (x) is the running time of that configu-
ration, P (x) is the price per unit of time of the allocated resources (VMs) corresponding to configuration
x in the cloud and Tmax is the time threshold to run a configuration, that is, the maximum time allowed
for the job to complete. P(x) is known a priori, but T(x) is not and varies with x in ways that are not easy
to predict.

CherryPick leverages BO to build a performance model in order to predict the best configurations
that solve the problem of Equation 2.26. GPs are used as a prior function using the Matérn 5/2 kernel
and the constrained Expected Improvement (EIC) is used as acquisition function.

A configuration is composed of the number of VMs, CPU count, CPU speed and RAM per core,
disk count and speed, and network capacity. To construct an initial model, CherryPick selects three
configurations at random. Then, the model’s prediction is used to compute the EIC for all untested con-
figurations and the configuration selected for the next sampling is the one associated with the largest
EIC value. This procedure is repeated until the predicted expected improvement is below a given thresh-
old and N configurations are evaluated. This way, CherryPick guarantees that a minimum number of
configurations were observed and also it prevents against insignificant improvements that might be time
and cost consuming.

CherryPick has four components: i. the Search Controller, which is responsible for the cloud config-
uration selection process, ii. the Cloud Monitor that measures the cloud experiments, iii. the BO Engine

19

that manages the optimization process of selecting configurations to sample and constructing the model,
and iv. the Cloud Controller that launches and controls the experiments on the cloud.

CherryPick minimizes the cost satisfying a performance constraint. Nonetheless, it does not have
into account a notion of an available budget for searching for the optimum, i.e., the exploration cost of all
configurations is not considered. Therefore, it does not exploit subsampling in order to reduce the cost.
Also, the search space considers only 66 configurations, which is a small number especially if it is taken
into account all the possible configurations aforementioned (Section 2.1). The stop condition requires
the evaluation of a minimum of 6 configuration, which represents 9% of the search space. Furthermore,
the initial model that uses almost 5% of the search space is trained using random samples that may be
expensive and underperformed, creating a poor and high uncertain model. Although CherryPick only
explores 9% of the search space, which represents a relatively small value of explored configurations
to find the optimum, the percentage of configurations explored to create the initial model is high when
compared with other state-of-the-art systems, as Lynceus, that use small values.

Lynceus. Lynceus [19, 18] is a budget-aware and long-sighted self-tuning system of cloud re-
sources. It aims at finding optimal configurations that minimize the execution cost of running data ana-
lytics jobs in the cloud while ensuring that the constraints on maximum execution time are complied with
and that the cost of the exploration phase does not exceed the available budget B.

minimize
x

C(x)

subject to T (x) ≤ Tmax∑
xk∈S

C(xk) ≤ B

(2.27)

where C(x) and T (x) are the execution cost and time of running configuration x for a given job, respec-
tively, S is the training set that contains all the observed configurations. The cost C(x) of a configuration
x can be computed by multiplying the running time of that configuration T (x) by the cost per unit-time
P (x) of using the cloud resources that constitute configuration x.

Lynceus is budget-aware because it incorporates a budget for exploration and, in each iteration, dy-
namically selects the configurations to explore according to the current budget. However, it does not use
subsampling in order to reduce the cost. Configurations incorporate not only cloud resources, as VMs’
number and type, but also hyperparameters of the machine learning jobs. Lynceus uses a cost model
that is built using the measurements collected when testing configurations and is used to predict the cost
for untested configurations. At the beginning of the exploration phase, while there is a large available
budget and the cost model has high uncertainty, Lynceus presents a more explorative behavior. After
exploring more configurations, the model’s uncertainty and the budget decrease and Lynceus selects
configurations to sample that will not compromise the budget using the model to maximize shorter term
reward.

This system uses BO to solve the optimization problem, building a cost model M, using a bag-
ging ensemble of decision trees (Section 2.2.2), trained with a dataset, noted S, containing the tested
configurations. A set of initial points is chosen using LHS and the model is trained over this initial set.

Lynceus uses the lookahead technique to predict a path of configurations to be explored that max-
imizes the reward and minimizes the exploration cost, instead of selecting configurations based on a
myopic approach. The lookahead technique aims to foresee the effect of choosing a configuration to
evaluate in the current iteration. For that, it simulates the next iterations using predicted values by the

20

model. The model is updated with the predicted cost of the configuration that maximizes the reward and
then, in the next lookahead step, it predicts the new reward and cost of untested configurations based
on the model updated with predicted values, instead of real values.

In each iteration, Lynceus creates a feasible set Γ that contains the configurations that are pre-
dicted with a probability higher than 99% to have a cost that is lower than the available budget. Then, for
each configuration x in this feasible set, it computes the reward by calculating the Constrained Expected
Improvement (EIC) that is used as acquisition function and predicts the improvement, over the current
known best, brought by exploring a given configuration. The prediction of the configuration that max-
imizes the reward is used to update the model. The next lookahead step starts using this speculated
information and repeats the procedure, since the creation of a new feasible set. Instead of updating the
model only with the mean value predicted by the cost model, Lynceus exploits the fact that its underlying
model can estimate the probability distribution for the cost and, at each lookadhead step, Lynceus spec-
ulates about all the possible cost values, and their predicted likelihood, for the configuration selected in
the previous lookahead step. Therefore, the model is cloned and updated with different possible val-
ues ci, as described next. For each cost ci, the training set is updated S = S ∪ {(x, ci)}, the model is
retrained and the budget is decremented by ci. Since the. number of possible cost values is theoreti-
cally infinite, the G-H quadrature is employed to approximate the computation using a (small number of)
different cost values. When the lookahead reaches the maximum horizon h or when the feasible set is
empty, a so-called exploration path (or simply path) ends. For each path, Lynceus computes the cor-
responding reward and cost and selects the path that maximizes the ratio of reward to cost. As shown
in Lynceus, lookahead can explore more configurations and find solutions with lower cost. However it
does not necessarily work better than greedy methods. In particular, given its stronger reliance on the
model (to speculate on future explorations), it is less robust to model’s mispredictions. Also, it has also
higher computational costs than conventional greedy BO, as the computation of the reward of a path
grows exponentially with the length of the path. Lynceus can incorporate constraints on execution time:
Furthermore, it can be extended to incorporate additional constrains under the assumption that the con-
straints are independent. In spite of Lynceus aims at minimizing the cost, it does not use subsampling,
thus requires expensive evaluations using the full dataset.

PARIS. Performance-Aware Resource Inference System (PARIS) [86] aims to provide an estimate
for cost and performance for different VM types with minimal data collection in order to select the right
VM type that meets the target performance and cost constraints. However, unlike the two previous
systems, it does not use BO.

The system receives as input a representative task of the workload, the performance metrics and a
set of candidate VM types. PARIS models the resource requirements of the workload and the behavior
that different VM types have on workloads with identical requirement resources, using Random Forests.
The modeling task is divided into two phases designated offline and online phases. In the Offline phase,
PARIS runs a broad set of benchmarks using different resources and collects detailed systems perfor-
mance metrics and statistics for each VM type. This phase has a fixed cost and, in the end, models
are created using decision trees and trained with the collected data. When there are new VM types, the
benchmark only needs to be run on those. The Online phase calls a Fingerprint-Generator that runs
a representative task given by the user on 2 reference VM types and collects performance metrics and
resource usage information that tries to capture patterns and helps to understand the resource require-
ments of the task. Using the data collected in both phases a set of decision trees is trained for each
workload, obtaining a random forest. Thus, a performance model is obtained.

Paris considers that the cost is a unknown function of the target performance metric (e.g., execution

21

time or throughput) and of the price per hour of the VM. Thus, by estimating the performance of the job
via the model, PARIS can obtain a prediction of the cost of choosing those instances. Once again, the
model is highly dependent on the correct choice of reference configurations and the available data in the
training set. Unlike Lynceus and CherryPick, PARIS requires offline knowledge of previous workloads.
This allows for avoiding the need for sampling many configurations when a new workload has to be
optimized. However, offline knowledge may not be available and is time consuming and expensive to
build. PARIS does not consider the total exploration cost, only the deployment cost of a configuration.
Also, it does not exploit subsampling in order to achieve cost reductions.

Scout. Scout was designed in order to provide solutions to some of the drawbacks of CherryPick
and PARIS. Scout aims at maximizing the performance of an application while ensuring a constraint on
cost. Scout incorporates the search-based method to accommodate mispredictions as CherryPick and
it gathers historical data to comprehend the preferences of a workload as PARIS. Hence, Scout is not
affected by the model bootstrapping problem. However, in the selection of the next configuration to test,
Scout uses an approach based on the Probability of Improvement (PI). Thus, it has a pure exploitative
behavior that exposes it to a higher risk to get stuck in local optima [16]. The search process learns
from previously evaluated configurations and from performance data of other workloads using transfer
learning methods, thus decreasing the number of explorations required. However, the availability of of-
fline knowledge is an undesirable assumption and it can be time consuming and expensive to build. The
main advantage of running Scout is that it can largely reduce the cost of the exploration phase. However,
exploring fewer configurations does not imply a small exploration cost because expensive configurations
can be explored comparing, especially, when more and better configurations were explored. Further-
more, Scout does not use subsampling to reduce the cost spent.

Quasar. Quasar [23] predicts the amount of resources that should be allocated to a workload in
order to meet the performance constraints. It aims at maximizing the resource utilization while meeting
performance and QoS constraints for each workload. The amount of resources that are allocated, their
types and possible interference between jobs running on the same physical machines may have impact
on the performance of the job when it is run on that particular configuration. Hence, to maximize the
performance of a job, Quasar uses a technique based on such as Collaborative Filtering (CF) [25, 75],
to accelerate and to increase the accuracy of the predictions of the impact a given configuration might
have on the overall performance of the job. Posteriorly, this information is used to allocate resources in
order to determine the minimum amount of resources necessary to meet the constraints. However, CF
requires offline knowledge and Quasar does not use subsampling

HCloud. A different system, called HCloud [22], is a hybrid provisioning system that determines if
a job should allocate on-demand or reserved resources, leveraging on-demand resource for short-term
resource needs and reserved resources for long-term jobs. For an incoming job, it collects informa-
tion about resource preferences. Using this new knowledge, HCloud determines the type and quantity
of resources that a job should use in order to satisfy the Quality of Service constraints. HCloud de-
fines a policy to map jobs to resources. This policy ensures that reserved resources are utilized before
on-demand resources. Applications that can be deployed on on-demand resources should not delay
the scheduling of interference sensitive jobs. A dynamic adjustment of the utilization limits of the re-
served instances should be done to reduce the queuing and to avoid performance deterioration. When
a predefined limit for reserved resources usage is reached, the policy differentiates jobs by sensitivity
to performance unpredictability, through the computation of resource quality, that dictates if a job should
use on-demand or reserved resources. If reserved resources are selected and they are not available,

22

the job enters in a queue until those become available. HCloud does not support constrains neither
subsampling.

Proteus. Other approach aims to exploit the available transient revocable resources (like, Spot-
Instances in AWS) in order to decrease the time and cost of distributed machine learning jobs, which
divide the work by several workers controlled by a server. The optimization problem solve does not
keep into account constraints. Proteus does not use subsampling in order to reduce the cost. This
system, called Proteus [35], can combine both transient revocable and non-transient reliable machines
and it handles the possibility of resources being revoked. By exploiting these two types of resources for
running distributed machine learning jobs, Proteus can perform these jobs faster and/or cheaper.

2.5 Discussion

Table 2.2 provides a compact taxonomy of the works reviewed in Section 2.4, as well as of the sys-
tems developed in this dissertation, namely Nephele and Fabulinus (which will be presented in Chapter 3
and 4, respectively). Through the analysis of Table 2.2, it is possible to clarify not only the main differ-
ences between the reviewed state-of-the-art solutions but also clarify which gaps in the existing literature
are being filled by the solutions presented next.

As we can see both Nephele and Fabulinus jointly optimize both cloud and application parameters.
This is in common with Lynceus, which has first to shown the relevance of optimizing these two type of
parameters in a joint fashion. Nephele and Fabulinus though consider different optimization problems
than Lynceus and rely on subsampling. Nephele aims to identify the cheapest configuration that satisfies
user defined constraints on accuracy and execution time. Unlike Lynceus, which assumes that ML jobs
can only be trained on the full dataset, Nephele exploits the possibility of subsampling the dataset to re-
duce the job’s cost, at the expense of a controlled degradation of the model’s accuracy. As we will show
in Chapter 6, thanks to the use of subsampling, Nephele can reduce the cost of the configuration that it
recommends to be used in production (by a factor up to 4). Also, despite the inclusion of subsampling in
the configuration space increases the cardinality of the search space, Nephele incurs exploration costs
that are comparable, and often even lower, than Lynceus (despite Lynceus considers a relatively smaller
search space by neglecting the possibility of using subsampled datasets). As we will see, in fact, the
increase in the cardinality of the search space is compensated or even outweighed by the reduction of
the cost for testing configurations using subsampled data set. Fabulinus targets a different optimization
problem: maximizing accuracy using the full dataset subject to cost constraints, while testing configu-
rations using subsampled datasets. Note that Fabolas addresses a similar optimization, except for two
key differences: i) Fabolas does not support the definition of additional constraints on the configurations
that it recommends; ii) Fabolas was designed and evaluated in the context of hyperparameter optimiza-
tion and, unlike Fabuliuns, it does not account for the optimization of cloud-related parameters. Recall
that Fabolas uses an acquisition function that exploits transfer learning techniques to extrapolate the
knowledge on accuracy and cost gathered using subsampled datasets for the case in which the full
dataset is used. In a nutshell, Fabulinus extends the acquisition function of Fabolas to account also for
the likelihood that the cost constraints will be met by the configuration (using the full dataset) that will be
recommended after having tested one more configuration using a subsampled dataset.

23

Tunes

application-

level

Parameters

Tunes

Cloud-related

Parameters

Base

Optimization

Techniques

Optimization

Goal

Exploit

Subsampling

Considers

Additional

Constrains

Hyperband X 7
Model-free and

Successive Halving
Minimize loss 7 7

BOHB X 7 BO and Hyperband Minimize loss 7 7

Fabolas X 7
BO, GPs and

Transfer Learning
Minimizes loss X 7

Cherrypick 7 X BO and GPs Minimize cost 7 Time

Lynceus X X
BO and Decision

Tree
Minimize cost 7

Accuracy

and Time

Paris 7 X Random forests
Maximize

performance
7 Cost

Scout 7 X
Pair-wise

prediction

Maximize

performance
7 Cost

Quasar 7 X
Collaborative

Filtering

Maximize

resources

utilization

7 X

Hcloud 7 X

Hybrid

provisioning

system

Determine type

of resources

(on-demand or

reserved)

7 7

Proteus 7 X

Time-series

based

prediction

Minimize cost 7 7

Nephele X X
BO and Decision

Tree
Minimize cost X

Accuracy

and Time

Fabulinus X X BO and GPs Maximize accuracy X
Cost or

Time

Table 2.2: Comparison between optimization goals and concerns of state-of-the-art and proposed sys-
tems (Nephele and Fabulinus)

24

3Nephele

This chapter presents Nephele, a system to find optimal configurations to deploy machine learning
jobs in the cloud. Nephele aims to find the best configuration to deploy a user-defined machine learning
job in the cloud that minimizes the deployment cost subject to Quality of Service (QoS) constraints using
subsampled datasets. According to Greek mythology, Nephele was the goddess of the clouds that had
the power to control the clouds and the rains.

The optimization problem considered by Nephele is to find the configuration (including both cloud
and model-related parameters) that minimizes the deployment cost to run a job in the cloud using sub-
sampled datasets of size s, subject to constraints on both execution time and accuracy and a budget B
for the exploration phase.

minimize
x,s

C(x, s)

subject to A(x, s) ≥ Amin

T (x, s) ≤ Tmax∑
(xk,sk)∈S

C(xk, sk) ≤ B

(3.1)

where C, A and T are the cost, accuracy and time functions, respectively, Amin and Tmax are the
accuracy and time constraints, x represents a configuration, s is the dataset size, and B is the budget
for the exploration phase.

In the following sections, the implementation of Nephele is detailed. Firstly, Section 3.1 describes
the design of the system. Then, Section 3.2 details the algorithm implemented by Nephele.

