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ABSTRACT
Adversarial training aims at generating and introducing adversar-
ial examples while training a DNN model and it is one of the few
defenses against adversarial attacks. Unfortunately, creating strong
adversarial examples comes with an extremely large cost that makes
adversarial training techniques impractical on large-scale and dis-
tributed models and problems. Therefore, in this survey, I first
revisit the state-of-the-art in training robust models and adversarial
training, second explore and investigate the different trade-offs
found during training (e.g., standard accuracy, adversarial accuracy,
training and inference time, time to generate perturbations, and
the ratio of cleaned and perturbed inputs while training), and at
last discuss how (or if) these techniques can be leveraged in real
systems in production. This survey presents some of the results
obtained to explore the trade-offs and conclude that although ad-
versarial training is one of the best defenses against adversarial and
targeted attacks, its high cost hinders its adoption by the industry.

1 INTRODUCTION
Machine Learning (ML) is now ubiquitous. A broad variety of applications
exploits Artificial Intelligence (AI) and ML techniques as a part of their
product, for example, to add new recommendation features or model the
users’ behaviors. Furthermore, ML models represent a vital component of
many security or sensitive apps [10, 20, 26, 32]. Recent works [16, 31] have
exposed several security concerns when exploiting Deep Neural Network
models (DNN) that highlight the importance of developing new methods
to cope with and obey security requirements. Although a vast spectrum of
works focus on DNN, a wider range of modeling techniques also present sim-
ilar vulnerabilities [7, 8]. More in detail, those works show how vulnerable
several modeling techniques can be against adversarial attacks.

Adversarial attacks [16, 31] aim at misclassifying a model prediction by
introducing a small perturbation in the input. In such attacks, malicious
perturbations are determined based on the model and added to the clean
data. Then, those are fed into the model with the goal to mislead it. On the
other hand, targeted attacks [3, 30] are a similar type of attack but instead
of only aiming at creating a misclassification, the attacker’s goal is to target
a certain class and yield a misclassification in one specific class.

There are several examples of sensitive applications that exploit ML
techniques that also need to cope with these vulnerabilities and ensure that
the model will not misclassify if the attacker introduces a small perturbation
to the clean input. For example, autonomous driving cars leverage several
AI and ML techniques (e.g., image recognition models) as a fundamental
component of the interaction with the environment/world. Furthermore, a
model’s misclassification can have catastrophic consequences and, in the
worst case, lead to mortal car accidents. Thus, these models should cope
with possible adversarial examples that might surge in the real world. For
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Figure 1: Example of an adversarial attack: adding pertur-
bations in a Stop sign will mislead the model changing its
prediction into a speed limit sign (from Eykholt et al. [14]).

example, Eykholt et al. [14] showed that the introduction of some stickers
in a predefined position in a stop sign can mislead the model, and instead
of being classified as a “stop sign”, the model will predict a speed limit sign
(see Figure 1).

Another example of applications vulnerable to adversarial or target at-
tacks arises from the credit card fraud detection industries where ML is
a core component [1, 6]. In this case, a misclassification can lead to large
losses of capital and investments. These systems should be able to detect
and cope with small changes in the input/feature space created by attackers
and classified those as fraud. Furthermore, there are examples of adversar-
ial attacks in several different domains like image recognition [16], text
classification [12, 13], malware detection [22], and speech recognition [5].

In the recent years, several works [9, 16, 23, 24, 26] investigated and
developed different techniques to mitigate these vulnerabilities by training
robust models. Those works can be divided in four main areas: i) adversarial
training [16, 23, 27, 34], ii) detection of adversarial attacks [4, 15, 18], iii)
pre-processing techniques [2, 17, 29], and iv) verification and provable de-
fenses [28, 33]. Moreover, these different methods take different assumptions
about the model (e.g, white or black box model), the attacker capabilities,
and optimization algorithms [9, 16, 23, 24, 26]. Despite all these different
approaches, adversarial training is still the one that yields better defenses
against adversarial and target attacks [21], and thus, in this survey, I will
only focus on those methods. For example, the detection of adversarial
attacks/examples is an extremely difficult task because the attacker can
mislead two or more models in a single attack at the same time [4].