3.1 System Overview

Nephele is an online algorithm in the sense that it assumes no a priori knowledge on the job to
be optimized or on previously optimized jobs. As such, in order to solve the optimization problem to
find the optimal configuration, it is necessary to explore, at least partially, the configuration space. The
optimal configuration is the one that minimizes the deployment cost and complies with the user-defined
QoS constraints. These constraints, for example, can stipulate the maximum running time and/or the
minimum performance required for a job. There is one additional constraint that specifies the amount of
money that a user is willing to pay to explore the space to find the optimum.

Nephele leverages Bayesian Optimization (BO) techniques to solve the optimization problem and
builds models for accuracy and cost. In order to improve these models and to find the optimal configu-
ration, it needs to evaluate and deploy a configuration, thus, incurring a cost.

Nephele adds a new dimension to the search space that corresponds to the fraction of the dataset
used as input to the ML job, given by s = Nsub/N , where Nsub and N are the size of the subsam-
pled and the full datasets, respectively. Through the computation of the acquisition function, Nephele
automatically determines the dataset size s ∈ [0, 1] used to train a configuration x.

Reducing the dataset size using subsampling allows for reducing the computational demand for
training the model, but it is also likely to degrade its accuracy. Nephele allows users to control this
trade-off by letting them specify a constraint on the minimum accuracy that the model should achieve
Amin).

In order to bootstrap the knowledge of the model, Nephele selects an initial set of configurations
using Latin-Hypercube Sampling (LHS) [78]. Since the goal is to minimize deployment and exploration
cost, Nephele uses a fixed initial budget Binit for the initial sampling, instead of sampling a percentage
of configurations in the search space to construct the model, as CherryPick and Lynceus. Nephele
uses a module call Sampler that randomly selects the configurations to sample. Then, it executes each
configuration and collects the performance and cost measurements in order to construct the models.

After the initial sampling, Nephele constructs two models: a cost and an accuracy model. The
Modeler is the module responsible for constructing and updating the two models built using the mea-
surements gathered in each iteration. Then, these two models are used by a module called Selector that,
through the computation of the acquisition function, chooses the next configuration to evaluate. Then,
the selected configuration is executed. The Executor connects to the user-specified cloud provider and
creates the cluster of VM. The size of the cluster and the VM’s flavor is given by the configuration. The
Executor deploys the job in the cloud on the selected configuration. At the end of execution, the Executor
collects the necessary measurements and sends them to the Updater.

The Updater uses the information received to update the current state. It adds new information to
the training set that contains the evaluated configurations and removes it from the set of unexplored con-
figurations and decrements the current budget by the cost of the experiment. Then, the Updater informs
the Modeler of the new measurements, who updates, retrains, and improves the models. Figure 3.1
represents the architectural scheme of Nephele.

3.2 Algorithm Description

This section describes the algorithm implemented by Nephele and the implementation details. The
main concern of Nephele is to choose the next configuration to evaluate based on the current state (i.e.,
in the previous observations) in order to solve the optimization problem.

Algorithm 2 describes the system. Through the Sampler (Lines 7-10), Nephele uses LHS to select
configurations to sample in order to bootstrap the accuracy and cost models. The initial sampling ends
when the user-defined initial budget Binit (Binit < B) is spent. Each time a configuration is evaluated,
the state is updated. The configuration pair (x, s) is removed from the set of unexplored configurations
T and is added to the training set S. The available budget is decremented by the cost of (x, s).

Therefore, the initial samples are used to build the accuracy and the cost models by the Modeler
(Line 12). Nephele uses a bagging ensemble of Decision Trees (cf. Section 2.2.2) as a model. Poste-
riorly, the next configuration to evaluate is chosen (by the Selector (Line 13)). The selection of the next
configuration to evaluate is described in Section 3.2.1.

26

Executor

Updater

Modeler

Selector

Sampler

State
- Current evaluated Configuration
- Budget
- Explored Configurations
- Unexplored Configurations

Figure 3.1: Nephele architecture

The chosen configurations are deployed in the cloud by the Executor (Lines 21-27) that creates the
cluster of VMs and deploys the job in the cloud using the selected configuration. The cluster size and
the VM flavor is defined in the configuration x to evaluate. During the deployment of the job in the cloud,
the Executor periodically verifies if the available budget was spent.

When the job ends, the Updater (Lines 17-20) updates the training set with the accuracy and cost
measurements, removes the evaluated configuration from the set of unexplored configurations and
decrements the available budget. Then, a new iteration begins, the models are updated again, and
this procedure is repeated.

When the available budget ends, it stops the execution and terminates all the machines in the cloud.
Then, the exploration ends, and the final incumbent (xinc, sinc) ∈ S that minimizes the deployment cost
and meets the QoS constraints is determined using all the previous gathered knowledge.

3.2.1 Selecting the Next Configuration

This Section describes and details the policies and approximations implemented by module Selector
in Nephele in order to select the next configuration to evaluate.

The selection of the next configuration to sample in Nephele is based on the approach of Lynceus.
In each iteration, the Selector chooses the next configuration to sample based on the accuracy and the
cost model built. Since the search space can be very large (in the order of thousands of configurations),
assess the quality of all the unexplored configurations can be costly, time-consuming, and intractable.
Thus, a feasible set Γ is created in order to reduce the complexity of this problem (Algorithm 3, Line 2).
This feasible set contains the configurations that are predicted to comply with the constraints, i.e., con-
figurations predicted to have higher accuracy than the accuracy constraint Amin, lower execution time
than the time constraint Tmax and a deployment cost smaller than the available budget β. In order to

27

Algorithm 2 Nephele

1: function MAIN(B, Binit, h)
. B: Budget, Binit: Budget for the initial sampling, h: maximum horizon

2: S ← ∅ . Training set
3: T ←Whole search space . Set of untested configurations
4: D ← All possible dataset sizes . Set with the possible dataset sizes
5: β ← B . Current budget
6: η ← Binit . Budget for the initial sampling
7: while η ≥ 0 do . Bootstrap
8: (x, s, a, c)← LHS(T) . Initial sampling
9: UPDATE(x, s, a, c) . Updater

10: η ← η − c
11: while β ≥ 0 do
12: Fit Decision Trees model for A(x, s) and C(x, s) using (x, s) ∈ S . Modeler
13: (x, s)← NEXTCONFIG (h) . Selector
14: (a, c)← EVALUATE (x, s) . Executor
15: UPDATE(x, s, a, c)

16: return arg min
(x,s)∈S

C(x, s), s.t. A(x, s) ≥ Amin ∧ T (x, s) ≤ Tmax

. Select the incumbent configuration (xinc, sinc)

17: function UPDATE(x, s, a, c)
18: S ← S ∪ {x, s, a, c} . Update the training set
19: T ← T \ (x, s) . Remove (x, s) from the set of untested configurations
20: β ← β − c . Decrement budget

21: function EVALUATE(x, s)
22: Deploy the job in configuration x and using the dataset size s
23: while (a, c)← Run(x, s) do . Runs the jobs in the selected configuration (x, s)
24: Check available budget
25: if β ≤ 0 then . Verifies if the available budget was spent
26: Stop evaluation
27: return (a, c)

avoid mispredictions due to the high uncertainty of the models, Nephele adds to the feasible set the
configurations whose predicted mean values of accuracy and cost comply with the constraints. The
execution time of a configuration (x, s) is calculated through the division between the prediction given
by the cost model C(x, s) and the cost per unit of time of the allocated cloud resources given in the
configuration P (x, s), i.e., T (x, s) = C(x, s) · P (x, s).

If the feasible set Γ is empty, the next configuration is randomly selected among the configurations
in the unexplored set T . If the feasible set Γ is not empty, Nephele uses lookahead to simulate the path
of configurations starting at (x, s) ∈ Γ that could be created if the configuration (x, s) was evaluated in
the next iteration. Each simulated path has a maximum exploration horizon h defined by the user.

When the user-defined maximum lookahead horizon h is zero, which means that only a single-step-
ahead is simulated, the reward function R is computed for all configurations in Γ. In this particular case,
the reward function is given by the computation of the Constrained Expected Improvement (EIC) (Equa-
tion 2.17) that coincides with the acquisition function (cf. Section 2.3.1.1) used. The next configuration
to evaluate is the one that maximizes the ratio between the reward and the deployment cost, i.e.,

(xnext, snext) = arg max
(x,s)∈Γ

R(x, s)

C(x, s)
(3.2)

28

When the maximum lookahead horizon h is not zero, Nephele simulates the possible path created
by the evaluation of (x, s) ∈ Γ. Therefore, Nephele tries to evaluate not only the cost of trying a config-
uration but also the impact and the contribution in the long-term brought by that experiment to improve
the models and to find the optimal configuration. It evaluates the contribution brought by a configuration
(x, s) and also by the following h simulated iterations. For that, it calculates the expected reward of a
simulated path.

However, the exploration of all the possible paths considering all the unexplored configurations
creates an intractable, expensive, and time-consuming problem. In order to reduce the complexity and
to avoid exploring all the possible paths, in each lookahead step is determined a new feasible set Ω

using the same condition of the previous feasible set Γ. Then, for each configuration in Ω, it is computed
the EIC. In order to further reduce the search complexity, the next configuration simulated in the path is
the one in Ω that maximizes the EIC. Thus, only one path per configuration in Γ is built.

Based on Lynceus, it was implemented a recursive algorithm that simulates the paths. In each
lookahead step, the current state is cloned in order to be possible to return to the original state. The
utility and the cost are estimated for each configuration in the path. This process is repeated h times
until the utility and the cost of the last configuration in the path is calculated. Then, the reward and the
total cost of the path are computed by adding the estimated utilities and costs of all configurations in the
path, respectively.

The estimation of the expected utilities using lookahead requires the computation of nested expec-
tations, which do not have a closed-form expression. Thus, in order to compute the expected utilities of
configurations in the path, these expectations are approximated using Gauss-Hermite (G-H) quadrature
[55]. This quadrature approximates integrals through the sampling of N points. Each sampled point has
an associated weight that represents the likelihood of the sampled value being the real one. This way,
each weight determines the contribution of the sampled value to the estimation of the path utility.

In order to decrease the complexity of computing the G-H quadrature, only 3 points for each predic-
tion are sampled. Since Nephele uses the accuracy and the cost model to predict the next configurations
in the path, it is necessary to approximate the accuracy and the cost predictions, which follow a Normal
distribution, using a bivariative Gauss-Hermite quadrature [41]. The reward and the cost functions are
approximated by

N∑
i=1

M∑
j=1

wiwjf(ci, aj), (3.3)

where f can be the reward or the cost function, ci and aj are the sampled points of the cost and accuracy
predictions, respectively, wi and wj are the associated weights of a Gauss-Hermite quadrature. Thus,
N×M pairs of accuracy and cost points (ci, aj , wi, wj) are obtained. For each possible prediction (ci, aj)

of a configuration (x, s), the models are updated (Algorithm 3, Lines 23) and the next configuration in
the path is determined (Algorithm 3, Lines 30-32). In order to decrease the computational complexity
of computing a bivariative G-H quadrature, it is possible to approximate the cost prediction through a
G-H quadrature and use the mean value of the accuracy prediction (in other words, M=1) to update the
accuracy model. This way, only N pairs (ci, µa, wi) are obtained and computed.

Parameter γ (Algorithm 3, Lines 27-28) is a discount factor that enables the possibility to attribute
different contributions to configurations in the path based on the depth level (i.e., lookahead step) in
which the prediction is done. Thus, when γ ∈]0, 1[, the contribution of the estimation decreases with the
increase of the depth level. When γ = 0, the contribution of the path is not taken into account, and the

29

Algorithm 3 Selection of the next configuration

1: function NEXTCONFIG(h)
2: Γ← {x ∈ T ∧ s ∈ D : C(x, s|S) ≤ β ∧A(x, s|S) ≥ Amin ∧ T (x, s|S) ≤ Tmax} . Feasible set
3: if Γ == ∅ then
4: (xnext, snext)← Random(T , D) . Selects a configuration at random
5: else
6: for (xk, sk) ∈ Γ do . Compute rewards of exploration paths that start with any x ∈ Γ
7: (Rk, Ck) = EXPLOREPATHS(xk, sk, h,S, T , β)

8: (xnext, snext) = arg max
(x,s)∈Γ

R(x, s)/C(x, s) . Select configuration that maximizes reward/cost

9: return (xnext, snext)

10: function EXPLOREPATHS(x, s, h, S, T , β)
11: R← EIc(x, s) . Calculate the EIc of the first configuration in the path
12: C ← C(x, s) . Predicts the cost of the first configuration in the path
13: if h == 0 then . Maximum Lookahead horizon
14: return (R,C) . Return the reward and cost
15: else
16: 〈ci, wi〉 ← G-H(C(x, s)), i = 1, . . . , N . Gauss-Hermite quadrature
17: 〈aj , wj〉 ← G-H(A(x, s)), j = 1, . . . ,M
18: for (i = 1, . . . , N) do . Create state with speculated values
19: for (j = 1, . . . ,M) do
20: S ′ ← S ∪ (x, s, ci, aj)
21: β′ ← β − ci
22: T ′ ← T \ (x, s)
23: Retrain models A′(x, s) and C ′(x, s) using (x, s) ∈ S ′

. Update the accuracy and cost model using the predicted values
24: (x′, s′)← NEXTSTEP(T ′,S ′) . Select next configuration x′ using the updated model
25: if (x′ == null) then Continue . All predicted configurations are infeasible
26: (r, c)← EXPLOREPATHS(x′, s′, h− 1,S ′, T ′, β′)

. Compute reward and cost of sub-path of length h− 1 rooted in x′

27: C ← C + γwiwjc
28: R← R+ γwiwjr . Calculates the reward and cost of a path weighted by wiwj
29: return (R,C)

30: function NEXTSTEP(T , S) . Select configuration that maximizes EIc and meet the constraints
31: Ω← {x ∈ T ∧ s ∈ D : C(x, s|S) ≤ β ∧A(x, s|S) ≥ Amin ∧ T (x, s|S) ≤ Tmax}
32: if Ω == ∅ then return (null) else return arg max

(x,s)∈Ω

EIC(x, s)

algorithm will present the same behavior as when no lookahead is used (h = 0). When γ = 1, the weight
attributed does not depend on the depth level, and all the predicted utilities offer the same contribution
for the path.

Main differences with respect to Lynceus As mentioned the logic employed by Lynceus and
Nephele to select the next configuration share several commonalities (e.g., they both use lookahead
techniques and consider constraints on budget and execution time). In the following, we clarify what are
the key differences between Nephele and Lynceus:

- Subsampling can degrade the accuracy of the resulting models. As such, Nephele needs to predict
the impact of the configuration’s choice on both execution time and accuracy.

- Nephele considers a larger search space that includes the subsampling rate as an additional
dimension.

30

4Fabulinus
This chapter introduces Fabulinus (Fast Bayesian Optimization of Constrained Machine Learning

Cloud Jobs), a system to optimize machine learning (ML) jobs in the cloud in order to maximize the
performance subject to user-defined constraints. The name Fabulinus in Roman mythology was the
education god, who taught the children to speak and increase their knowledge.

Similar to Nephele presented in Chapter 3, Fabulinus aims to find the optimal configuration to deploy
a ML job in the cloud. Therefore, it tries to optimize the allocation of cloud resources and tune specific
application parameters. However, Fabulinus solves a different optimization problem than Nephele.

Fabulinus aims to maximize the accuracy of a ML model trained over the full dataset, subject to
constraints on the maximum cost for running the job in the cloud. In order to enhance the efficiency
of the optimization process, though, Fabulinus only tests configurations by training the model using
subsampled datasets. More formally, Fabulinus consider the following optimization problem:

maximize
x

A(x, s = 1)

subject to C(x, s = 1) ≤ Cmax,

(4.1)

where A and C are the accuracy and the cost functions, respectively, x is a configuration, s is the dataset
size, and Cmax is a cost constraint. The constraint specified serves to limit the cost that the user has
to pay to deploy the job. However, instead of defining a cost constraint, the user could define a time
constraint (since cost and time are not independent, the definition of both constraints at the same time
would create an additional difficulty).

Section 4.1 gives a description of the proposed system and Section 4.2 details the algorithm imple-
mented by Fabulinus.

4.1 System Overview

Fabulinus is a system for optimizing the cloud resources and hyperparameters of machine learning
applications deployed in the cloud, in order to maximize the accuracy of the job subject to a user-
defined cost constraint that specifies how much a user is willing to pay for a given job. Fabulinus uses
subsampling techniques in order to evaluate cheaper and faster configurations, but it tries to maximize
the accuracy on the full dataset. This way, the exploration cost can be reduced. It leverages Bayesian
Optimization to model the accuracy and the cost functions, adding a dimension to the search space that
corresponds to the dataset size s.

While the goal is to maximize the accuracy using the full dataset, Fabulinus evaluates the accuracy
and the cost functions on subsampled datasets, which are usually cheaper. Then, using transfer learning
techniques, it predicts the values of the objective and cost functions for the full dataset. The additional

dimension of the search space corresponds to the fraction of the dataset size used on the job, which
is given by s = Nsub/N , where Nsub and N are the size of the subsampled and the full datasets,
respectively.

The correlation across the dataset size is unknown a priori. So, in order to tackle this limitation,
Fabulinus’ strategy consists of selecting configurations that will increase the knowledge about the scaling
behavior and about the optimal configuration that maximizes the accuracy and meets the constraints on
the full dataset.

Fabulinus builds two models: an accuracy and a cost model. It uses GPs to construct each model,
and the kernel used is a factorized kernel given by the multiplication between the Matérn 5/2 kernel
and finite-rank covariance function in s, as proposed in Fabolas [48]. The configuration pair (x, s) to
evaluate is selected using an acquisition function that trades-off the information gain about the optimum
for s = 1, the cost of evaluating (x, s), and the probability that the predicted incumbent complies with the
constraint.

The architecture of Fabulinus is similar to Nephele. It is composed of four modules: a Sampler
for initial sampling, a Modeler to construct, update and improve the models, an Updater to update the
current state, a Selector to select the configuration to evaluate next, and the Executor to deploy the job
in the cloud given a configuration.

4.2 Algorithm Description

This section details the algorithm of Fabulinus and its implementation. Algorithm 4 provides a high
level overview of Fabulinus Logic.

The system builds an initial model for both accuracy and cost functions using LHS (Algorithm 4,
Lines 4-6), evaluating a user-defined number of configurations. Each configuration x is evaluated on
all the possible subsampled dataset sizes in order to provide better information on the scaling behavior.
Then, the state is updated and the accuracy and cost models are built using these initial evaluations
(Line 8).

The next configuration (x, s) to be tested is then selected using an acquisition function that will be
detailed in Section 4.2.1. Then, the selected configuration (x, s) is evaluated and, after the evaluation,
the state is updated, the accuracy and cost of (x, s) are added to the training set, and the configuration
is removed from the set of unexplored configurations. The incumbent (i.e., the configuration deemed to
be the optimal in the present moment) is the configuration that maximizes the predicted accuracy and
meets the constraint with a probability higher than 99%. At the end of each iteration, the incumbent
is determined based on the predicted accuracy and cost for all possible configurations that use the full
dataset (s = 1). Fabulinus stops the optimization process when it reaches a user-defined number of
iterations. In the end, it predicts the final incumbent that solves the optimization problem.

It should be noted that the Algorithm 4 is the same used by Fabolas with the following exceptions:
- Fabolas does not include in the configuration space any cloud-related parameter;
- Fabolas does not account for constraints on the maximum cost of running the job in the cloud. As
a consequence, Fabolas uses a different acquisition function and a different logic for determining the
incumbent.

32

Algorithm 4 Fabulinus

1: function MAIN(N , M , D)
. N : Number of configurations for LHS, M : Number of iterations, D: possible dataset sizes

2: S ← ∅ . Training set
3: T ←Whole search space . Set of untested configurations
4: for (i = 1, . . . , N) do . Bootstrap
5: (x, s, a, c)← LHS(T) . Initial sampling
6: UPDATE(x, s, a, c)

7: for (i = N, . . . ,M) do
8: Fit GPs model for A(x, s) and C(x, s) using (x, s) ∈ S
9: (x, s)← NEXTCONFIG ()

10: (a, c)← Evaluate (x, s) . Test configuration s using the dataset size s
11: UPDATE(x, s, a, c)
12: Choose incumbent xinc based on the predicted accuracy and cost at s = 1

13: function UPDATE(x, s, a, c)
14: S ← S ∪ {x, s, a, c} . Update the training set
15: T ← T \ (x, s) . Remove (x, s) from the set of untested configurations

4.2.1 Selecting the Next Configuration

The acquisition function used by Fabulinus extends the one proposed in Fabolas, which uses trans-
fer learning techniques (Multi-Task Bayesian Optimization (MTBO) [81]) to predict the optimal configura-
tion on the full dataset using the knowledge gained through the evaluation of subsampled datasets.

In order to select the next configuration and the dataset size to evaluate, Fabolas extends an ac-
quisition function called Entropy Search (ES) given by Equation 4.3 that maximizes the information gain
per unit cost about the distribution of the optimum on the full dataset, i.e.,

ps=1
max(x|S ∪ {(x, s, y)}) = p(x ∈ arg max

x′∈X
A(x′, s = 1)|S ∪ {(x, s, y)}) (4.2)

The acquisition function is normalized with respect to the total cost, i.e., the deployment cost C(x, s)

plus the overhead cost Coverhead, in order to trade-off the information gain and cost.

aF (x, s) =
1

C(x, s) + Coverhead
Ep(y|x,s,S)

[∫
ps=1
max(x′|S ∪ {(x, s, y)}) · log

ps=1
max(x′|S ∪ {(x, s, y)})

u(x′)
dx′
]

(4.3)

Fabulinus extended the acquisition function proposed in Fabolas to keep into account constraints.
The new acquisition function, called constrained Entropy Search (ESC), selects the configuration that
maximizes the information gain per unit cost about the optimum at s = 1 and the probability that the pre-
dicted incumbent complies with the constraint but only evaluates configurations on subsampled datasets.
It computes the relative entropy between ps=1

max(x′|S ∪ {(x, s, y)}) and a uniform distribution u(x′), with
expectations taken over the evaluation y to be obtained at x, times the probability of the constraint being
met. The constrained Entropy Search (ESC) is given by

ESC(x, s) = aF (x, s) · CEA(x, s). (4.4)

aF (x, s) is the acquisition function used by Fabolas (Equation 4.3). Roughly speaking, the Constrained
Expected Accuracy (CEA) captures the likelihood that the incumbent output by the model at the next
exploration step, i.e., after testing (x, s), will meet the constraints. Note that the incumbent at the next

33

Algorithm 5 Selection of the next configuration

1: function NEXTCONFIG
2: Γ← Creation of the set containing the configurations to compute the acquisition function
3: for x ∈ Γ do
4: for s ∈ D do
5: Clone the accuracy and cost models and the training set S
6: a′ ← A′(x, s)
7: c′ ← C ′(x, s)
8: S ′ ← S ′ ∪ {x, s, a′, c′}
9: Fit GPs model for A′(x′, s′) and C ′(x′, s′) using (x′, s′) ∈ S ′

10: Compute the acquisition function ESC(x, s) . Compute Equation 4.4
11: return arg max

x∈Γ
ESC(x, s) . Select the configuration that maximizes the acquisition fucntion

iteration, differs, in general, from the current incumbent, given that the knowledge of the model will be
updated with information on the cost and accuracy of (x, s) (in case (x, s) is actually selected by the
acquisition function). Thus, using the current model to predict the incumbent at the next step is likely to
produce poor results. We solve this problem by emulating the sampling of (x, s) via the cost and accuracy
models obtaining A(x, s) and C(x, s), respectively. We then train a new model on a dataset composed
by the current dataset (i.e., the set of configurations tested so far) and the tuple (x, s,A(x, s), C(x, s)).
More precisely, denoting with xinc, the incumbent at the next iteration, the CEA is defined by the prod-
uct between the predicted accuracy for xinc and the probability that the cost of xinc satisfies the cost
constraint, after having trained a model over a dataset extended with (x, s,A(x, s), C(x, s)).

CEA(x, s) = A(xinc, s = 1|S∪(x, s,A(x, s), C(x, s)))·P (C(xinc, s = 1|S∪(x, s,A(x, s), C(x, s))) ≤ Cmax)

(4.5)

4.2.2 Implementation Details

In order to speed up the computation of the acquisition function (Equation 4.4), it is created a
set Γ, which contains the configurations to compute the acquisition function. Fabulinus chooses the
top β configurations that maximize the CEA. This way, the acquisition function is only computed with
configurations whose predicted incumbent has high accuracy and a high probability that the incumbent
cost complies with the constraint.

To compute Equation 4.4, the models are cloned to save the current state and for each configuration
x ∈ Γ and for all the possible values of s, the models are retrained using the predicted accuracy and
cost values for (x, s). Using the updated models with (x, s), the acquisition function is computed. The
configuration (x, s) that maximizes the acquisition function of Equation 4.4 is evaluated next.

34

5Datasets

This chapter provides a description of the machine learning jobs deployed and the respective
datasets gathered for this particular work in order to evaluate the solutions proposed in Chapter 3 and
Chapter 4, namely Nephele and Fabulinus. Three different ML jobs, corresponding to the distributed
training of three different NNs, were deployed in the cloud Each job was run in AWS EC2 for all possible
configurations and dataset sizes.

The neural networks were implemented resorting to the Tensorflow framework [1] in Python. The
dataset used for training the NNs is the MNIST database [24] (a standard benchmark for evaluating
NNs), that contains 70000 images of 28x28 pixels of handwritten digits, 60000 images for training and
10000 images for testing. Supervised methods were used to train the networks, i.e., the classification
process is learnt from input-output pairs.

The three different NNs implemented have different architectures, which are explained in the follow-
ing sections.

5.1 Convolutional Neural Network (CNN)

This first dataset was obtained by training a convolutional neural network using the MNIST
database. This network is often used for image recognition problems. It is composed of an input and an
output layer, two convolutional layers, which consist of a series of convolution layers employing a series
of convolution operations, and two pooling layers. The key idea is based on a feed-forward network,
that extracts small features from the previous layer and, through convolution and pooling operations,
these features are given as an input to the next layers. This way, CNN permits the extraction of features
of an image and the conversion into a lower dimension without losing its characteristics. The last two
layers are fully connected. The output layer is a fully connected layer composed of 10 neurons and
classifies the input, assigning a probability of each class given the input. The architectural scheme of
the implemented CNN is represented in Figure 5.1.

5.2 Multilayer Neural Network

The second dataset was collected through the training of a multilayer perceptron [20] composed
by one input and output layers, and two fully connected hidden layers with 256 neurons each. The
input has 784 features (corresponding to the pixels of an image). The output layer has 10 neurons
and classifies an input in one of the 10 different classes that correspond to digits between 0 to 9. The
activation function of each neuron is the Softmax function [31], which defines the response of a neuron
given and input or a set of inputs. Each neuron is connected to all the neurons of the next layer (i.e.,
it is a fully connected network) and the edge between two neurons has an associated weight that is

Convolution
32 features maps

5x5 kernels

Convolution
64 features maps

5x5 kernels

Max-Pooling
2x2 subsampling

Max-Pooling
2x2 subsampling

Output Layer
10 neurons

Fully Connected Layer
1024 neurons

Figure 5.1: CNN architecture

H1 H1

O1

H2 H2
O2

H256
H256

O10

x1

x2

x3

x783

x784

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fully Connected Layer 1
256 neurons

Output Layer
10 neurons

Fully Connected Layer 2
256 neurons

Figure 5.2: Multilayer NN architecture

calculated using a supervised learning technique designated backpropagation. This technique aims at
minimizing the chosen loss function, which in this case is the cross entropy. Given an input, the basic
idea is to calculate in the forward direction the output of each layer. In the output layer, the input is
classified. During training, desired values are known and, therefore, the weights can be adjusted in
order to reduce the loss function. The weights are calculated using the Adam Optimization algorithm
[47]. The architecture of this network is shown in Figure 5.2.

5.3 Recurrent Neural Network (RNN)

The last dataset was obtained training a recurrent neural network. Using a RNN, the connection
between neurons forms a direct graph along a temporal sequence and, therefore, it permits feedback
loops. This way, it uses the internal state (or memory because it depends on past events) to process se-
quences of inputs and, thus, exhibits a temporal dynamic behavior. The knowledge learnt from previous
experiments influences the decisions.

36

. . . .

Input First row Second row Last row

State
128 hidden units

State t=1 State t=2 State t=28. . . .

Output Output t=1 Output t=2 Output t=28

xt=1 xt=2 xt=28x

Unroll

Figure 5.3: RNN architecture implemented by a LSTM network

The RNN implemented is a Long Short-Term Memory (LSTM) network [15]. A LSTM network can
add and remove information from a cell state, carefully regulated by structures called gates and, thus,
the network selects the information to retain adjusting the flow of information in and out of a cell. Each
cell is composed of a set of neurons that represents the capacity of the NN. The scheme of the RNN
implemented is represented in Figure 5.3.

5.4 Training the Neural Networks

Each network was trained with the full MNIST dataset and with four different subsampled datasets.
These subsampled datasets were obtained by removing a predefined number of images and the respec-
tive labels from the full dataset. In order to check the accuracy of the network under training, a batch
containing 5000 images is created from the MNIST test set. This accuracy check is performed by an
extra worker, designated Bookkeeper, that verifies and saves the evolution of performance over time and
checks stopping criteria.

Two stopping conditions were defined to bring the training of the NNs to an end: i) having observed
during the training process every instance of the dataset with probability greater than α (which we set to
0.9), and ii) the maximum training time is lower than Tmax (which we set to 10 minutes).

The first stop condition ensures that larger subsampling rates will require longer runs, while ensuring
”fair” conditions for learning independently (same probability of observing an instance of the dataset)
of the chosen subsampling rate. Additional details on how this stop condition is implemented in the
Parameter Server model are provided in Appendix A. The second stop condition serves the pragmatical
purpose of limiting the maximum latency and monetary cost for collecting the datasets.

For each subsampled dataset, there are 288 possible configurations. Therefore, each dataset for
each network has a total of 1440 configurations. In order to decrease the uncertainty and to avoid
outliers concerning the metrics gathered during training, each configuration was run three times for
each NN and, posteriorly, the average and the standard deviation of the results obtained in the three
runs were calculated.

37

Cloud Parameters NN’s Parameters Dataset Size

VM Flavor No. of Cores Learning Rate Batch Size Traning Mode s

- t2.small

- t2.medium

- t2.xlarge

- t2.2xlarge

- 8

- 16

- 32

- 48

- 64

- 80

- 10−3

- 10−3

- 10−5

- 16

- 256

- synchronous

- asynchronous

- 0.0167

- 0.1

- 0.25

- 0.5

- 1

Table 5.1: Possible values for each parameter of a configuration

Each configuration is composed of a combination of cloud resources (in particular VMs’ type/flavor
and cluster size, i.e., number of machines) and internal hyperparameters of neural network applications
(learning rate, batch size, and training mode) and the percentage of dataset size used to train. In order
to use small datasets, it was sampled 1.67%, 10%, 25%, 50% of data from the full dataset, creating new
datasets with 1000 (s = 0.0167), 6000 (s = 0.1), 15000 (s = 0.25) and 30000 (s = 0.5) images for
training, respectively.

Table 5.1 shows the possible values for the different parameters that compose a configuration. The
considered configurations encompass VMs of four different sizes and of the t2 family on AWS EC2.
When the number of cores required in a configuration exceeds the number of cores of a single VM of
a given type, the job is deployed in multiple VMs of the same type. The application specific parameters
include the number of images used for training in each iteration (batch size), the learning rate of the
optimization algorithm (Stochastic Gradient Descent [74, 46, 10]) used to calculate the weights in VMs
and the training mode (synchronous or asynchronous).

The scripts to deploy, to train the VMs, and to collect the datasets were written in Python. Given
a configuration, the Executor creates the cluster of machines in the cloud and launches the scripts to
execute the user-specified application. It deploys a given job in a selected configuration. The Executor
runs in a single machine (a VM of flavor t2.micro) and acts as job coordinator. These scripts to implement
the Executor were written in Python using the Boto3 library, an AWS SDK for Python. Each configuration
requires two additional VMs than the number specified by the configuration, one to be the Parameter
Server and the other to be Bookkeeper. The Parameter Server coordinates the training process, keeps
records of the VM parameters, and calculates the new weights to minimize the loss function. The
Parameter Server always runs on a VM of flavor t2.2xlarge in order to reduce the latency of messages
and to speed up the computation of the weights. The Bookkeeper measures the model’s accuracy
at predefined time intervals of 5 seconds to store the evolution of the performance over time. The
Bookkeeper runs in a separate machine to be completely independent of the workers. This way, it does
not affect the training process. It has the same VM flavor as the other workers.