Although training robust ML models gained significant attention from
the scientific community, it is still not commonly used in production mainly
due to its high cost [21]. Moreover, the research in the area is mostly focused
on robust DNN within the image recognition domain. Thus, in this survey,
I will first revisit and dive into the literature on training robust ML models
and adversarial training, second explore the different trade-offs presented
in the literature (e.g., standard accuracy, adversarial accuracy, training and
inference time, time to generate perturbations, and the ratio of cleaned and
perturbed inputs while training), and at last, studied how (or if) these robust
models can be really trained and deployed in production to ensure some
level of security to a system.
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2 ADVERSARIAL TRAINING
The goal of adversarial training is to train the model using adversarial exam-
ples generated and injected into the data while training. The perturbations
are computed based on the current model and the clean inputs. Thus, in-
stead of feeding the model directly with clean data and determining the
new models’ parameters \ by minimizing the loss function between the
model’s prediction 𝑓\ (𝑥) for the clean input 𝑥 and the original class 𝑦, i.e.,

min
\

{ E
𝑥,𝑦∼𝐷

[𝐿 (𝑓\ (𝑥), 𝑦) ] }, (1)

adversarial training aims at determining adversarial examples and injecting
them into the data used to train the model. In other words, adversarial
training aims at finding a small perturbation 𝛿 (smaller than a maximum
pre-defined bound 𝜖) that will mislead the current model and train it with
that adversarial input (the clean data input plus the perturbation), i.e.,

min
\

{ E
𝑥,𝑦∼𝐷

[ max
∥𝛿 ∥<𝜖

𝐿 (𝑓\ (𝑥 + 𝛿), 𝑦) ] } (2)

The robustness of the model trained adversarially will depend on the bound
used to produce the adversarial examples and the strength of the method
used to compute those examples.

There are three main strategies to train robust DNN models that are
related to lower bounds, exact solutions, and upper bounds. Moreover, the
most efficient methods in the literature rely on lower bounds to solve the
optimization problem and generate adversarial examples (namely Fast Gra-
dient Sign Method (FGSM) [16] and Project Gradient Descent (PGD) [23]).
Both techniques solve first the inner maximization problem to find the
perturbation and then the outer minimization problem to determine the
models’ parameters. However, these techniques require the computation of
the gradient, which is not always possible.

2.1 Fast Gradient Sign Method
In order to solve the inner optimization problem, we can rely on Gradient
Descent (or Ascent) methods. Moreover, for a given clean input 𝑥 , this
method adjusts the perturbation 𝛿 in the direction of its gradient. The gradi-
ent 𝑔 = ∇𝛿𝐿 (𝑓\ (𝑥 + 𝛿), 𝑦) can be easily computed using backpropagation
technique. The perturbation 𝛿 is then adjusted according to 𝛿 = 𝛿 + 𝛼𝑔,
for a given 𝛼 , and then projected into the norm ball defined by ∥𝛿 ∥ ≤ 𝜖 .
However, if we select a value of 𝛼 big enough and considering the projection
into the ball, the value of 𝑔 will not matter (only the sign of 𝑔, i.e., gradient
direction) and the second term above equation can only take the values
of +𝜖 or −𝜖 . Thus, the perturbation can be easily obtained by computing
𝛿 = 𝜖 · sign(𝑔) .

FGSM was probably the first method to generate adversarial examples
being proposed. However, the FGSM only allows the definition of 𝐿∞ norms,
and it was proven that stronger methods can mislead models trained adver-
sarially using FGSM [21, 23, 34].

2.2 Projected Gradient Descent
The PGD method [23] does not make the assumption that 𝛼 is large enough,
and solves the inner maximization problem through the project gradient
descent with a smaller step size and iteratively projects the result into the
ball, i.e.,

Repeat: 𝛿 = P(𝛿 + 𝛼∇𝛿𝐿 (𝑓\ (𝑥 + 𝛿), 𝑦)) (3)
where P is the projection onto the ball of radius 𝜖 . PGD allows more
choices of the hyper-parameters (in particular, the step size 𝛼 and number
of iterations) and different norms (e.g., 𝐿1, 𝐿2, 𝐿∞ norms).

In spite of PGD presenting a significantly higher computational cost than
the FGSM (see Section 3), it is considered one of the strongest attacks and
defenses. Moreover, Madry et al. [23] show that PGD attacks can mislead
robust models trained via FGSM and yield models with higher adversarial
accuracy.

Hyper-parameter Algorithm Values
𝜖 FGSM, PGD {0.01, 0.05, 0.1, 0.2}
𝛼 PGD {10−2, 10−3}

No. of Iterations PGD {5, 10, 20}
Ratio [%] FGSM, PGD {20, 40, 60, 80, 100}
Table 1: Hyper-parameters considered

There are several algorithms that extend both FGSM and PGD in order
to improve their efficiency and performance. For example, Free Adversarial
Training [27] considers a mini-batch of samples where it computes the
perturbations via FGSM but using a non-zero initialization. In this method,
the value of the previous perturbation in the mini-batch is used to initial-
ize the perturbation of a new sample. On the other hand, Fast Adversarial
Training [34] considers a non-zero random initialization and shows improve-
ments in the adversarial accuracy of FGSM comparable to those achieved
by PGD.