38

6Nephele Evaluation

This chapter presents the experiments performed in order to evaluate Nephele (see Chapter 3).
Firstly, Section 6.1 details the baselines and metrics used for comparing Nephele. Section 6.2 details
the implementation and the selection of the inputs and settings for running Nephele. Section 6.3 studies
the impact of subsampling on cost in production, i.e., evaluates if it is possible to use subsampling in
order to reduce the deployment cost of running a machine learning job in the cloud. This section also
evaluates the impact of subsampling on the lookahead technique. Then, Section 6.4 evaluates the use
of subsampling in order to reduce the exploration cost to find the optimum.

6.1 Evaluation Setup

This section details and explains the selection of state-of-the-art systems with similar optimization
goals that aim to optimize cloud resources and specific application parameters with which Nephele is
compared. Then, the metrics used to evaluate and compare the systems are described.

Baselines for Comparison. Nephele is compared with Lynceus [19] and CherryPick [2]. These
two systems aim to optimize the allocation of resources in the cloud in order to minimize the deployment
cost subject to user-defined QoS constrains. Furthermore, Lynceus also tries to minimize the cost of the
exploration phase and incorporates a budget for the exploration phase and extends CherryPick because
it allows the tuning of specific application parameters. Lynceus also use lookahead technique in order
to reduce the exploration cost. Both systems use BO to build a cost model.

In the original version, CherryPick does not take into account the exploration cost and the budget,
and however, for a fairer comparison, CherryPick was extended to incorporate a budget. Also, both
Lynceus and CherryPick use a percentage of the search space for the initial sampling to bootstrap the
model. Since Nephele uses an initial budget for the initial sampling, Lynceus and Cherrypick were also
implemented to use an initial budget for a fairer comparison. However, these two systems do not use
subsampling, unlike Nephele. These three systems are also compared with a Random selection of
the next configuration to evaluate. To evaluate the various systems fairly, we consider the same stop
condition: stop when the budget is over.

Evaluation Metrics. To compare and evaluate Nephele with the other two systems, the metric
used is the Cost Normalized with respect to the Optimum (CNO). The CNO quantifies the quality of the
incumbent and is given by the deployment cost of a configuration x normalized to the cost of the optimal
configuration xopt, i.e.,

CNO(x) =
C(x)

C(xopt)
. (6.1)

The lower the CNO, the better the configuration. The optimal configuration has a CNO of 1. The CNO is
evaluated as a function of the exploration number, as well as cost and time of the optimization process.

10 20 30 40 50
Cost spent

0

5

10

15

20
CN

O

Nephele - 5 Classifiers
Nephele - 10 Classifiers
Nephele - 20 Classifiers

(a) Nephele

10 20 30 40 50 60
Cost spent

0

5

10

15

20

25

30

35

40

CN
O

Lynceus - 5 Classifiers
Lynceus - 10 Classifiers
Lynceus - 20 Classifiers

(b) Lynceus

10 20 30 40 50 60
Cost spent

0

5

10

15

20

25

30

35

40

CN
O

CherryPick - 5 Classifiers
CherryPick - 10 Classifiers
CherryPick - 20 Classifiers

(c) CherryPick

Figure 6.1: Comparison between different number of classifiers in the ensemble to train a CNN

6.2 System Implementation and Experimental Setup

This section details the system implementation and the settings to run the experiments in order to
evaluate Nephele.

System Implementation. Nephele was implemented in Java. In order to build the accuracy and
cost models, Nephele uses an ensemble of decision trees (cf. Section 2.2.2). The ensemble of decision
trees was implemented using the random tree algorithm of the Weka software [34] that builds a decision
tree, and each node selects a random number of attributes. This algorithm does not use pruning. In
order to determine the best number of trees to generate the ensemble, a preliminary study of the impact
in the optimization process of the size of the ensemble was performed.

Figure 6.1 shows the CNO as a function of the cost of the optimization process using 5, 10 or 20
trees in the ensemble for training a CNN. Using Nephele, there is not a significant difference between
the different experiments to train a CNN. However, when using 20 classifiers, Lynceus (with a lookahead
horizon of zero) and CherryPick have an exploration cost approximately 4 times higher when compared
with using 5 or 10 classifiers. To train a RNN (Figure 6.2) using 20 classifiers always increases the
exploration cost, as in CNN training. Training with 5 classifiers presents better results in two out of three
cases. To train a Multilayer NN (Figure 6.3), the best results are always obtained using an ensemble of
5 classifiers. Therefore, it was implemented a random forest using an ensemble containing 5 decision
trees. Nephele builds two ensembles: one for modeling the cost function and the other for the accuracy
function.

40

2 4 6 8 10 12 14
Cost spent

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

CN
O

Nephele - 5 Classifiers
Nephele - 10 Classifiers
Nephele - 20 Classifiers

(a) Nephele

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Cost spent

1

2

3

4

5

6

7

CN
O

Lynceus - 5 Classifiers
Lynceus - 10 Classifiers
Lynceus - 20 Classifiers

(b) Lynceus

1 2 3 4 5 6 7
Cost spent

1

2

3

4

5

6

7

CN
O

CherryPick - 5 Classifiers
CherryPick - 10 Classifiers
CherryPick - 20 Classifiers

(c) CherryPick

Figure 6.2: Comparison between different number of classifiers in the ensemble to train a RNN

0 10 20 30 40 50 60
Cost spent

2

4

6

8

10

12

14

16

CN
O

Nephele - 5 Classifiers
Nephele - 10 Classifiers
Nephele - 20 Classifiers

(a) Nephele

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Cost spent

0

5

10

15

20

25

30

CN
O

Lynceus - 5 Classifiers
Lynceus - 10 Classifiers
Lynceus - 20 Classifiers

(b) Lynceus

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Cost spent

0

5

10

15

20

25

30

CN
O

CherryPick - 5 Classifiers
CherryPick - 10 Classifiers
CherryPick - 20 Classifiers

(c) CherryPick

Figure 6.3: Comparison between different number of classifiers in the ensemble to train a Multilayer NN

41

Experimental Setup. In order to construct the models that represent the initial belief about the
cost and the accuracy functions, the LHS technique [78] was used. Since the search spaces and the
objective functions are different when using subsampling (∀s ∈ D) or not (s = 1), to ensure a fairer
comparison all the baselines are given the same initial budget for the initial sampling. It is crucial to
choose a good value for the initial budget since there is a trade-off between spending too much budget
(or too few) and building a model that is accurate enough (or too poor). Therefore, a preliminary study
was conducted to evaluate the influence of the initial budget in the model predictions. All the experiments
were executed in machines with the Intel Xeon Silver 4116 Processor and 64GB of memory running the
operating system Linux Ubuntu 18.04 LTS with an architecture x84 64.

Nephele was compared against Lynceus and CherryPick and, in order to do so, three different
initial budgets for each network and optimizer were tested. CNN is more expensive to train, so the
initial budgets tested were higher compared with the two other networks. For each network and initial
budget, the percentage of the dataset explored through the initial sampling when subsampling is used
corresponds to approximately half of the percentage explored when subsampling is not used. The
comparison of different initial budgets for each network is represented in the following Figures. Each job
was run one hundred times with different seeds in order to mitigate the impact of the randomness of the
initial sampling process in the models.

The initial budgets for training a CNN were $2.5, $5, and $10, which corresponds on average to
0.76%, 1.39%, and 2.71% of the search space using the subsampled dataset, respectively. Figure 6.4
shows the 90th percentile of one hundred runs of the CNO of the incumbent configuration in each itera-
tion in function of the 90th percentile of the exploration cost spent to find the optimal configuration to train
a CNN. For this particular network, the initial budgets tested do not have a significant influence on the
final results since the initial model does not seem to be too uncertain because it spends approximately
the same amount to find the optimum.

In spite of the results show that the exploration costs to find the optimal configuration are similar,
through the analysis of Figure 6.4, it is possible to carefully choose an initial budget that minimizes
the exploration cost in most of the cases. With Binit = 2.5, Nephele spends more money to find the
optimum. There is not a significant difference between $5 and $10. Using Nephele and Lynceus, there
is a small gain when Binit = 5 comparing with the other budgets. However, CherryPick has a better
performance when Binit = 2.5. Selecting Binit = 5, the exploration cost is slightly smaller in two out of
three cases and, thus, the initial budget was set to $5.

To train a RNN, the budgets given to the initial sampling were $0.25, $0.5, and $1, and Nephele
evaluates, on average, 2.29%, 4.31%, and 8.13% of search space, respectively. The results obtained
are represented in Figure 6.5. Using Nephele, the best result was obtained for Binit = 0.25. However,
for the other two optimizers, the fastest convergence, i.e., the lower exploration cost occurs when Binit =

1. The differences between exploration cost for different initial budgets are more highlighted when no
subsampling is used (i.e., with Lynceus and CherryPick). The cost spent to find the optimum for s = 1

can be approximately 2 and 3.5 times higher for Binit = 0.25 and Binit = 0.1 , respectively, while using
subsampling these differences are, approximately, 1.5 times higher.

The initial budget to train a Multilayer NN was set to $0.5, $1, and $2, and Nephele evaluates on
average 1.94%, 3.61%, and 6.94% of the search space, respectively, for the initial sampling. The results
are presented in Figure 6.6. The results obtained using an initial budget of $0.5 and $1 are worse
comparing with Binit = 2. The initial samples do not represent the space correctly and, therefore, the
model created is poor and uncertain. The predictions done based on the model about the optimum are
more incorrect, and the systems need more money to improve the model and to find the optimum.

42

0 10 20 30 40 50 60
Exploration Cost

0

10

20

30

40

50

60

70

80

CN
O

Nephele Binit=2.5
Nephele Binit=5
Nephele Binit=10

20 25 30 35 40 45 50 55 60
1

2

3

4

(a) Nephele

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Exploration Cost

0

5

10

15

20

25

30

35

40

CN
O

Lynceus Binit=2.5
Lynceus Binit=5
Lynceus Binit=10

0.010.000.01

1e1
0.010.000.01

1e1
(b) Lynceus

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Exploration Cost

0

5

10

15

20

25

30

35

40

CN
O

CherryPick Binit=2.5
CherryPick Binit=5
CherryPick Binit=10

0.010.000.01

1e1
0.010.000.01

1e1
(c) CherryPick

Figure 6.4: Comparison between different initial budgets to find the optimum to train a CNN

1 2 3 4
Exploration Cost

2

4

6

8

10

12

CN
O

Nephele Binit=0.25
Nephele Binit=0.5
Nephele Binit=1

0.010.000.01

1e1
0.010.000.01

1e1

(a) Nephele

0 1 2 3 4 5 6 7 8
Exploration Cost

5

10

15

20

25

CN
O

Lynceus Binit=0.25
Lynceus Binit=0.5
Lynceus Binit=1

0.010.000.01

1e1
0.010.000.01

1e1

(b) Lynceus

0 2 4 6 8
Exploration Cost

5

10

15

20

25

CN
O

CherryPick Binit=0.25
CherryPick Binit=0.5
CherryPick Binit=1

0.010.000.01

1e1
0.010.000.01

1e1

(c) CherryPick

Figure 6.5: Comparison between different initial budgets to find the optimum to train a RNN

43

0 5 10 15 20 25 30
Exploration Cost

0

25

50

75

100

125

150

175

CN
O

Nephele Binit=0.5
Nephele Binit=1
Nephele Binit=2

14 16 18 20 22 24 26 28 30
1

2

3

4

5

(a) Nephele

0 2 4 6 8 10 12
Exploration Cost

0

25

50

75

100

125

150

175

CN
O

Lynceus Binit=0.5
Lynceus Binit=1
Lynceus Binit=2

0.010.000.01

1e1
0.010.000.01

1e1

(b) Lynceus

0 2 4 6 8 10 12
Exploration Cost

0

25

50

75

100

125

150

175

CN
O

CherryPick Binit=0.5
CherryPick Binit=1
CherryPick Binit=2

0.010.000.01

1e1
0.010.000.01

1e1

(c) CherryPick

Figure 6.6: Comparison between different initial budgets to find the optimum to train a Multilayer NN

When Nephele uses an initial budget of $0.5 or $1, it spends approximately 1.3 times more com-
pared with an initial budget of $2 to find near-optimal and optimal configurations. For Lynceus and
CherryPick, the two smaller budgets lead to 2.5 times larger expenses during exploration. Therefore,
the initial budget chosen when the job deployed is the training of a Multilayer NN is $2 because the
constructed model is less uncertain and has a better representation for the objective function.

Table 6.1 summarizes the previous study on the impact of the initial budget that should be given to
the initial sampling process to construct the models.

In order to evaluate the overall system’s performance, the budget B was set to a value that could
allow the optimizers to find the optimum. In this work, the accuracy constraint was tuned for Amin = 85%,
as in Casimiro et al. [19]. Posteriorly, in order to choose a fair time constraint for the job deployed, the
configurations (x, s) that respect the accuracy constraint were ranked by time. The results are registered
in Figure 6.7, where it is possible to see that the time taken to execute the job varies from a few seconds
to more than 10 minutes (which was the time threshold to run a configuration in the cloud). Based on
Figure 6.7, the time constraint was set to 300 seconds (5 minutes) in order not to make it too challenging
for the optimizers to find feasible configurations. This threshold allowed for 14.44%, 7.64% and 18.33%
of feasible configuration in the CNN, Multilayer and RNN networks, which is already more challenging
by 1.47 times in the best case and 2,64 times in the worst case than in state-of-the-art systems [19, 2].

Parameter γ (Algorithm 3, Lines 27-28) was set to 0.9 as proposed in Lam et al. [53]. The maximum
lookahead horizon was always set to zero either with Lynceus or Nephele in the following results, except
in Section 6.5, which is focused precisely on evaluating the impact of lookahead.

44

Network Initial Budget s
No. of initially sampled

configurations (on average)
% of search space sampled

CNN $5
∀s ∈ D 20 1.4

s = 1 8 2.8

RNN $1
∀s ∈ D 117 8.13

s = 1 44 15.3

Multilayer $2
∀s ∈ D 100 6.9

s = 1 32 11.1

Table 6.1: Percentage of search space sampled with the initial budgets for each network

0 100 200 300 400 500
Ranking

0

100

200

300

400

500

600

Ti
m

e
(s

)

(a) CNN

0 50 100 150 200 250
Ranking

0

100

200

300

400

Ti
m

e
(s

)

(b) RNN

0 20 40 60 80 100 120 140
Ranking

0

100

200

300

400

500

600

Ti
m

e
(s

)

(c) Multilayer NN

Figure 6.7: Configuration meeting the accuracy constraint sorted by execution time.

6.3 Impact of Subsampling on Cost in Production

This section addresses the first question raised in Chapter 1: can the use of subsampling reduce
the cost in production, i.e., is it possible to identify configurations that satisfy the quality constraints and
achieve a cost reduction? This section studies the effect on the deployment cost of using subsampling
techniques in order to answer this question. For that, we start by analyzing the search space for each
network.

Typically, by using the full dataset to train a neural network, it is possible to obtain better accuracy
values because there is more data available. However, this may be more expensive than training smaller
datasets because there is more data available that need to be observed in the training process. However,
if the accuracy constraint is too high, it is more challenging to ensure a good enough performance by
using smaller datasets. The accuracy and time constraints are very dependent on the application that
is being deployed. A job can need several minutes or hours to be run, e.g., training neural networks, or
can take days or months, e.g., simulation of biological systems. Also, depending on the performance
required by the user, a job can be less (and usually cheaper) or more accurate.