There are also other methods in the literature that are not so commonly
used as for example, DeepFool [24] where the algorithm projects the clean
input onto the closest decision hyperplane using a 𝐿∞ norm, or Zero-th
Order Optimization [9] that considers a black-box approach and just queries
the real model without calculating the gradients and adapts the perturbation
accordingly with the output. There is also another class of attacks and
defenses developed particularly for robust decision trees, where the model
is not differentiable. More in detail, Papernot et al. [25] present a method
that reconstructs the path in the tree until a leaf node where the prediction is
outputted, searches in the neighbor leaves to find a new path that will result
in a different class/prediction, and change the input features accordingly
to misclassify the model. It is also possible to solve a Mixed Integer Linear
Programming optimization problem to determine small perturbations that
mislead the model [19]. However, this last method presents a significant
additional cost to solve the optimization problem.

All these methods to train robust models have their own trade-offs
that I will explore in the next section. However, due to time and resource
constraints, I will only consider the two most famous adversarial training
techniques (i.e., FGSM and PGD).

Moreover, adversarial training introduces new hyper-parameters to the
optimization problem. Thus, to train robust models, we need not only to
perform the standard training to determine the models’ parameters but
also to compute the perturbations for the clean data. Thus, the difficulty of
the problem increases considerably when compared with standard training
with clean data. Furthermore, it is still under investigation in my current
research if it is better and faster to train first the model only with clean
data and then at the end inject adversarial examples or perform adversarial
training from the beginning of the learning process, and if we need to jointly
optimize the model’s and the adversarial training hyper-parameters or if
we can simplify the search space and consider two optimization problems.
We aim at investigating those in the next steps of my research.

3 TRADE-OFFS OF ADVERSARIAL TRAINING
There are several different qualities that should be considered when training
a robust model. In this section, we explore some of these trade-offs that we
consider the most important while training a robust model using FGSM and
PGD, namely i) standard accuracy, ii) adversarial accuracy, iii) training and
iv) inference/testing time, and v) the ratio between clean and adversarial
inputs while training.

To investigate these trade-offs, we consider a convolutional neural net-
work with five layers that was trained using the MNIST [11] dataset. In our
experiments, we used machines equipped with Intel Xeon Gold 6138 CPU,
64GB of memory, and two GPUs Nvidia GeForce GTX 1080. The training
was performed by resorting to GPUs to speed up the experiments.

Furthermore, we consider several different bounds 𝜖 for the perturbation
and different hyper-parameters of the adversarial training algorithms. The
values considered are described in Table 1. To test themodel’s robustness, we
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Algorithm 𝜖 Accuracy [%] Adversarial Accuracy [%] Training Time [s] Inference Time [s]
Standard training - 98.91 59.10 73.69 8.26

FGSM

0.01 99.11 60.48 102.56 8.51
0.05 99.13 92.87 101.16 8.58
0.1 99.09 95.73 103.97 8.57
0.2 98.62 95.63 104.64 8.58

PGD

0.01 99.08 59.39 559.60 9.06
0.05 99.17 93.75 556.47 9.08
0.1 99.02 96.91 559.57 9.05
0.2 97.60 94.79 540.71 8.79

Table 2: Results using standard and adversarial training with FGSM and PGD (20 iterations and 𝛼 = 0.01)

Algorithm 𝜖 Iterations 𝛼 Accuracy [%] Adversarial Accuracy [%] Training Time [s] Inference Time [s]

PGD 0.1

5
0.01

99.17 92.99 193.16 10.34
10 99.16 95.34 346.16 9.57

20 99.02 96.91 559.57 9.05
0.001 99.37 79.94 570.95 9.71

Table 3: Results using adversarial training with PGD and varying the number f iterations and 𝛼

Algorithm Ratio Accuracy [%] Adversarial Accuracy [%] Training Time [s] Inference Time [s]

FGSM

0.2 99.04 90.54 80.25 8.51
0.4 99.20 92.56 83.08 8.58
0.6 99.14 93.18 86.86 9.54
0.8 99.17 94.13 97.54 9.02
1 99.09 95.73 103.97 9.17