Let D be a set that contains the possible values of s. When subsampling is not used, i.e., the full
dataset is used to train, the value of s is 1. When subsampling is used, s may have a value contained in
D. Therefore, the notation used in this work when subsampling is used is ∀s ∈ D. Figure 6.8 presents
a heat map, which allows for a better analysis of the possible cost improvements brought by the use
of subsampling for different values of the constraints. For each possible combination of the constraints
(Amim, Tmax), it is calculated the cost reduction of running a optimal configuration x∗ using subsampling

45

Network Type
No. of Feasible Configurations % of feasible search space
∀s ∈ D s = 1 ∀s ∈ D s = 1

CNN 208 61 14.44% 21.18%
RNN 264 104 18.33% 36.1%

Multilayer 110 58 7,64% 20.14%

Table 6.2: Feasible Configurations

(∀s ∈ D) or not (s = 1). The cost reduction is given by the difference between the cost of the optimum
using the full dataset (C(x∗, s = 1)) and the optimal cost using all possible sizes of subsampled datasets
(C(x∗,∀s ∈ D)) normalized with respect to the optimum on the full dataset i.e.,

C(x∗, s = 1)− C(x∗,∀s ∈ D)

C(x∗, s = 1)
. (6.2)

When it is not possible to use subsampled datasets to solve the optimization problem, Equation 6.2
is equal to 0 because it is not possible to achieve any cost reduction through subsampling. When the
optimal configuration is in subsampled datasets, the normalized cost reduction is a value between 0
and 1. The space colored in grey in Figure 6.8 represents pairs of accuracy and time constraints that
create an infeasible optimization problem. When the normalized cost reduction achieved by subsampling
is high and closer to one, it is much cheaper to train the network with subsampled datasets, and this
happens, as expected, when the accuracy constraint is small, i.e., the higher cost reductions can be
achieved for lower accuracy thresholds. Therefore, by relaxing the accuracy requirement, the optimal
cost decreases, making it possible to use subsampled and cheaper datasets that respect the QoS
constraints. When high accuracy is required, the cost increases, and it may be necessary to train with
the full dataset to ensure the QoS. If the accuracy constraint is too high, it may be impossible to ensure
the QoS constraints. For example, when the defined accuracy constraint to train a Multilayer NN is higher
than, approximately, 90%, the optimization problem is infeasible (region colored in grey in Figure 6.8(c)).
On the contrary, when the time constraint is too small, it may not be possible to solve the optimization
problem. This problem is emphasized on CNN because this network takes more time to train than the
other two. Analyzing Figure 6.8(a), when the time constraint is lower than approximately 60 seconds, the
problem becomes infeasible because the network does not have enough time to be trained. The same
happens when training a Multilayer and a RNN, but the values of time constraint that create infeasible
problems are much smaller.

In the following, the accuracy constraint was set to 85% and the time constraint to 5 minutes.
Therefore, the majority of configurations do not respect the constraints. The percentage of feasible
configurations is calculated in Table 6.2 with and without subsampling. Using subsampling datasets, the
smaller the feasible region is, the harder it is to find the optimum.

Next, in Figure 6.9 each network is analyzed separately for different dataset sizes When the dataset
size increases, there is a decrease in the number of configurations that respect the time constraint.
For the same configuration, increasing the dataset size implies that the number of iterations required to
train the network also increases. This provokes an increase in the training time and, therefore, leads
to an increase in the number of configurations that do not respect the time constraint. On the other
hand, the reduction of the dataset size causes a decrease in the training time of the network because it
requires fewer iterations and, therefore, fewer samples are used to train. These two reasons may cause
a decrease in the accuracy of a given configuration. If the dataset is too small, there may be no feasible
configurations. This happens when the RNN and the Multilayer networks are trained using only 1.6% of

46

0.0 0.2 0.4 0.6 0.8 1
Accuracy Constraint

40
0

30
0

20
0

10
0

0
Ti

m
e

Co
ns

tr
ai

nt
 (s

)

0.0

0.2

0.4

0.6

0.8

1.0

(a) CNN

0.0 0.2 0.4 0.6 0.8 1
Accuracy Constraint

40
0

30
0

20
0

10
0

0
Ti

m
e

Co
ns

tr
ai

nt
 (s

)

0.0

0.2

0.4

0.6

0.8

1.0

(b) RNN

0.0 0.2 0.4 0.6 0.8 1
Accuracy Constraint

40
0

30
0

20
0

10
0

0
Ti

m
e

Co
ns

tr
ai

nt
 (s

)

0.0

0.2

0.4

0.6

0.8

1.0

(c) Multilayer NN

Figure 6.8: Cost reduction achieved using subsampling normalized w.r.t. the optimal cost on the full
dataset

47

1000 6000 15000 30000 60000
Dataset size

0

50

100

150

200

250

300

Nu
m

be
r o

f c
on

fig
ur

at
io

ns

12

48 45 42

61

12

79

124

145

178

288

221

165

143

111

No. of feasible configurations
No. of configurations that respect accuracy constraint
No. of configurations that respect time constraint

(a) CNN

1000 6000 15000 30000 60000
Dataset size

0

50

100

150

200

250

300

350

Nu
m

be
r o

f c
on

fig
ur

at
io

ns

0
13

60

87
104

0
13

60

89

110

288 288 288 285 279

No. of feasible configurations
No. of configurations that respect accuracy constraint
No. of configurations that respect time constraint

(b) RNN

1000 6000 15000 30000 60000
Dataset size

0

50

100

150

200

250

300

350

Nu
m

be
r o

f c
on

fig
ur

at
io

ns

0 1
18

33

58

0 1
18

36

80

288 288 288 280

236

No. of feasible configurations
No. of configurations that respect accuracy constraint
No. of configurations that respect time constraint

(c) Multilayer NN

Figure 6.9: Number of feasible configurations for different dataset sizes

the full dataset. In this case, the datasets are too small and do not have enough information to train the
network correctly.

6.3.1 CNN Dataset

Training a CNN using subsampled datasets, the number of configurations that respect the accuracy
constraint increases with dataset size, and the opposite effect happens with the time constraint. How-
ever, the increase of the dataset size does not necessarily imply an increase in the feasible space, as it
is possible to see in Figure 6.9(a).

The use of subsampling to train a CNN allows for reductions of 98.33% in the dataset size, while still
allowing both constraints to be complied with. Using the previously defined constraints and subsampled
datasets, only 14.44% of the configurations are feasible for this network. Table 6.3 compares the feasible
configurations, configurations that respect one of the constraints, and infeasible configurations for the
different subsampled datasets with the full dataset. Time/Acc means that both time and accuracy
constraints are satisfied for a given configuration in subsampled datasets. Time/Acc and Time/Acc

means that only time or accuracy constraint are respected, respectively. Time/Acc means that both
constraints are violated. Decreasing the dataset size leads to an increase in the number of configurations

48

60K

1K
Time/Acc T ime/Acc T ime/Acc T ime/Acc

T ime/Acc 0 (0) 0 21.18% (61) 0

Time/Acc 4.17 % (12) 0 36.46% (105) 0

Time/Acc 0 0 17.36% (50) 0

Time/Acc 0 0 20.83% (60) 0

(a) 1000 vs. 60000

60K

6K
Time/Acc T ime/Acc T ime/Acc T ime/Acc

T ime/Acc 1.74% (5) 0 19.44% (56) 0

Time/Acc 14.94% (43) 9.72% (28) 13.88% (40) 2.08% (6)

Time/Acc 0 0 17.36% (50) 0

Time/Acc 0 1.04% (3) 9.38% (27) 10.42% (30)

(b) 6000 vs. 60000

60K

15K
Time/Acc T ime/Acc T ime/Acc T ime/Acc

T ime/Acc 6.94% (20) 0 14.24% (41) 0

Time/Acc 8.69% (25) 25.35% (73) 4.51% (13) 2.08% (6)

Time/Acc 0 0 17.36% (50) 0

Time/Acc 0 2.08% (6) 5.56% (16) 13.19% (38)

(c) 15000 vs. 60000

60K

30K
Time/Acc T ime/Acc T ime/Acc T ime/Acc

T ime/Acc 12.15% (35) 0 9.03% (26) 0

Time/Acc 2.43% (7) 33.68% (97) 3.13% (9) 1.39% (4)

Time/Acc 0 0 17.36% (50) 0

Time/Acc 0 2.08% (6) 5.56% (16) 13.19% (38)

(d) 30000 vs. 60000

Table 6.3: Comparison between different subsampled dataset and the full dataset using CNN. Each cell
has the number of configurations and the respective percentage of configurations of the search space
that respect a given combination of the time and accuracy constraints in the subsampled and the full
dataset.

49

that satisfy the time constraint. However, fewer configurations meet the accuracy constraint. The number
of configurations that respect the same constraints in the full dataset and the subsampled datasets
decreases with the reduction of s (this can be observed by analyzing the diagonal of each subtable
of Table 6.3 and noticing that the number of configurations diminishes). Overall, using the smallest
considered dataset with 1000 images, all configurations meet the time constraints. Additionally, 95.83%
of the configurations also do no comply with the accuracy constraint for such a small subsampled dataset
(s = 0.0167). Using 10% of the full dataset, the number of feasible configurations grows. However, there
are more configurations that do not respect the time constraint.

The dataset size specified in the optimal configuration that minimizes the deployment cost to train a
CNN and ensures the QoS constrains is s = 0.1 (dataset with 6000 images). The additional cost to pay
is 4.1 times higher when subsampling is not used. Therefore, for training a CNN, it is possible to use
subsampled datasets and reduce the deployment cost of the optimal configuration in 75.5%.

6.3.2 RNN Dataset

The training of a RNN, the number of configurations that respect the accuracy constraint increases
exponentially with the dataset size, and the number of configurations that meet the time constraint
decreases only for larger datasets. The feasible space also increases with s, and only 18.33% of the
search space is feasible.

Table 6.4 compares the performance of training a RNN for the different values of s. More than
99.1% of the configurations respect the time constraint, and the violations occur when the network is
trained using the whole and half of the dataset. However, when training with 1.6% of the full dataset,
the accuracy constraint is always violated. Approximately 60% of the configurations respect the time
constraint in both the subsampled and full dataset. However, these configurations violate the accuracy
constraint. The number of configurations that comply with QoS constraints in the subsampled and the
full datasets increases with the size.In this network, it is more difficult to ensure good enough accuracy
with small datasets. If the dataset used to train is too small (s = 0.016), it is impossible to ensure
the QoS. However, there are configurations that respect both constraints and that were trained with
subsampled datasets. The optimal configuration that minimizes deployment cost and respects the QoS
constraints can be found in the dataset containing 15000 images (s = 0.25). Thus, it is possible to use
subsampled datasets to achieve cost reduction. When subsampling is not used, the additional cost to
pay is approximately 2.1 times higher. For this particular dataset and optimization problem, it is possible
to reduce the cost in production by 52.3%.

6.3.3 Multilayer NN Dataset

When the job run is the train of a Multilayer NN, there is an exponential increase in the number
of feasible configurations with s. The number of configurations that respect the accuracy constraints
increases with the dataset size. However, since this network needs less time to be trained, which can
be confirmed in Figure 6.9(c), for smaller values of s, the time constraint does not affect the number of
feasible configurations.

Table 6.5 analyzes each subsampled dataset corresponding to the training of a Multilayer NN, as
previously done. All configurations respect the time constraint when subsampled datasets are used.
Using 30000 images for training, less than 3% of the configurations violate the time constraint, and

50

60K

1K
Time/Acc T ime/Acc T ime/Acc T ime/Acc

T ime/Acc 0 0 36.11% (104) 0

Time/Acc 0 0 2.08% (6) 0

Time/Acc 0 0 60.77% (175) 0

Time/Acc 0 0 1.04% (3) 0

(a) 1000 vs. 60000

60K

6K
Time/Acc T ime/Acc T ime/Acc T ime/Acc

T ime/Acc 3.47% (10) 0 32.64% (94) 0

Time/Acc 1.04% (3) 0 1.04% (3) 0

Time/Acc 0 0 60.77% (175) 0

Time/Acc 0 0 1.04% (3) 0

(b) 6000 vs. 60000

60K

15K
Time/Acc T ime/Acc T ime/Acc T ime/Acc

T ime/Acc 19.09% (55) 0 17.01% (49) 0

Time/Acc 1.74% (5) 0 0.35% (1) 0

Time/Acc 0 0 60.77% (175) 0

Time/Acc 0 0 1.04% (3) 0

(c) 15000 vs. 60000

60K

30K
Time/Acc T ime/Acc T ime/Acc T ime/Acc

T ime/Acc 28.82% (83) 0 7.29% (21) 0

Time/Acc 1.39% (4) 0.69% (2) 0 0

Time/Acc 0 0 60.77% (175) 0

Time/Acc 0 0 0.69% (2) 0.35% (1)

(d) 30000 vs. 60000

Table 6.4: Comparison between different subsampled dataset and the full dataset using RNN

51

training with the entire dataset this value increases to 18%. The number of configurations that meet the
time constraint but violate the accuracy constraint does not vary with s. With the increase of the dataset
size, there are some configurations that respect both constraints in the full and subsampled datasets.
However, there is a large number of configurations (61.80%) that do not meet the minimum accuracy
required in any dataset. When a set of 1000 images is used to train, all configurations do not reach the
desired accuracy value because the dataset does not have enough information to ensure the accuracy
constraint. Increasing the size of the dataset, the number of feasible configurations in both dataset sizes
increases slightly.

When subsampling is used, the feasible region for this network is small (7.64% of configurations
are feasible), which means that it is not possible to reduce the dataset to the same size as CNN and, at
the same time, accomplish the constraints. For example, when the dataset is reduced to 1000 images
(s = 0.0167), it is not possible to ensure the QoS and when the dataset has 6000 images (s = 0.1),
there is only one configuration that respects the constraints. Although, there are feasible configurations
for s equal to or greater than 0.1, the optimal configuration that minimizes the cost subject to the QoS
constraints is in the full dataset (s = 1). Therefore, in this case, it is not possible to decrease the cost of
production using subsampling for the given optimization problem.

6.4 Impact of Subsampling on Cost of Optimization Process

This section analyzes the impact of using subsampling in the exploration cost, i.e., cost spent to
evaluate different configurations to find the optimum, in order to answer to the question raised: can the
use of subsampling techniques reduce the cost of the optimization process to find a feasible solution at
a distance d from optimum?

As concluded in Section 6.3, it is possible to use subsampled datasets, which have less information
than the full dataset but are cheaper to evaluate, in order to reduce the deployment cost of running a
job in the cloud while ensuring the user-specified QoS constraints. However, the search space created
using small datasets is five times bigger than using only the full dataset. There is one more dimension in
the search space and, instead of 288 possible configurations, there are 1440 configurations. Therefore,
since the input space is larger and more complex, the exploration phase might take more time or require
more explorations and, thus, there is a probability to be more expensive.

Nephele, Lynceus, CherryPick, and Random Search were used to solve the optimization problem
for the three datasets in order to study the impact of subsampling in the exploration cost, time, and
number of explorations.

6.4.1 CNN Dataset

Figure 6.10 shows the CNO as a function of cost, time and number of explorations of the training of
a CNN using the constraints defined in Section 6.2. Through the analysis of Figures 6.10(a) and 6.10(b),
it is possible to see that for the same exploration cost or time Nephele can find better configurations with
lower cost that meet the QoS, spending less money and taking less time. For example, to achieve a CNO
equal to ten, Lynceus and CherryPick spend 1.75 and 2.13 times more than Nephele. The initial budget
for the initial sampling to construct the models is the same for all the optimizers. Although, Nephele
explores more configurations comparing with Lynceus and CherryPick, the configurations explored by

52

60K

1K
Time/Acc T ime/Acc T ime/Acc T ime/Acc

T ime/Acc 0 0 20.14% (58) 0

Time/Acc 0 0 7.64% (22) 0

Time/Acc 0 0 61.80% (178) 0

Time/Acc 0 0 10.42% (30) 0

(a) 1000 vs. 60000

60K

6K
Time/Acc T ime/Acc T ime/Acc T ime/Acc

T ime/Acc 0 0 20.14% (58) 0

Time/Acc 0.35% (1) 0 7.29% (21) 0

Time/Acc 0 0 61.80% (178) 0

Time/Acc 0 0 10.42% (30) 0

(b) 6000 vs. 60000

60K

15K
Time/Acc T ime/Acc T ime/Acc T ime/Acc

T ime/Acc 3.82% (11) 0 16.32% (47) 0)

Time/Acc 2.43% (7) 0 5.21% (15) 0

Time/Acc 0 0 61.80% (178) 0

Time/Acc 0 0 10.42% (30) 0

(c) 15000 vs. 60000

60K

30K
Time/Acc T ime/Acc T ime/Acc T ime/Acc

T ime/Acc 9.03% (26) 0 11.11% (32) 0

Time/Acc 2.08% (6) 1.04% (3) 4.17% (12) 0.35% (1)

Time/Acc 0 0 61.80% (178) 0

Time/Acc 0.35% (1) 0 8.68% (25) 1.39% (4)

(d) 30000 vs. 60000

Table 6.5: Comparison between different subsampled dataset and the full dataset using Multilayer NN

53

5 10 15 20 25 30 35 40
Exploration Cost

0

5

10

15

20

25

30

35

40
C

N
O

Nephele
Lynceus
CherryPick
Random

(a) Exploration Cost

4 6 8 10 12 14 16 18
Time (minutes)

0

5

10

15

20

25

30

35

40

C
N

O

Nephele
Lynceus
CherryPick
Random

(b) Exploration Time

0 50 100 150 200 250
Exploration Number

0

5

10

15

20

25

30

35

40

C
N

O

Nephele
Lynceus
CherryPick
Random

(c) Exploration Number

Figure 6.10: Optimization Process to train a CNN

Nephele can make use of subsampling and are, therefore, cheaper to test on average. There, at the of
the initial sampling phase, the CNO of Nephele is approximately half of the value achieved by Lynceus
and CherryPick when they end their respective initial sampling phases and begin to use the performance
models to guide the exploration. Using the random selection of configurations to sample, the cost of the
incumbent is around ten times higher compared with when Nephele finds the optimum. Therefore,
through the analysis of the obtained results, it is possible to conclude that the cost of the optimization
process for training a CNN can be reduced through the use of subsampling. With the same budget,
Nephele always recommends better configurations than Lynceus and CherryPick.

6.4.2 RNN Dataset

In Figure 6.11, it is possible to observe the CNO of the incumbent configuration predicted in each
iteration over the cost, time, and exploration number of the optimization process. CherryPick is always
the worst to find the optimum in the respective search space. During the entire optimization process,
Nephele is able to recommend better configurations than the other optimizers. These configurations
have lower costs, i.e., are closer to the optimum and ensure that the QoS constraints are complied with.
Lynceus spends 1.2 times more than Nephele, and CherryPick spends 3.67 times more to recommend

54

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Exploration Cost

1

2

3

4

5

6

7
C

N
O

Nephele
Lynceus
CherryPick
Random

(a) Exploration Cost

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (minutes)

1

2

3

4

5

6

7

C
N

O

Nephele
Lynceus
CherryPick
Random

(b) Exploration Time

50 100 150 200 250
Exploration Number

1

2

3

4

5

6

7

C
N

O

Nephele
Lynceus
CherryPick
Random

(c) Exploration Number

Figure 6.11: Optimization Process to train a RNN

a configuration with a CNO of 2. Using the same initial budget, Nephele can explore 2.66 more con-
figurations than Lynceus and CherryPick. Hence, the use of subsampling can reduce the cost of the
optimization process for training a RNN.

Using the same amount for exploring configuration in the search space, Nephele can always rec-
ommend cheaper configurations. In the best case, Nephele can recommend configurations that have
a deployment cost 3 and 3.5 times lower comparing with Lynceus and CherryPick, respectively. When
Nephele finds the optimal configuration, it can achieve a reduction of 50% in the deployment cost (see
Section 6.3).

6.4.3 Multilayer NN Dataset

Figure 6.12 depicts the evolution of the optimization process over cost, time, and exploration num-
ber. As seen in Section 6.3.3, for the defined QoS constraints, the optimum is found using the full
dataset, so it is not possible to use subsampling to decrease the cost in production. Since the search
space increases five times, and it is much complex, Nephele consumes more money and takes longer
to find the optimum.

This can be explained by considering that the search space increases in size and complexity, and

55

5 10 15 20 25
Exploration Cost

0

5

10

15

20

25

30

C
N

O
Nephele
Lynceus
CherryPick
Random

(a) Exploration Cost

2 4 6 8 10 12 14 16
Time (minutes)

0

5

10

15

20

25

30

C
N

O

Nephele
Lynceus
CherryPick
Random

(b) Exploration Time

50 100 150 200 250
Exploration Number

0

5

10

15

20

25

30

C
N

O

Nephele
Lynceus
CherryPick
Random

(c) Exploration Number

Figure 6.12: Optimization Process to train a Multilayer NN

the optimizer will require more time and money to find the optimum. However, in the early phases of
the optimization process, where the spent budget is small (e.g., $2.5), Nephele can recommend better
configurations than the other two systems.

6.5 Impact of Subsampling on Lookahead

This section evaluates the impact of using subsampling with lookahead techniques in order to see
if lookahead can have benefits when using subsampling. Since the use of subsampling creates a larger
and more complex search space, which have been previously indicated as favourable conditions for the
use of lookahead techniques [[53], [19]], with this study we intend to verify whether this is actually the
case also for our datasets. Three depth horizons were tested: h = 0, 1, 2. To compute the Gauss-
Hermite quadrature, it is used three points for a cost predictions and one point for the accuracy (i.e., the
mean value) predictions (N = 3 and M = 1, Algorithm 3 Lines 16 and 17). A preliminary study using
M = 1 or M = 3 showed that using M = 1 Nephele can decrease the optimization cost. Also, this way,
the complexity decreases exponentially, and the optimization time is much shorter.

56

10 20 30 40 50 60
Exploration Cost

0

5

10

15

20

CN
O

Nephele lookahead=0
Nephele lookahead=1
Nephele lookahead=2

(a) CNN

10 20 30 40 50 60
Exploration Cost

0

5

10

15

20

CN
O

Nephele lookahead=0
Nephele lookahead=1
Nephele lookahead=2

(b) RNN

10 20 30 40 50 60
Exploration Cost

0

5

10

15

20

CN
O

Nephele lookahead=0
Nephele lookahead=1
Nephele lookahead=2

(c) Multilayer NN

Figure 6.13: Optimization process using Nephele and different depth horizons to train NN

6.5.1 CNN Dataset

Figure 6.13(a) shows the optimization process to train a CNN using three different depths horizons.
Using a horizon of two is always the worst, and the recommended configurations have a higher CNO.
With a horizon of one, Nephele can spend less to find the optimal configuration. However, this cost gain
is very small. It is possible to achieve better recommendations for lower exploration costs if Nephele is
run without lookahead. In the best case, without using lookahead can reduce the cost in production by
approximately 57%.

The total optimization time (i.e., exploration time plus the overhead necessary to select a configura-
tion do evaluate) is 2.34 and 3.83 times higher when using a horizon of one and two comparing without
lookahead.

6.5.2 RNN Dataset

Figure 6.13(b) presents the evolution of the CNO during the optimization using Nephele with three
different depth horizons to train a RNN. Similar to the train of a CNN, the lookahead technique does not
present significant improvements. Furthermore, using a horizon of two, the optimizer spends approx-

57

imately 1.3 times more to find the optimum and during the optimization process always recommends
expensive configurations.

The cost spends to find the optimum using a horizon of zero and one is similar. However, for small
explorations cost, Nephele without lookahead recommends better configuration with a lower CNO.

6.5.3 Multilayer NN Dataset

In Figure 6.13(c) shows the optimization process for training a multilayer NN using different depth
horizons. The cost spent by the optimizer to find the optimal configuration to train a Multilayer NN using
the three possible depth horizons is very similar. However, there is a small gain when it is used a horizon
of one.

During the optimization process, three is an improvement when the lookahead technique is used.
Through the use of a horizon of one, it is possible to find near-optimum configurations using almost half
of the cost than using no horizon. Using a horizon of 2, there is a cost reduction of 15% comparing
without horizon. Therefore, in this particular case, using the lookahead technique is beneficial, and it is
possible to recommend better configuration with lower CNO spending less money.

However, the total optimization time increases when lookahead is used, if one accounts also for
the time necessary to predict the next configuration to test. Therefore, using a horizon of zero, the total
time is almost half of the time consumed when it is used a horizon of 1. Using a horizon of 2, the total
optimization time is three times higher when no horizon is used.

In general, the use of the lookahead technique does not seem to improve the performance of
Nephele significantly, at least for the considered datasets. Furthermore, using and horizon of two is
worst and will present a high cost for the user. In some cases, lookahead can improve the quality of
recommendation during the optimization. Using the datasets analyzed in this section, in two out of three
jobs, lookahead does not present significant improvements.

Summary

This chapter answered three main questions:
- can the use of subsampling reduce the cost in production, while preserving acceptable accuracy levels?
- can the use of subsampling reduce the cost and duration of the optimization process?
- is the use of lookahead techniques beneficial to improve the efficiency of the optimization process
when subsampling is used?

The results of our study show that the answer to the first two question is yes, provided that the accu-
racy constraints can be actually satisfied using subsampled datasets. This is the case for two networks
out of the three considered in our study (CNN and RNN). For example, to train a CNN spending $10 to
explore, Nephele can find configurations three times cheaper and, when Nephele finds the optimum, the
configuration leads to a reduction of 75% of the cost in production when compared to Lynceus. To train a
RNN, Nephele can always recommend better configurations and an optimal configuration approximately
two times cheaper comparing to the other two optimizers. However, for training a Multilayer NN, it is not
possible to satisfy the considered accuracy constraint using any subsampled datasets. Also, since the
search space that includes the subsampling rate is five times larger and much more complex than the
full dataset, the optimizers that do not use subsampling will have lower exploration costs.

58

As for the third question, using lookahead with subsampling does not present significant improve-
ments in the quality of the recommendations and the cost spent in the optimization process, at least with
the consiedred datasets. Only when training a Multilayer NN and using horizon one, the optimizer can
recommend better configurations using small exploration costs. Also, with this horizon, it is possible to
reduce the cost necessary to find the optimum, though this reduction is very small.

59

7Fabulinus Evaluation

This chapter describes the experiments performed to test and evaluate the Fabulinus system pro-
posed in Chapter 4. Similarly to the previous chapter, Section 7.1 provides the baselines and the metrics
used for comparing Fabulinus. Section 7.2 provides the implementation details to run Fabulinus. Sec-
tion 7.3 evaluates Fabulinus in order to understand the impact of subsampling to reduce the cost of the
optimization process. Then, in order to validate the new acquisition function proposed, the ability of
Fabulinus to find the optimal configuration is evaluated.

7.1 Evaluation Setup

This section provides the baselines to compare Fabulinus. Firstly, it defines the state-of-the-art
systems with which Fabulinus is compared and, then, presents the metric used to evaluate and compare
the systems.

Baselines for Comparison. Fabulinus is compared with Fabolas [48]. Fabulinus extends the ac-
quisition function of proposed in Fabolas, called Entropy Search (Equation 2.25), in order to incorporate
constraints. This new acquisition function proposed in this work is called constrained Entropy Search
(ESC). Fabulinus is also compared to standard BO without subsampling using the constrained Expected
Improvement (EIC) and the Expected Improvement (EI) as an acquisition function. All these systems
use BO to find the optimum, and two GPs models are used to model both the cost and the accuracy
functions.

Evaluation Metrics. In order to evaluate Fabulinus, a metric called constrained Accuracy
AccuracyC , based on similar approaches used in Lam et al. [53], is employed. At each iteration, the
constrained accuracy penalizes configurations that do not meet the constraints.

AccuracyC(x, s) =

A(x, s) if (x, s) is feasible

0 otherwise.
(7.1)

Therefore, when a configuration is infeasible, its accuracy value is penalized to zero in order to punish
infeasible recommendations. The AccuracyC is evaluated as a function of the exploration cost, number
of explorations, exploration time, and total computational time, which consists of the exploration time
plus the overhead time necessary to compute the acquisition function to select the next configuration to
evaluate.

7.2 System Implementation and Experimental Setup

This section details the system implementation to evaluate Fabulinus and the settings used to run
the experiments.

Network

Type

Cost

constraint

Feasible

configurations

Configurations with

high accuracy

Configurations with high

accuracy that respect constraint

CNN $0.1 111 (38.54%) 178 (61.8%) 69 (23.96%)

RNN $0.02 178 (61.8%) 110 (38.19%) 42 (14.58%)

Multilayer $0.06 161 (55.8%) 80 (27.78%) 25 (8.68%)

Table 7.1: Feasible configurations given a cost constraint

System Implementation. Fabulinus was developed in Python and extends the publicly available
Fabolas implementation GPs are used to model the accuracy and the cost functions and are imple-
mented using the Python library George. In order to find the best hyperparameters of GPs, the MCMC
algorithm is used through the EMCEE package. The models use the logarithmic scale, as proposed in
Fabolas.

Experimental Setup. The initial models of accuracy and cost are built using a number of configu-
rations that corresponds to 3% of the search space size, randomly selected, as done in Casimiro et al.
[19]. The stopping condition defined for these experiments was the maximum number of iterations. This
value was set to 100 iterations. Since the computational cost of Fabulinus and Fabolas is very high (it
requires a considerable amount of time to compute the acquisition functions and, thus, the total time
is enormous and can take several days to solve the optimization problem), each optimizer was run ten
times, as in Klein et al. [48].

The jobs deployed were the training of three NNs, as described in Chapter 5. Thus, different cost
constraints were set for each NN. The cost constraints are $0.1, $0.02 and $0.06 for training a CNN, a
RNN, and Multilayer NN, respectively. The feasible space is represented in Table 7.1. For the CNN, there
are 111 feasible configurations. However, only 69 configurations (23.96% of the search space for s = 1)
respect the cost constraint and have a high accuracy (i.e., accuracy higher than 85%). Also, 37.85% of
the configurations have high accuracy but do not meet the constraint. For training a RNN, the number of
feasible configurations is 178 representing 61.8% of the space for s = 1. However, only 14.58% of the
configurations are feasible and have high accuracy. To train a Multilayer NN, 55.8% of the configurations
respect the cost constraint using the full dataset. 27.28% of the configurations have high accuracy, but
only 8.68% of configurations are feasible and have high accuracy. All theses experiments were executed
in machines equipped with an Intel Xeon Platinum 8176 Processor and 256GB of memory running the
operating system Linux Ubuntu 18.04 LTS with an architecture x84 64.

7.3 Impact of Subsampling on Cost of Optimization Process

This section evaluates Fabulinus and its ability to find the optimal configuration that maximizes
the performance and ensures the cost constraints for each job. Therefore, each job is evaluated on
exploration cost, time, and number of explorations.

Fabulinus is compared with the Fabolas approach. Fabulinus extends the acquisition function of
Fabolas in order to incorporate constraints. The proposed system is also compared with standard BO
approaches using the EIC and the EI. Since Fabolas and BO with EI do not take into account constraints,
it is expected that the metric used to evaluate the systems, i.e., the AccuracyC will be zero, and these
two approaches will recommend configurations that do not respect the constraint. On the other hand,

61

since Fabulinus and the standard BO with EIC take into account constraints, it is expected that the rec-
ommend configurations have an AccuracyC equals to the value of the accuracy, i.e., the recommended
configurations meet the cost constraint.

7.3.1 CNN Dataset

Analyzing Figure 7.1(a), it is possible to see that Fabulinus identifies solutions with a given value
of AccuracyC at a fraction of the time and cost required by the other considered methods. Fabulinus
can recommend configurations that have high accuracy and ensures the cost constraint, unlike Fabolas
that always outputs configurations that do not respect the constraint. Therefore, the proposed acquisi-
tion function used by Fabulinus (Equation 4.4) can select configurations to evaluate that increase the
knowledge about the optimum and have a high probability to meet the constraint.

Although the number of explorations required by Fabulinus to build the initial models is higher than
standard BO approaches without subsampling (the instant when the initial sampling ends is marked in
the figures with a circle), the first spends less money to create the model. Fabulinus reduces the cost
of the initial sampling phase by approximately 3%. This happens because Fabulinus evaluates cheaper
configurations in subsampled datasets, unlike standard BO approaches without subsampling. Fabulinus
reduces the cost of the optimization process in 35,52%, 58.34%, and 88.24% comparing with Fabolas,
BO using EIC and EI, respectively.