PGD

0.2 99.18 79.39 180.61 9.76
0.4 99.01 93.75 283.47 9.18
0.6 98.87 96.91 363.01 9.25
0.8 99.09 95.73 468.17 9.37
1 99.02 96.91 559.57 9.05

Table 4: Results using adversarial training with FGSM and PGD (20 iterations and 𝛼 = 0.01), fixing 𝜖 = 0.1, and varying the ratio
between clean vs. adversarial inputs

evaluate the adversarial accuracy. For that, we need to generate adversarial
examples, attack the model, and measure the accuracy under attack. We
resort to PGD since it is considered the strongest method in the literature,
using a fixed bound 𝜖 of 0.1, 20 iterations, 𝛼 equal to 0.01, and a ratio of 1
(i.e., for all the inputs in the testing set, we compute the perturbation and
then attack the model).

Table 2 reports the main results obtained in this study using the metrics
mentioned above. The model trained with clean data achieves a standard
accuracy of 98.91% but only an adversarial accuracy of 59.1%. Although
several works [16, 23, 27] highlight the fact that adversarial training yields
a reduction in the final standard accuracy of the model, we only verified
this fact when the bound 𝜖 is larger than 0.3 (these experiments were not
included in the results reported in this survey). Moreover, the adversarial
accuracy of a model trained only with clean data is significantly smaller,
and the reduction in the standard accuracy when training robust models is
just approximately 2%.

The training time increases on average by 7.5× and 1.4×when using PGD
and FGSM compared to standard training, respectively. Thus, although PGD
was proven to yield better robustness, there is an extremely high impact on
the computational performance of this algorithm that cannot be neglected.
On the other hand, the testing and inference times are not impacted since
they were performed in the same conditions (and the model architecture is
the same in all experiments). Furthermore, as expected the time necessary
to generate a perturbation is just dependent on the technique used and the

respective hyper-parameters. FGSM presents a constant time to generate
each perturbation, while the same time in PGD depends mainly on two
hyper-parameters (the number of iterations and 𝛼 ). However, the number of
iterations presents the main contribution for this time and increases linearly.
We also conclude that a higher number of iterations on PGD yields better
robust models with higher adversarial accuracy (see Table 3).

At last, we evaluate the impact of varying the ratio between clean and
adversarial inputs while training and report those results in Table 4. In
FGSM, we verified an increase in training time by up to 1.3× when varying
the ratio from 20% of adversarial inputs to 100%, while the standard accuracy
remains practically the same and the adversarial accuracy increased by 5.4%.
Using PGD, we obtained similar results for the standard and adversarial
accuracy. Moreover, there is a linear increase in the training time with the
ratio.

To sum up, although PGD is the method that yields better robust models
with higher adversarial accuracy, there is a significant overhead while
computing the perturbations with this method that harms the adoption of
this method.

4 ADVERSARIAL TRAINING IN PRODUCTION
As we saw in the previous section, adversarial training comes with a sig-
nificant cost that cannot be neglected. Moreover, the values of adversarial
accuracy reported are based on the MNIST dataset using a small model and,
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for example, the adversarial accuracy values reported by Kolter et al. [21]
using the Cifar10 benchmark are significantly smaller than the obtained
with MNIST.

Furthermore, other selection procedures before and while training (such
as selecting the architecture, regularization, or hyper-parameter tuning) are
not yet kept into attention while training robust models. All these decisions
were done based on standard training, but there is no evidence that the
optimal values obtained for standard training are still valid in the context
of adversarial training.

It is still very costly to apply the techniques discussed in this work in
large and distributed models which harms the adoption of these methods
by industries and companies to be used in production. Thus, there is still
a long path to go through to optimize the adversarial training procedures
and be possible to use those in real systems in production.

5 CONCLUSION AND FUTUREWORK
In this survey, I presented an overview of the literature on adversarial
training and investigate the different trade-offs that we face when training
robust models (e.g., standard accuracy, adversarial accuracy, training and
inference time, time to generate perturbations, and the ratio of cleaned and
perturbed inputs while training).

We conclude that although adversarial training yields robust models and
increases the level of security in a system, there is a huge impact on the
training time that harms the adoption of these methods.

Thus, in the future work, we aim at developing optimization techniques
to automatically tune all the hyper-parameters of adversarial training while
exploiting cheap evaluations (e.g. by using cheaper methods to generate the
adversarial examples, or reducing the training time, dataset size, or model
size) to decrease the optimization cost while exploiting this new knowledge
to extrapolate good quality configurations for adversarial training when
using the entire datasets and more complex models.
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