Since the exploration time and cost are dependent, there is a similar behavior for the exploration time
(Figure 7.1(b)). However, if the overhead time necessary to compute the acquisition function is analyzed
(Figure 7.1(d)), the optimization time, i.e., the exploration time plus the overhead, is higher for Fabulinus.
To train a CNN, the training time to evaluate one configuration is in the same order of magnitude of the
overhead time. So, none of them can be neglected. Fabulinus consumes 1.06 more time than BO using
the EIC. When the model starts to be used, the computation of the acquisition function to recommend a
configuration to sample takes approximately 6 minutes. The overhead time increases as there are more
sampled configurations. At the end of exploration, after evaluated one hundred configurations, Fabulinus
spends more than 12 minutes on average to recommend a configuration. However, using a very small
number of iterations, the overhead time does not have a significant impact on the time consumed, and
Fabulinus can recommend configurations with high accuracy that meet the cost constraint.

7.3.2 RNN Dataset

Next, the four optimizers were evaluated for training a RNN. The results are shown in Figure 7.2.
Fabulinus and BO with EIC always recommend configurations that have high accuracy and ensures the
cost constraint, unlike Fabolas that always outputs configurations that do not respect the constraint. The
incumbent configuration predicted by Fabolas never respects the constraints.

Similar to the previous job, using subsampling can reduce the cost paid in the initial sampling. In
this case, there is Fabulinus reduces in exploration cost of the initial sampling phase by almost 9%.
Fabulinus reduces in 40%, 80% and 79.7% the optimization cost comparing with Fabolas, BO using EIC
and EI.

When the overhead is taken into account, the time that Fabulinus spends to recommend good
configurations is 4.71, 6.46, and 12.4 times higher than the optimization time taken by Fabolas, BO with
EIC and EI, respectively.

62

0 2 4 6 8 10 12 14
Exploration Cost

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
C

Fabulinus (ESC)
Fabolas (ES)
BO with EIC
BO with EI

(a) Exploration Cost

0 2 4 6 8 10
Exploration Time (Hours)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

C

Fabulinus (ESC)
Fabolas (ES)
BO with EIC
BO with EI

(b) Exploration Time

0 20 40 60 80 100
Exploration Number

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

C

Fabulinus (ESC)
Fabolas (ES)
BO with EIC
BO with EI

(c) Exploration Number

0 2 4 6 8 10
Time (Hours)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

C

Fabulinus (ESC)
Fabolas (ES)
BO with EIC
BO with EI

(d) Time (exploration time + overhead)

Figure 7.1: Optimization Process to train a CNN

63

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Exploration Cost

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
C

Fabulinus (ESC)
Fabolas (ES)
BO with EIC
BO with EI

(a) Exploration Cost

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Exploration Time (Hours)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

C

Fabulinus (ESC)
Fabolas (ES)
BO with EIC
BO with EI

(b) Exploration Time

0 20 40 60 80 100
Exploration Number

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

C

Fabulinus (ESC)
Fabolas (ES)
BO with EIC
BO with EI

(c) Exploration Number

0.0 0.2 0.4 0.6 0.8 1.0
Time (Hours)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

C

Fabulinus (ESC)
Fabolas (ES)
BO with EIC
BO with EI

(d) Time (exploration time + overhead)

Figure 7.2: Optimization Process to train a RNN

64

0.0 0.2 0.4 0.6 0.8 1.0
Exploration Cost

0.0

0.2

0.4

0.6

0.8
Ac

cu
ra

cy
C

Fabulinus (ESC)
Fabolas (ES)
BO with EIC
BO with EI

(a) Exploration Cost

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Exploration Time (Hours)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

C

Fabulinus (ESC)
Fabolas (ES)
BO with EIC
BO with EI

(b) Exploration Time

0 20 40 60 80 100
Exploration Number

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

C

Fabulinus (ESC)
Fabolas (ES)
BO with EIC
BO with EI

(c) Exploration Number

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (Hours)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

C

Fabulinus (ESC)
Fabolas (ES)
BO with EIC
BO with EI

(d) Time (exploration time + overhead)

Figure 7.3: Optimization Process to train a Multilayer NN

65

7.3.3 Multilayer NN Dataset

Figure 7.3 presents the evolution of the AccuracyC using Fabulinus, Fabolas, standard BO with
EIC, and EI. During the optimization process, there is a configuration recommended by Fabulinus that
does not meet the constraint. Fabulinus only predicts the cost and accuracy of the incumbent and never
runs it. Therefore, there will always have some uncertainty about the real performance and cost of the
incumbent. However, in general, Fabulinus can recommend configurations that have high accuracy and
complies with the constraint.

Fabulinus reduces the cost of the initial sampling by 22.2% when compared with standard BO
without subsampling. For training a Multilayer NN, Fabulinus can also reduce the cost of the optimization
process by 32.26%, 83.93%, and 86.6% comparing with Fabolas, BO with EIC and EI, respectively. As in
the previous case, Fabulinus explores more configurations but spends less money than BO approaches
without subsampling. Fabulinus reduces the exploration time and recommends configurations with high
accuracy the comply with the constraint.

Fabolas and BO using EI present a large number of recommendations that do not meet the con-
straint, as expected. Accounting the entire optimization time (i.e., exploration time plus overhead), Fab-
ulinus spends 2.52 more time than Fabolas, 1.69 more time than BO with EIC and 2.79% more time than
BO with EI. To train a multilayer NN, usually, the execution time of a given configuration is shorter than
the overhead required by Fabulinus. Notwithstanding, the first recommendations where the overhead
does not have a considerable impact, Fabulinus recommends on average configurations that have high
accuracy and meet the constraint.

Summary

This Chapter evaluates Fabulinus proposed in Chapter 4. Using the datasets gathered in this work,
Fabulinus was compared with Fabolas, a standard BO using the EIC and EI as an acquisition function.
This evaluation tries to validate the acquisition function used by Fabulinus and proposed in this work.
The results obtained for the training of the three networks show that it is always possible to reduce the
cost of the optimization process. In particular, Fabulinus can reach a cost reduction of 58.34%, 83.93%
and 80% comparing with a standard BO using the EIC to train a CNN, a Multilayer NN and a RNN,
respectively.

Through the use of subsampling, it is always possible to increase the number of evaluated config-
urations and reduce the cost spent in the initial sampling to construct the models. Therefore, when the
models start to be used for predictions, the exploration cost and time are always lower using Fabulinus
and Fabolas. Fabulinus presents a higher total optimization time, i.e., the exploration time plus the over-
head necessary to compute the acquisition function and select the next configuration to evaluate. In
the beginning, the overhead is around 6 minutes and increases with the number of evaluated configura-
tions. In the end, the overhead can be higher than 12 minutes. However, the overhead does not have a
significant and critical impact on the first predictions

To sum up, Fabulinus can reduce the cost of the optimization process through the use of subsam-
pling a still recommend configurations that maximize the accuracy in the full dataset and comply with
the constraint. The results in this section serve also to validate the effectiveness of the novel acquisition
function employed by Fabulinus.

66

8Conclusions and Future

Work

This thesis propose two systems, Nephele and Fabulinus, that leverage subsampling techniques to
optimize the training of machine learning models in the cloud.

Nephele aims at finding the best configuration that minimizes the training cost subject to user-
defined constraints on accuracy, time budget for the optimization phase. Nephele exploits subsampling
in order to reduce the training cost by adjusting the size of the dataset to trade-off, in a controlled way,
the accuracy of the resulting models and the cost of the training process.

The results show that using subsampling, it is possible to reduce the cost by up to 75% comparing to
state-of-the-art approaches, if one accepts an accuracy threshold of 85%. Further, despite the inclusion
of the subsampling rate in the configuration space leads to an increase of the problem’s dimensionality,
the cost of Nephele’ optimization process is comparable to, and often even lower than, that of equivalent
BO-based methods that do not include sub-sampling in their configuration space.

The other proposed system, called Fabulinus, aims to find the configuration on the full dataset that
maximizes the accuracy of ML jobs subject to a user-defined constraint on cost (or time), while evaluat-
ing configurations using only subsampled datasets which are usually cheaper and faster. The key novel
contribution of Fabulinus is a new acquisition function, which selects the configuration and dataset size
to test by keeping into account two factors: i) maximizing information on the loss-minimizing configu-
ration on the full dataset per unit cost spent testing configurations, using recently proposed techniques
in the transfer learning literature; ii) maximizing the likelihood that the cost constraint will be met by
the recommended configuration, using the full dataset, based solely on information gathered by using
subsampled datasets. We show that Fabulinus can reduce the optimization cost by a factor up to 6.6×
when compared to classic BO-techniques that do not use subsampling, while effectively enforcing the
specified cost constraints, unlike recent state-of-the-art techniques that use sub-sampling.

This work has opened a number of research question that would be interesting to address in future
work:

• As for future research directions, Nephele can be incorporated with the Hyperband method in
order to identify and drop under-performed configurations in the early phases of optimization. All
these systems use Sequential model-based (SMBO) and are model-dependent to select the next
configuration. The initial model constructed through randomly sampled configurations has a direct
impact on the performance of the optimization. In particular, this approach is not efficient since
it can evaluate expensive configurations reducing the available budget significantly. Furthermore,
this random search can evaluate infeasible regions and miss evaluating relevant regions of the
configuration space.

• Fabulinus could be extended to incorporate a budget for exploration as Nephele. Also, it would
be interesting to integrate lookahead techniques in Fabulinus. The main challenge to pursue this
goal is that the complexity to compute the acquisition function will increase significantly. This is
problematic and may be not feasible in practice since Fabulinus has already large computational

demands: in our experiments Fabulinus takes approximately six minutes to select a configuration
at the beginning of optimization, and this time increases as more information becomes available.
A possibility might be to use other recently proposed approximations, e.g., [37], to speed up the
computation of the acquisition function.

• The acquisition function proposed in Fabulinus, the constrained Entropy Search (ESC), may be
modified in order to test alternative variants of this acquisition function. This is something that was
not possible to test during this dissertation given the large amount of time needed to run statically
meaningful tests with Fabulinus. For example, it would be interesting to test a variant of ESC that
simply multiplies the Entropy Search by the probability that a constraint is met without including
in the dataset the predictions of the model in its current state. Such a test would allow to prove
experimentally the relevance of this specific design choice of Fabulinus.

• Finally, it may be possible to extend the proposed systems in order to use other measurements like
CPU usage, memory availability, or network monitoring to increase the quality of model predictions.

68

Bibliography

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Ra-
jat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete
Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. “Tensorflow: a system for large-scale ma-
chine learning”. In: Proceedings of the 12th Symposium on Operating Systems Design and Imple-
mentation. Vol. 16. Savannah, GA, USA, 2016, pp. 265–283.

[2] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Minlan Yu, and
Ming Zhang. “CherryPick: Adaptively Unearthing the Best Cloud Configurations for Big Data An-
alytics”. In: Proceedings of the 14th USENIX Conference on Networked Systems Design and
Implementation. Boston, MA, USA, 2017, pp. 469–482.

[3] Amazon. Amazon Elastic Compute Cloud (EC2). https://aws.amazon.com/ec2/.

[4] Peter Auer. “Using confidence bounds for exploitation-exploration trade-offs”. In: Journal of Ma-
chine Learning Research. Vol. 3. Nov. JMLR, inc. 2002, pp. 397–422.

[5] Richard Bellman. “The theory of dynamic programming”. In: Bulletin of the American Mathematical
Society 60.6 (1954), pp. 503–515.

[6] Shai Ben-David and Reba Schuller Borbely. “Exploiting Task Relatedness for Mulitple Task Learn-
ing”. In: Conference on Learning Theory. 2003.

[7] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. “Algorithms for Hyper-
parameter Optimization”. In: Proceedings of the 24th International Conference on Neural Infor-
mation Processing Systems. Granada, Spain, 2011, pp. 2546–2554.

[8] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. “Algorithms for Hyper-
parameter Optimization”. In: Proceedings of the 24th International Conference on Neural Infor-
mation Processing Systems. Granada, Spain: Curran Associates Inc., 2011, pp. 2546–2554.

[9] Dimitri P Bertsekas. Dynamic programming and optimal control. Vol. 1. Athena Scientific Belmont,
Massachusetts, 1996.

[10] L. Bottou, F. E. Curtis, and J. Nocedal. “Optimization Methods for Large-Scale Machine Learning”.
In: CoRR abs/1606.04838 (2016).

[11] Leo Breiman. “Bagging Predictors”. In: Machine Learning 24.2 (1996), pp. 123–140.

[12] Leo Breiman. Classification and regression trees. Routledge, 1984.

[13] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5–32.

[14] Leonard A. Breslow and David W. Aha. “Simplifying decision trees: A survey”. In: The Knowledge
Engineering Review 12.1 (1997), pp. 1–40.

[15] Thomas M Breuel. “Benchmarking of LSTM networks”. In: CoRR abs/1508.02774 (2015).

[16] Eric Brochu, Vlad M. Cora, and Nando de Freitas. “A Tutorial on Bayesian Optimization of Ex-
pensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement
Learning”. In: CoRR abs/1012.2599 (2010).

69

https://aws.amazon.com/ec2/

[17] Eric Brochu, Matthew Hoffman, and Nando de Freitas. “Portfolio Allocation for Bayesian Optimiza-
tion”. In: CoRR abs/1009.5419 (2011).

[18] Maria Casimiro. “Lynceus: Long-Sighted, Budget-Aware Online Tuning of Cloud Applications”. MA
thesis. Lisbon, Portugal: Instituto Superior Técnico, 2018.

[19] Maria Casimiro, Diego Didona, Paolo Romano, Luı́s Rodrigues, and Willy Zwanepoel. “Lynceus:
Tuning and Provisioning Data Analytic Jobs on a Budget”. In: CoRR abs/1905.02119 (2019).

[20] Dan Claudiu Cireşan, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber. “Deep Big
Multilayer Perceptrons for Digit Recognition”. In: Neural Networks: Tricks of the Trade: Second
Edition. Springer Berlin Heidelberg, 2012, pp. 581–598.

[21] D. D. Cox and S. John. “A statistical method for global optimization”. In: Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics. Vol. 2. 1992, pp. 1241–1246.

[22] Christina Delimitrou and Christos Kozyrakis. “HCloud: Resource-Efficient Provisioning in Shared
Cloud Systems”. In: Proceedings of the 21st International Conference on Architectural Support for
Programming Languages and Operating Systems. Atlanta, GA, USA, 2016, pp. 473–488.

[23] Christina Delimitrou and Christos Kozyrakis. “Quasar: Resource-efficient and QoS-aware Cluster
Management”. In: Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems. Salt Lake City, UT, USA, 2014, pp. 127–144.

[24] Li Deng. “The MNIST database of handwritten digit images for machine learning research [best of
the web]”. In: IEEE Signal Processing Magazine. Vol. 29. 6. IEEE. 2012, pp. 141–142.

[25] Michael D Ekstrand, John T Riedl, and Joseph A Konstan. “Collaborative filtering recommender
systems”. In: Foundations and Trends in Human–Computer Interaction. Vol. 4. 2. Now Publishers,
Inc. 2011, pp. 81–173.

[26] Stefan Falkner, Aaron Klein, and Frank Hutter. “BOHB: Robust and Efficient Hyperparameter Op-
timization at Scale”. In: Proceedings of the 35th International Conference on Machine Learning.
Vol. 80. 2018, pp. 1437–1446.

[27] Peter I. Frazier. “A Tutorial on Bayesian Optimization”. In: CoRR abs/1807.02811 (2018).

[28] Jacob R. Gardner, Matt J. Kusner, Zhixiang Xu, Kilian Q. Weinberger, and John P. Cunningham.
“Bayesian Optimization with Inequality Constraints”. In: Proceedings of the 31st International Con-
ference on Machine Learning. Vol. 32. Beijing, China, 2014, pp. 937–945.

[29] David Ginsbourger and Rodolphe Le Riche. “Towards GP-based optimization with finite time hori-
zon”. In: Proceedings of the 9th International Workshop in Model-Oriented Design and Analysis.
Bertinoro, Italy, 2010, pp. 89–96.

[30] Javier González, Michael Osborne, and Neil D. Lawrence. “GLASSES: Relieving The Myopia Of
Bayesian Optimisationn”. In: CoRR abs/1510.06299 (2015).

[31] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[32] Google. Google Compute Engine. https://cloud.google.com/compute/.

[33] Google Compute Engine. Custom Machine Types. https://cloud.google.com/compute/docs/
machine-types#custom_machine_types. (Visited on 09/04/2019).

[34] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Wit-
ten. “The WEKA Data Mining Software: An Update”. In: ACM SIGKDD explorations newsletter.
Vol. 11. 1. 2009, pp. 10–18.

70

https://cloud.google.com/compute/
https://cloud.google.com/compute/docs/machine-types#custom_machine_types
https://cloud.google.com/compute/docs/machine-types#custom_machine_types

[35] Aaron Harlap, Alexey Tumanov, Andrew Chung, Gregory R. Ganger, and Phillip B. Gibbons. “Pro-
teus: Agile ML Elasticity Through Tiered Reliability in Dynamic Resource Markets”. In: Proceed-
ings of the 12th European Conference on Computer Systems. Belgrade, Serbia, 2017, pp. 589–
604.

[36] Philipp Henning and Christian J. Schuler. “Entropy Search for Information-Efficient Global Opti-
mization”. In: Journal of Machine Learning Research. Vol. 13. Jan. JMLR, inc. 2012, pp. 1809–
1837.

[37] José Miguel Hernández-Lobato, Matthew W. Hoffman, and Zoubin Ghahramani. “Predictive en-
tropy search for efficient global optimization of black-box functions”. In: Proceedings of the 27th
International Conference on Neural Information Processing Systems. Vol. 1. Montreal, Canada,
2014, pp. 918–926.

[38] Chin-Jung Hsu, Vivek Nair, Tim Menzies, and Vincent W Freeh. “Scout: An Experienced Guide to
Find the Best Cloud Configuration”. In: CoRR abs/1803.01296 (2018).

[39] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “Sequential Model-based Optimization for
General Algorithm Configuration”. In: Proceedings of the 5th International Conference on Learning
and Intelligent Optimization. Rome, Italy, 2011, pp. 507–523.

[40] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Kevin Murphy. “Time-bounded Sequential
Parameter Optimization”. In: Proceedings of the 4th International Conference on Learning and
Intelligent Optimization. Venice, Italy, 2010, pp. 281–298.

[41] Peter Jaeckel. A note on multivariate Gauss-Hermite quadrature. https : / / pdfs .

semanticscholar.org/0e39/411d.pdf. 2005.

[42] Kevin Jamieson and Ameet Talwalkar. “Non-stochastic Best Arm Identification and Hyperparam-
eter Optimization”. In: Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics. Vol. 51. Proceedings of Machine Learning Research. PMLR, 2016, pp. 240–248.

[43] Donald R. Jones. “A Taxonomy of Global Optimization Methods Based on Response Surfaces”.
In: Journal of Global Optimization. Vol. 21. 4. Springer. 2001, pp. 345–383.

[44] Donald R. Jones, Matthias Schonlau, and William J. Welch. “Efficient Global Optimization of
Expensive Black-Box Functions”. In: Journal of Global Optimization. Vol. 13. 4. Springer. 1998,
pp. 455–492.

[45] Bogumił Kamiński, Michał Jakubczyk, and Przemysław Szufel. “A framework for sensitivity analysis
of decision trees”. In: Central European Journal of Operations Research 26.1 (2018), pp. 135–159.

[46] J. Kiefer and J. Wolfowitz. “Stochastic Estimation of the Maximum of a Regression Function”. In:
The Annals of Mathematical Statistics 23.3 (1952), pp. 462–466.

[47] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: CoRR
abs/1412.6980 (2014).

[48] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. “Fast Bayesian Op-
timization of MachineLearning Hyperparamaters on Large Datasets”. In: Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics. Vol. 54. PMLR, 2017, pp. 528–
536.

[49] Tammo Krueger, Danny Panknin, and Mikio Braun. “Fast cross-validation via sequential testing”.
In: Journal of Machine Learning Research 16.1 (2015), pp. 1103–1155.

[50] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In: The Annals of Mathematical
Statistics. Vol. 22. 1. 1951, pp. 79–86.

71

https://pdfs.semanticscholar.org/0e39/411d.pdf
https://pdfs.semanticscholar.org/0e39/411d.pdf

[51] H. J. Kushner. “A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve
in the Presence of Noise”. In: Journal of Basic Engineering. Vol. 86. 1. The American Society of
Mechanical Engineers. 1964, pp. 97–106.

[52] Remi R. Lam, Karen E. Willcox, and David H. Wolpert. “Bayesian Optimization with a Finite Bud-
get: An Approximate Dynamic Programming Approach”. In: Proceedings of the 29th Neural Infor-
mation Processing Systems Conference. Barcelona, Spain, 2016, pp. 883–891.

[53] Remi Lam and Karen Willcox. “Lookahead Bayesian Optimization with Inequality Constraints”. In:
Proceedings of the 30th Neural Information Processing Systems Conference. Long Beach, CA,
USA, 2017, pp. 1890–1900.

[54] L. Li, K. Jamieson, Giulia DeSalvo, A. Rostamizadeh, and A. Talwalkar. “Hyperband: A novel
bandit-based approach to hyperparameter optimization”. In: Journal of Machine Learning Re-
search 18 (2018), pp. 1–52.

[55] Qing Liu and Donald A Pierce. “A note on Gauss—Hermite quadrature”. In: Biometrika. Vol. 81. 3.
Oxford University Press, Biometrika Trust. 1994, pp. 624–629.

[56] Daniel Lizotte. “Practical Bayesian Optimization”. PhD thesis. University of Alberta, Canada, 2018.

[57] Radford M. Neal. “Monte Carlo Implementation of Gaussian Process Models for Bayesian Regres-
sion and Classification”. In: CoRR abs/physics/9701026 (1997).

[58] Bertil Matérn. Spatial Variation. Berlin, Germany: Springer-Verlag, 1986.

[59] Peter M. Mell and Timothy Grance. The NIST Definition of Cloud Computing. Tech. rep. Gaithers-
burg, MD, United States, 2011.

[60] Microsoft Azure. Virtual Machines. https://azure.microsoft.com/en-us/services/virtual-
machines/.

[61] John Mingers. “An empirical comparison of selection measures for decision-tree induction”. In:
Machine learning. Vol. 3. 4. Springer. 1989, pp. 319–342.

[62] Thomas M. Mitchell. Machine Learning. 1st ed. New York, NY, USA: McGraw-Hill, 1997.

[63] J Mockus, Vytautas Tiešis, and Antanas Žilinskas. “The Application of Bayesian Methods for Seek-
ing the Extremum”. In: Toward Global Optimization. Vol. 2. Elsevier. 1978, pp. 117–128.

[64] Iain Murray and Ryan Prescott Adams. “Slice sampling covariance hyperparameters of latent
Gaussian models”. In: Proceedings of the 23rd International Conference on Neural Information
Processing Systems). Vol. 2. Vancouver, British Columbia, Canada, 2010, pp. 1732–1740.

[65] Michael A. Osborne, Roman Garnett, and Stephen J. Roberts. “Gaussian processes for global
optimization”. In: 3rd International Conference on Learning and Intelligent Optimization (LION3).
2009, pp. 1–15.

[66] Martin Pelikan, David E. Goldberg, and Erick Cantú-Paz. “BOA: The Bayesian Optimization Algo-
rithm”. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation.
Vol. 1. Orlando, FL, USA, 1999, pp. 525–532.

[67] Warren B Powell. Approximate Dynamic Programming: Solving the curses of dimensionality.
Vol. 703. John Wiley & Sons, 2007.

[68] J. R. Quinlan. “Simplifying decision trees”. In: nternational Journal of Man-Machine Studies - Spe-
cial Issue: Knowledge Acquisition for Knowledge-based Systems. Part 5 27.3 (1987), pp. 221–
234.

[69] J. Ross Quinlan. “Induction of decision trees”. In: Machine learning. Vol. 1. 1. 1986, pp. 81–106.

72

https://azure.microsoft.com/en-us/services/virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/

[70] Martin Raab and Angelika Steger. “”Balls into Bins” - A Simple and Tight Analysis”. In: Proceed-
ings of the Second International Workshop on Randomization and Approximation Techniques in
Computer Science. Berlin, Germany: Springer-Verlag, 1998, pp. 159–170.

[71] Laura Elena Raileanu and Kilian Stoffel. “Theoretical comparison between the gini index and in-
formation gain criteria”. In: Annals of Mathematics and Artificial Intelligence. Vol. 41. 1. Springer.
2004, pp. 77–93.

[72] Carl Edward Rasmussen and Malte Kuss. “Gaussian Processes in Reinforcement Learning”. In:
Proceedings of the 16th Neural Information Processing Systems Conference. Whistler, British
Columbia, Canada, 2003.

[73] Carl Edward Rasmussen and Christopher K.I. Williams. Gaussian Processes for Machine Learn-
ing. Cambridge, MA, USA: MIT Press, 2006.

[74] Herbert Robbins and Sutton Monro. “A stochastic approximation method”. In: The annals of math-
ematical statistics (1951), pp. 400–407.

[75] J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. “Collaborative Filtering Rec-
ommender Systems”. In: The Adaptive Web: Methods and Strategies of Web Personalization.
Springer Berlin Heidelberg, 2007, pp. 291–324.

[76] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. “Practical Bayesian Optimization of Machine
Learning Algorithms”. In: Proceedings of the 25th International Conference on Neural Information
Processing Systems. Vol. 2. Lake Tahoe, Nv, USA, 2012, pp. 2951–2959.

[77] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. “Gaussian Process
Optimization in the Bandit Setting: No Regret and Experimental Design”. In: CoRR abs/0912.3995
(2010).

[78] Michael Stein. “Large Sample Properties of Simulations Using Latin Hypercube Sampling”. In:
Technometrics. Vol. 29. 2. Taylor & Francis, Ltd., American Statistical Association, American So-
ciety for Quality. 1987, pp. 143–151.

[79] Michael L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. NewYork, NY, USA:
Springer-Verlag, 1999.

[80] James Stone. Bayes’ Rule: A Tutorial Introduction to Bayesian Analysis. June 2013.

[81] Kevin Swersky, Jasper Snoek, and Ryan P. Adams. “Multi-task Bayesian Optimization”. In: Pro-
ceedings of the 26th International Conference on Neural Information Processing Systems. Vol. 2.
Lake Tahoe, Nv, USA, 2013, pp. 2004–2012.

[82] Michalis K. Titsias, Neil D. Lawrence, and Magnus Rattray. “Efficient sampling for Gaussian Pro-
cess inference using control variables”. In: Proceedings of the 21st International Conference on
Neural Information Processing Systems. Vancouver, British Columbia, Canada, 2008, pp. 1681–
1688.

[83] Aimo Torn and Antanas Zilinskas. Global Optimization. Springer-Verlag, 1989.

[84] Lisa Torrey and Jude W. Shavlik. “ransfer Learning”. In: Handbook of Research on Machine Learn-
ing Applications. 2009.

[85] Christopher K.I. Williams and Carl Edward Rasmussen. “Gaussian processes for regression”. In:
Advances in neural information processing systems. 1996, pp. 514–520.

73

[86] Neeraja J. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, Burton Smith, and Randy H.
Katz. “Selecting the Best VM Across Multiple Public Clouds: A Data-driven Performance Modeling
Approach”. In: Proceedings of the 8th ACM Symposium on Cloud Computing. Santa Clara, CA,
USA, 2017, pp. 452–465.

[87] Dani Yogatama and Gideon Mann. “Efficient Transfer Learning Method for Automatic Hyperpa-
rameter Tuning”. In: Proceedings of the 17th International Conference on Artificial Intelligence and
Statistics). Vol. 33. 2014, pp. 1077–1085.

74

Appendix A

This section details the implementation of the stop condition defined to bring the training of the
neural networks (NNs) (see Chapter 5).

In order to prevent the job from running forever in suboptimal configurations that may take an un-
known time to reach a given accuracy constraint or that may even not reach such accuracy. To accom-
plish this, it is assumed that using a large portion of the dataset to train the NN should be enough to
allow optimal and near-optimal configurations to achieve acceptable accuracies. In this work, this large
portion consists of 90% of the dataset and this threshold is controlled by monitoring the number of it-
erations performed. In each iteration, each worker selects at random a batch of images (of 16 or 256
images) to train the network. At the end of each iteration, each worker sends the results to the supervi-
sor (called Parameter Server) that coordinates the training process. The Parameter Server calculates
the new weights that minimize the loss function, and it sends the updates to the workers.

The batch of images is created through random selection among the dataset. Determining the
number of iterations required to ensure that 90% of the dataset has been evaluated creates a problem
commonly designated ”Balls into bins problem” [70]. In this problem, there are m balls and n boxes (or
bins). In each step, m balls are placed randomly into m different bins.

There are two possible cases to be considered: either a bin is empty or a bin has at least one ball.
These two cases can be modeled by the random variable Xi. When a bin has at least one ball, Xi = 1.
When a bin is empty, Xi = 0. This corresponds to having Xi follow a Bernoulli distribution. For each bin,
the probability that it has one or more balls after throwing m balls is equal to

P (bin has at least one ball) = 1− P (bin does not have balls)

P (Xi = 1) = 1− P (Xi = 0) = 1−
(
n−1
n

)m
.

(1)

The expected value of a Bernoulli random variable Xi is

E(Xi) = P (Xi = 1) · 1 + P (Xi = 0) · 0 = P (Xi = 1) = 1−
(
n− 1

n

)m
. (2)

Let distribution Y = X1 +X2 + · · ·+XN be the number of bins with at least one ball. The expected value
of Y is

E(Y) = E(X1) + · · ·+ E(Xn) = n · E(Xi) = n ·
(

1−
(
n− 1

n

)m)
(3)

It is possible to formulate the initial problem of determining the number of iterations I required to
ensure that at least 90% of the dataset is used to train the NN as a ”Balls into bins” problem. In order
to achieve this, one must consider the dataset size S to be the number of bins and the product of the
number of iterations I and of the batch size b to be the number of balls. Thus, the probability of an
imagine being selected at least once is given by Equation 5.4.

75

P (image is selected at least once) = 1− P (image is never selected) = 1−
(
S − 1

S

)Ib
. (4)

Let Xi = 1, if an image i is selected at least once and, Xi = 0, otherwise. The expected value of Xi

is E(Xi) = 1−
(
S−1
S

)Ib
. Also, let Y be the total number of images used for training. Thus, the expected

value of Y is E(Y) = S · E(Xi) = S ·
(

1−
(
S−1
S

)Ib)
.

Therefore, to ensure that at least α% of the data set is used, E(Yi) ≥ α · S. Through mathematical
manipulation, it is possible to determine the number of iterations required to use α% of the dataset to
train, as a function of dataset size S and batch size b.

E(Y) ≥ α · S ⇔ S ·

(
1−

(
S − 1

S

)Ib)
≥ α · S ⇔ 1− α ≥

(
S − 1

S

)Ib
⇔

⇔ log(1− α) ≤ Ib · log

(
S − 1

S

)
⇔ I ≥ log(1− α)

b · log
(
S−1
S

) (5)

In this work, α was set to 0.9.

76

	Introduction
	Objectives
	Contributions
	Structure of the Document

	Related Work
	Cloud
	Modeling Techniques
	Gaussian Processes
	Covariance Functions
	Tuning of Hyperparameter of the Gaussian Processes

	Decision Trees
	Transfer Learning

	Optimization Techniques
	Bayesian Optimization
	Acquisition functions
	Baysian Optimization with Lookahead

	Optimizing Parameters of Complex Systems
	Optimizing Machine Learning Hyperparameters
	Optimizing Cloud Resources

	Discussion

	Nephele
	System Overview
	Algorithm Description
	Selecting the Next Configuration

	Fabulinus
	System Overview
	Algorithm Description
	Selecting the Next Configuration
	Implementation Details

	Datasets
	Convolutional Neural Network (CNN)
	Multilayer Neural Network
	Recurrent Neural Network (RNN)
	Training the Neural Networks

	Nephele Evaluation
	Evaluation Setup
	System Implementation and Experimental Setup
	Impact of Subsampling on Cost in Production
	CNN Dataset
	RNN Dataset
	Multilayer NN Dataset

	Impact of Subsampling on Cost of Optimization Process
	CNN Dataset
	RNN Dataset
	Multilayer NN Dataset

	Impact of Subsampling on Lookahead
	CNN Dataset
	RNN Dataset
	Multilayer NN Dataset

	Fabulinus Evaluation
	Evaluation Setup
	System Implementation and Experimental Setup
	Impact of Subsampling on Cost of Optimization Process
	CNN Dataset
	RNN Dataset
	Multilayer NN Dataset

	Conclusions and Future Work
	Bibliography
	Appendix A

